Advertisement

Valorization of wastes from the rose oil industry

  • Anton Slavov
  • Ivelina Vasileva
  • Lyubomir Stefanov
  • Albena Stoyanova
review paper

Abstract

Every year, the rose oil industry generates large amounts of wastes due to the low content of essential oil in the fresh rose petals. Most of the distilleries simply discard the waste biomass which could lead to ecological problems in the nearby locations. Various methods for rose waste utilization have been successfully developed during the past years for the purpose of solving this problem. The aim of the present review is to summarize the possible approaches to the valorization of rose waste biomass, and to outline future trends. Apart from the common methods of disposal, i.e. composting, use for animal forage or simply discarding the wastes, there are several other promising and widely investigated strategies for utilization: aroma substance extraction, recovery of valuable biologically active substances and their application to food industry or medicine, and studies focused on increasing the essential oil yield. Novel approaches include the extraction of polysaccharides from the biomass and introduction of integrated methods for more complete valorization of the rose waste biomass. Nevertheless, most of the methods for rose waste valorization still remain on laboratory scale. This review shows that the potential of the rose oil industry wastes is still underexplored and further studies in this direction are needed.

Graphical Abstract

Keywords

Rose Waste valorization Polyphenols Pectic polysaccharides Aroma substances 

Notes

Acknowledgements

This review has been financially supported by the 6/14-H “Investigation of the combined valorization of waste rose flowers” project funded by the University of Food Technologies, Plovdiv, Bulgaria.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. Abdel-Ghani NT, Elchaghaby GA (2007) Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int J Environ Sci Technol 4:451–456. doi: 10.1007/BF03325980 CrossRefGoogle Scholar
  2. Abdel-Hameed SS, Bazaid SA, Sabra ANA (2015) Total phenolic, in vitro antioxidant activity and safety assessment (Acute, sub-chronic and chronic toxicity) of industrial Taif rose water by-product in mice. Der Pharm Lett 7(2):251–259Google Scholar
  3. Akgül G, Madenoğlu TG, Cengiz NU, Gökkaya D, Sağlam M, Yüksel M (2014) Hydrothermal gasification of Rosa damascena residues: gaseous and aqueous yields. J Supercrit Fluids 85:135–142. doi: 10.1016/j.supflu.2013.11.007 CrossRefGoogle Scholar
  4. Aktan S, Sagdic O (2004) Dried rose (Rosa damascena Mill.) dreg: an alternative litter material in broiler production. S Afr J Anim Sci 34:75–79. doi: 10.4314/sajas.v34i2.3809 Google Scholar
  5. Ansari TM, Hanif MA, Mahmood A, Ijaz U, Khan MA, Nadeem R, Ali M (2010) Immobilization of rosewaste biomass for uptake of Pb(II) from aqueous solutions. Biotechnol Res Int 2011(Article ID 685023): 1–9. doi: 10.4061/2011/685023
  6. Arslankaya E, Tosun İ, Gönüllü MT (2003) Kinetic analysis of composting of rose residue: temperature and reaction rates. In: 12th International symposium on environmental pollution and its impact on life in the Mediterranean Region. October 4–8, AntalyaGoogle Scholar
  7. Atanasova M, Nedkov N (2004) Essential oils and medicinal crops. Kamea, SofiaGoogle Scholar
  8. Atay OA, Ekinci K, Umucu Y (2016) Measurement of flue gas emission of pellets obtained from the mixture of rose oil processing wastes, lignite coal dust and pine barks. J Tekirdag Agric Fac 13(02):1–9Google Scholar
  9. Avsar Y, Kurt U, Gonullu T (2007) Comparison of classical chemical and electrochemical processes for treating rose processing wastewater. J Hazard Mater 148:340–345. doi: 10.1016/j.jhazmat.2007.02.048 CrossRefGoogle Scholar
