Advertisement

Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology?

  • Davide Dionisi
  • Igor M. O. Silva
Review Paper

Abstract

Anaerobic fermentation of biodegradable organic materials is usually carried out to obtain the final product, methane, a valuable energy source. However, it is also well known that various intermediates are produced in this process, e.g. ethanol, volatile organic acids and hydrogen. All these species have applications and value as fuels or chemicals. This paper shows a critical analysis of the potential of using anaerobic fermentation by mixed cultures to produce intermediates, e.g. ethanol, acetic, lactic and butyric acid and hydrogen, rather than methane. This paper discusses the current processes to produce these chemicals and compares them with the alternative approach of using open mixed cultures to produce them simultaneously via fermentation from renewable resources. None of these chemicals is currently produced via mixed culture fermentation: ethanol and lactic acid are usually produced in pure culture fermentation using food crops, e.g. corn or sugar cane, as starting materials; hydrogen, acetic and butyric acids are mainly produced via chemical synthesis from fossil fuel derived starting materials. A possible flow-sheet for the production of these chemicals from organic waste using mixed culture fermentation is proposed and the advantages and disadvantages of this process compared to current processes are critically discussed. The paper also discusses the research challenges which need to be addressed to make this process feasible.

Keywords

Open mixed cultures Ethanol Acetic acid Lactic acid Butyric acid Hydrogen 

References

  1. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78CrossRefGoogle Scholar
  2. Alfenore S, Molina-Jouve C, Guillouet S et al (2002) Improving ethanol production and viability of saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72CrossRefGoogle Scholar
  3. Alvarado-Cuevas Z, López-Hidalgo A, Ordoñeza LG (2015) Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrog Energy 40:7586–7592CrossRefGoogle Scholar
  4. Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275CrossRefGoogle Scholar
  5. Angenent LT, Karim K, Al-Dahhan MH et al (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485CrossRefGoogle Scholar
  6. Antonopoulou G, Gavala HN, Skiadas IV et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119CrossRefGoogle Scholar
  7. Appels L, Lauwers J, Degreve J et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301CrossRefGoogle Scholar
  8. Arvanitoyannis IS, Varzakas TH (2008) Vegetable waste treatment: comparison and critical presentation of methodologies. Crit Rev Food Sci Nutr 48:205–247CrossRefGoogle Scholar
  9. Aybeke M, Sidal U (2011) Effects of olive oil mill wastewater used as irrigation water on in vitro pollen germination. Pak J Biol Sci 14:703–708CrossRefGoogle Scholar
  10. Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45(23):2523–2564Google Scholar
  11. Balasubramanian B, Ortiz AL, Kaytakoglu S, Harrison D (1999) Hydrogen from methane in a single-step process. Chem Eng Sci 54:3543–3552CrossRefGoogle Scholar
  12. Batstone DJ, Keller J, Angelidaki I et al (2002) The IWA anaerobic digestion model no 1 (ADM 1). Water Sci Technol 45(10):65–73Google Scholar
  13. Beccari M, Bonemazzi F, Majone M, Riccardi C (1996) Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res 30:183–189CrossRefGoogle Scholar
  14. Ben Sassi A, Boularbah A, Jaouad A et al (2006) A comparison of olive oil mill wastewaters (OMW) from three different process in morocco. Proc Biochem 41:74–78CrossRefGoogle Scholar
  15. Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499CrossRefGoogle Scholar
  16. Bonrath W, Medlock J, Schutz J et al (2012) Hydrogenation in the vitamins and fine chemicals industry-an overview. Intech. doi: 10.5772/48751 Google Scholar
  17. Brown SD, Guss AM, Karpinets TV et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 108:13752–13757CrossRefGoogle Scholar
  18. Buhr H, Andrews J (1977) The thermophilic anaerobic digestion process. Water Res 11:129–143CrossRefGoogle Scholar
  19. Cardona CA, Sanchez OJ, Gutierrez LF (2010) Process synthesis for fuel ethanol production. CRC Press, Boca RatonGoogle Scholar
  20. Carioca J, Leal MRLV (2011) Ethanol production from sugar-based feedstocks. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 27–35CrossRefGoogle Scholar
  21. Cavinato C, Bolzonella D, Fatone F et al (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611CrossRefGoogle Scholar