  10. Balev D, Vlahova-Vangelova D, Mihalev K, Shikov V, Dragoev S, Nikolov V (2015) Application of natural dietary antioxidants in broiler feeds. J Mt Agric Balkans 18(2):224–232Google Scholar
  11. Baydar NG, Baydar H (2013) Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind Crops Products 41:375–380. doi: 10.1016/j.indcrop.2012.04.045 CrossRefGoogle Scholar
  12. Berechet MD, Calinescu I, Stelescu MD, Manaila E, Craciun G, Purcareanu B, Mihaiescu DE, Rosca S, Fudulu A, Niculescu-Aron IG, Mihai R (2015) Composition of the essential oil of Rosa Damascena Mill. cultivated in Romania. Rev Chim (Bucharest) 66(12):1986–1991Google Scholar
  13. Bhatti HN, Khalid R, Hanif MA (2009) Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chem Eng J 148:434–443. doi: 10.1016/j.cej.2008.09.028 CrossRefGoogle Scholar
  14. Bhatti HN, Khadim R, Hanif M (2011) Biosorption of Pb(II) and Co (II) on red rose waste biomass. Iranian J Chem Chem Eng 30:81–88Google Scholar
  15. Çınar O, Dayisoylu KS (2005) Rose hip seeds are not waste. Acta Hortic 690:293–298. doi: 10.17660/ActaHortic.690.45 Google Scholar
  16. Črnivec IGO, Muri P, Djinović P, Pintar A (2014) Biogas production from spent rose hips (Rosa canina L.): fraction separation, organic loading and co-digestion with N-rich microbial biomass. Bioresour Technol 171:375–383. doi: 10.1016/j.biortech.2014.08.085 CrossRefGoogle Scholar
  17. Dobreva A, Tinchev F, Heinz V, Schulz H, Toepfl S (2010) Effect of pulsed electric fields (PEF) on oil yield and quality during distillation of white oil-bearing rose (Rosa alba L.). Zeitschrift für Arznei Gewürzpflanzen 15(3):127–132Google Scholar
  18. Dobreva A, Kovatcheva N, Astatkie T, Zheljazkov VD (2011) Improvement of essential oil yield of oil-bearing (Rosa damascena Mill.) due to surfactant and maceration. Ind Crop Prod 34:1649–1651. doi: 10.1016/j.indcrop.2011.04.017 CrossRefGoogle Scholar
  19. Echavarria-Alvarez AM, Hormaza-Anaguano A (2014) Flower wastes as a low-cost adsorbent for the removal of acid blue 9. Dyna 81:132–138. doi: 10.15446/dyna.v81n185.37234 CrossRefGoogle Scholar
  20. Eikani MH, Golmohammad F, Rowshanzamir S, Mirza M (2005) Recovery of water-soluble constituents of rose oil using simultaneous distillation–extraction. Flavour Fragr J 20:555–558. doi: 10.1002/ffj.1482 CrossRefGoogle Scholar
  21. Ekinci K, Keener HM, Akbolat D (2006) Effects of feedstock, airflow rate, and recirculation ratio on performance of composting systems with air recirculation. Biores Technol 97:922–932. doi: 10.1016/j.biortech.2005.04.025 CrossRefGoogle Scholar
  22. Erbaş S, Baydar H (2016) Variation in scent compounds of oil-bearing rose (Rosa damascena Mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Rec Nat Prod 10(5):555–565Google Scholar
  23. Ercisli S, Demir F, Budak G, Orhan E (2009) Determination of some elements in seeds of rose species by WDXRF spectrometry. Asian J Chem 21(2):1318–1322Google Scholar
  24. Eren E, Gok EF, Seyhan BN, Maslakci NN, Oksuz AU (2015) Evaluation of anthocyanin, a rose residue extract, for use in dye-sensitized solar cell. Asian J Chem 27(10):3745–3748CrossRefGoogle Scholar
  25. Febrianto J, Kosasih AN, Sunarso J, Jua Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645. doi: 10.1016/j.jhazmat.2008.06.042 CrossRefGoogle Scholar
  26. Galanakis C (2015) Food waste recovery. Academic Press-Elsevier Inc., LondonGoogle Scholar
  27. Georgiev E (1995) Technology of natural and synthetic flavor products. Zemizdat, SofiaGoogle Scholar
  28. Georgiev E, Stoyanova A (2006) Handbook of the specialists in aroma industry. Bulgarian National Association of Essential Oils, Perfumery and Cosmetics, PlovdivGoogle Scholar
  29. Georgiev E, Kupenov L, Ganchev G, Konovska B (1972) Extractive aromatic products from the distilled off flower of Rosa damascena Mill. Rivista Italiana Ess 54(6):422–424Google Scholar
  30. Gochev V, Wlcek K, Buchbauer G, Stoyanova A, Dobreva A, Schmidt E, Jirovetz L (2008) Comparative evaluation of antimicrobial activity and composition of rose oils from various geographic origins, in particular Bulgarian rose oil. Nat Prod Commun 3:1063–1068Google Scholar
  31. Gochev V, Dobreva A, Girova T, Stoyanova A (2010) Antimicrobial activity of essential oil from Rosa alba. Biotechnol Biotechnol Eq 24(SE):512–515. doi: 10.1080/13102818.2010.10817892 CrossRefGoogle Scholar
  32. Gomes PB, Mata VG, Rodrigues AE (2007) Production of rose geranium oil using supercritical fluid extraction. J Supercrit Fluids 41:50–60. doi: 10.1016/j.supflu.2006.08.018 CrossRefGoogle Scholar
  33. Gunes E (2005) Turkey rose oil production and marketing: a review on problem and opportunities. J Appl Sci 5(10):1871–1875CrossRefGoogle Scholar
  34. Hanif MA, Nadeem R, Bhatti HN, Ahmed NR, Ansari TM (2007) Ni(II) biosorption by Cassia fistula (golden shower) biomass. J Hazard Mater 139:345–355. doi: 10.1016/j.jhazmat.2006.06.040 CrossRefGoogle Scholar
  35. Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R (2009) Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass. J Hazard Mater 161:941–947. doi: 10.1016/j.jhazmat.2008.04.040 CrossRefGoogle Scholar
  36. Iqbal MJ, Cecil F, Ahmad K, Iqbal M, Mushtaq M, Naeem MA, Bokhari TH (2013) Kinetic study of Cr(III) and Cr(VI) biosorption using Rosa damascena phytomass: a rose waste biomass. Asian J Chem 25(4):2099–2103. doi: 10.14233/ajchem.2013.13345 Google Scholar
  37. Javed MA, Bhatti HN, Hanif MA, Nadeem R (2007) Kinetic and equilibrium modeling of Pb(II) and Co(II) sorption onto rose waste biomass. Sep Sci Technol 42:3641–3656. doi: 10.1080/01496390701710794 CrossRefGoogle Scholar
  38. Jirovetz L, Eller G, Buchbauer G, Schmidt E, Denkova Z, Stoyanova AS, Nikolova R, Geissler M (2006) Chemical composition, antimicrobial activities and odor descriptions of some essential oils with characteristic floral-rosy scent and of their principal aroma compounds. Recent Res Develop Agron Hortic 2:1–12Google Scholar
  39. Kalcheva-Karadzhova K, Shikov V, Mihalev K, Dobrev G, Ludneva D, Penov N (2014) Enzyme-assisted extraction of polyphenols from rose (Rosa damascena Mill.) petals. Acta Univ Cib Ser E Food Technol 18(2):65–72. doi: 10.2478/aucft-2014-0015 Google Scholar
  40. Karaboyaci M (2014) Recycling of rose wastes for use in natural plant dye and industrial applications. J Text Inst 105(11):1160–1166. doi: 10.1080/00405000.2013.876153 Google Scholar
  41. Khan MA, Rehman S (2005) Extraction and analysis of essential oil of Rosa species. Int J Agric Biol 7:973–974Google Scholar
  42. Kovacheva N, Rusanov K, Atanassov I (2010) Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol Biotechnol Eq 24:1793–1798. doi: 10.2478/V10133-010-0032-4 CrossRefGoogle Scholar
  43. Kumanova R (1988) Study of the bacterial content and the methods for stabilization of cosmetic products. Dissertation, Bulgarian Academy of SciencesGoogle Scholar
  44. Kumar M, Swapnavahini K (2012) Nutrient reduction and biogas production of rose residue by anaerobic digestion in a batch reactor. Int J Adv Res Sci Technol 1:125–129Google Scholar
  45. Kupenov L (1989) Microbiological pretreatment and valorization of essential oil materials of Kazanlashka roza. Dissertation, Bulgarian Academy of SciencesGoogle Scholar
  46. Kupenov L, Boneva-Ivanova A (1984) On the composition of some products obtained through complete valorization of rose flowers. Sci Works Higher Inst Food Flavor Ind 31:193–203Google Scholar
  47. Kupenov L, Georgiev E, Boiadjiev P, Ganchev G (1978) Investigation of acid hydrolysis of terpenes glycosides in rose flowers preliminary extracted with hexane. Sci Works Higher Inst Food Flavor Ind 25:189–191Google Scholar
  48. Manzoor Q, Nadeem R, Iqbal M, Saeed R, Ansari T (2013) Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media. Biores Tecnol 132:446–452. doi: 10.1016/j.biortech.2013.01.156 CrossRefGoogle Scholar
  49. Mollov P, Mihalev K, Shikov V, Yoncheva N, Karagyozov V (2007) Colour stability improvement of strawberry beverage by fortification with polyphenolic copigments naturally occurring in rose petals. Innov Food Sci Emerg Technol 8:318–321. doi: 10.1016/j.ifset.2007.03.004 CrossRefGoogle Scholar
  50. Nadeem R, Hanif AA, Riaz M, Azhar AA, Iqbal T, Ansari TM (2010) Kinetic and equilibrium modeling of Cu(II) and Ni(II) sorption onto physically pretreated Rosa centifolia distillation waste biomass. Afr J Biotechnol 9:9051–9062Google Scholar
  51. Nasir MH, Nadeem R, Akhtar K, Hanif MA, Khalid AM (2007) Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions. J Hazard Mater 147:1006–1014. doi: 10.1016/j.jhazmat.2007.01.131 CrossRefGoogle Scholar
  52. Nenov N, Atanasova T, Gochev V, Merdzhanov P, Girova T, Djurkov T, Stoyanova A (2016) New product from Bulgarian rose. Book of IInd international scientific practical conference Dubai “Innovative Technology and Science” 1(3):17–22Google Scholar
  53. Ng TB, He JS, Nius SM, Zhao L, Pi ZE, Shao W, Liu E (2004) A gallic acid derivate and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J Pharm Pharmacol 56(4):537–545. doi: 10.1211/0022357022944 CrossRefGoogle Scholar
  54. Ng TB, Pi ZF, Yue H, Zhao L, Fu M, Li L, Hou J, Shi LS, Chen RR, Jiang Y, Liu F (2006) A polysaccharopeptide complex and a condensed tannin with antioxidant activity from dried rose (Rosa rugosa) flowers. J Pharm Pharmacol 58(4):529–534. doi: 10.1211/jpp.58.4.0013 CrossRefGoogle Scholar
  55. Olech M, Nowak R, Nowacka N, Pecio Ł, Oleszek W, Los R, Malm A, Rzymowska J (2015) Evaluation of rose roots, a post-harvest plantation residue as a source of phytochemicals with radical scavenging, cytotoxic, and antimicrobial activity. Ind Crops Prod 69:129–136. doi: 10.1016/j.indcrop.2015.02.017 CrossRefGoogle Scholar
  56. Omar S, Bahaffi S (2005) Volatile oil composition of Taif rose. J Saudi Chem Soc 9(2):401–406Google Scholar
  57. Onursal E, Ekinci K (2015) Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition. Waste Manag Res 33:332–338. doi: 10.1177/0734242X15574560 CrossRefGoogle Scholar
  58. Onursal E, Oechsner H, Ekinci K (2011) Biogas production potential of rose oil processing wastes and quail manure in Turkey. J Agr Mach Sci 7(4):393–398Google Scholar
  59. Ozkan G, Sagdic O, Baydar NG, Baydar H (2004) Antioxidant and anti-bacterial activities of R. damascena flower extracts. Food Sci Technol Int 10:277–281. doi: 10.1177/1082013204045882 CrossRefGoogle Scholar
  60. Papanov G, Malakov P, Minkov M, Tomova K (1982) Technology for isolation of aroma and biologically active substances from distilled flowers Rosa damascena Mill. and from distilled petals of Lavandula vera D.C. Sci Work Univ Plovdiv “P. Hilendarski” 20(3):131–136Google Scholar
  61. Papanov G, Malakov P, Tomova K (1984) Aroma substances, flavonoids and glycosides from distilled flowers of Rosa damascena Miller. Sci Work Univ Plovdiv “P. Hilendarski” 22(1):221–226Google Scholar
  62. Papanov G, Gacs-Baitz E, Malakov P, Tomova K (1986) Acid hydrolysis and dehydration of mixture of glycosides and carbohydrates from distilled flowers of Rosa damascena Miller. Sci Work Univ Plovdiv “P. Hilendarski” 24(1):173–179Google Scholar
  63. Papanov G, Lavaud S, Tomova K, Malakov P (1988) Glycosides of kaempherol from the flowers of Rosa damascena Miller. Sci Work Univ Plovdiv “P. Hilendarski” 26(5):37–49Google Scholar
  64. Papanov G, Malakov P, Tomova K (1990) Synthesis of aroma compounds, obtained during hydrolysis of distilled rose flowers of Rosa damascena Mill. Sci Work Univ Plovdiv “P. Hilendarski” 28(5):65–68Google Scholar
  65. Rabbani D, Mahmoudkashi N, Mehdizad F (2015) COD and color removal from textile wastewater using Rosa damascena watering waste ash. Int Arch Health Sci 2(1):19–24Google Scholar
  66. Rabbani D, Mahmoudkashi N, Mehdizad F, Shaterian M (2016) Green approach to wastewater treatment by application of Rosa damascena waste as nano-biosorbent. J Environ Sci Technol 9:121–130. doi: 10.3923/jest.2016.121.130 CrossRefGoogle Scholar
  67. Rusanov K, Kovacheva N, Rusanova M, Atanassov I (2012) Low variability of flower volatiles of Rosa damascena Mill. plants from rose plantations along the Rose Valley, Bulgaria. Ind Crops Prod 37:6–10. doi: 10.1016/j.indcrop.2011.11.010 CrossRefGoogle Scholar
  68. Rusanov K, Garo E, Rusanova M, Fertig O, Hamburger M, Atanassov I, Butterweck V (2014) Recovery of polyphenols from rose oil distillation wastewater using adsorption resins—a pilot study. Planta Med 80:1657–1664. doi: 10.1055/s-0034-1383145 CrossRefGoogle Scholar
  69. Salgin U, Salgin S, Ekici DD, Uludağ G (2016) Oil recovery in rosehip seeds from food plant waste products using supercritical CO2 extraction. J Supercrit Fluids 118:194–202. doi: 10.1016/j.supflu.2016.08.011 CrossRefGoogle Scholar
  70. Schieber A, Mihalev K, Berardinia N, Mollov P, Carle R (2005) Flavonol glycosides from distilled petals of Rosa damascena Mill. Z Naturforsch 60c:379–384Google Scholar
  71. Shikov V, Kammerer DR, Mihalev K, Mollov P, Carle R (2008) Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals. J Agric Food Chem 56:8521–8526. doi: 10.1021/jf801946g CrossRefGoogle Scholar
  72. Shikov V, Kammerer D, Mihalev K, Mollov P, Carle R (2012) Antioxidant capacity and colour stability of texture-improved canned strawberries as affected by the addition of rose (Rosa damascena Mill.) petal extracts. Food Res Int 46:552–556. doi: 10.1016/j.foodres.2011.04.004 CrossRefGoogle Scholar
  73. Shliapnikov L, Filippova V (1983) Method of fermentation of rose flowers. Patent SU 1154320 AGoogle Scholar
  74. Slavov A, Kyiohara H, Yamada H (2013) Immunomodulating pectic polysaccharides from waste rose petals of Rosa damascena Mill. Int J Biol Macromol 59:192–200. doi: 10.1016/j.ijbiomac.2013.04.054 CrossRefGoogle Scholar
  75. Slavov A, Vasileva I, Shikov V, Nikolova M, Murdjeva D, Dinchev A, Yantcheva N (2014) Characteristics of polysaccharides obtained from distilled rose petals through sequential extraction. Sci Works Univ Food Technol LXI:366–369Google Scholar
  76. Slavov A, Panchev I, Kovacheva D, Vasileva I (2016) Physico-chemical characterization of water-soluble pectic extracts from Rosa damascena, Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocol 61:469–476. doi: 10.1016/j.foodhyd.2016.06.006 CrossRefGoogle Scholar
  77. Slavov A, Denev P, Panchev I, Shikov V, Nenov N, Yantcheva N, Vasileva I (2017) Combined recovery of polysaccharides and polyphenols from Rosa damascena wastes. Ind Crops Prod 100:85–94. doi: 10.1016/j.indcrop.2017.02.017 CrossRefGoogle Scholar
  78. Solimine J, Garo E, Wedler J, Rusanov K, Fertig O, Hamburger M, Atanassov I, Butterweck V (2016) Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoter 108:13–19. doi: 10.1016/j.fitote.2015.11.012 CrossRefGoogle Scholar
  79. Stefanov L (1995a) Influence of the moisture content of raw material on the yield and quality of concrete “Rozino-1300”. Sci Works Higher Inst Food Flavor Ind 41(2):315–318Google Scholar
  80. Stefanov L (1995b) Influence of the type of solvent on the yield and quality of concrete “Rozino-1300”. Sci Works Higher Inst Food Flavor Ind 41(2):319–323Google Scholar
  81. Stefanov L (2016) Obtaining and analysis of extractive aroma products from waste rose flowers (Rosa x damascena Mill.). Dissertation, University of Food TechnologiesGoogle Scholar
  82. Stoyanova A, Peshkova I, Balinova-Tzvetkova A (1998) Antimicrobial activity of propylene glycol extracts of oil-bearing rose and lavender. Sci Works IX Bulg Microb Congr 2:585–589Google Scholar
  83. Szentmihályi K, Vinkler P, Lakatos B, Illés V, Then M (2002) Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Biores Technol 82:195–201CrossRefGoogle Scholar
  84. Thompson JE, Fry SC (2000) Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–286. doi: 10.1007/s004250000287 CrossRefGoogle Scholar
  85. Tosun Í (2003) Compostability of rose processing wastes with organic fractions of municipal solid wastes. Dissertation, Yildiz Technical UniversityGoogle Scholar
  86. Tosun Í, Gönüllü MT, Günay A (2004) Anaerobic digestion and methane generation potential of rose residue in batch reactors. J Environ Sci Health A 39:915–925. doi: 10.1081/ESE-120028402 CrossRefGoogle Scholar
  87. Tosun Í, Gönüllü MT, Arslankaya E, Günay A (2008) Co-composting kinetics of rose processing waste with OFMSW. Bioresour Technol 99:6143–6149. doi: 10.1016/j.biortech.2007.12.039 CrossRefGoogle Scholar
  88. Tsanaktsidis CG, Tamoutsidis E, Kasapidis G, Itziou A, Ntina E (2012) Preliminary results on attributes of distillation products of the rose Rosa damascene as a dynamic and friendly to the environment rural crop. APCBEE Proc 1:66–73. doi: 10.1016/j.apcbee.2012.03.012 CrossRefGoogle Scholar
  89. Ulusoy S, Tınaz G, Seçilmiş-Canbay H (2009) Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr Microbiol 59:554–558. doi: 10.1007/s00284-009-9475-y CrossRefGoogle Scholar
  90. Waghmode MS, Gunjal AB, Nawani NN, Patil NN (2016) Management of floral waste by conversion to value-added products and their other applications. Waste Biomass Valor. doi: 10.1007/s12649-016-9763-2 Google Scholar
  91. Wedler J, Weston A, Rausenberger J, Butterweck V (2016a) In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water. Fitoterapia 114:56–62. doi: 10.1016/j.fitote.2016.08.019 CrossRefGoogle Scholar
  92. Wedler J, Rusanov K, Atanassov I, Butterweck V (2016b) A Polyphenol-enriched fraction of rose oil distillation wastewater inhibits cell proliferation, migration and TNF-α-induced VEGF secretion in human immortalized keratinocytes. Planta Med. doi: 10.1055/s-0042-105158 Google Scholar
  93. Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem 55:1737–1742. doi: 10.1021/jf062959x CrossRefGoogle Scholar
  94. Xianwen D, Chuangzhi W, Haibin L, Yong C (2000) The fast pyrolysis of biomass in CFB reactor. Energ Fuels 14:552–557. doi: 10.1021/ef9901645 CrossRefGoogle Scholar
  95. Yantcheva N, Markova D, Murdzheva D, Vasileva I, Slavov A (2016) Foaming and emulsifying properties of pectin isolated from different plant materials. Acta Sci Nat 3(1):7–12Google Scholar
  96. Yao ZC, Chang MW, Ahmad Z, Li JS (2016) Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J Food Eng. doi: 10.1016/j.jfoodeng.2016.07.012 Google Scholar
  97. Yarazavi M, Shamspur T, Afzali D, Mostafavi A (2016) Comparison between the concretes obtained from fresh and distilled Rosa damascena Mill, Flowers. J Essent Oil Bear Pl 19(2):479–484. doi: 10.1080/0972060X.2014.977581 CrossRefGoogle Scholar
  98. Yassa N, Masoomi F, Rankouhi SER, Hadjiakhoondi A (2009) Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascene from Iran, population of Guilan. DARU 17:175–180Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Organic ChemistryUniversity of Food TechnologiesPlovdivBulgaria
  2. 2.Department of Essential OilsUniversity of Food TechnologiesPlovdivBulgaria

Personalised recommendations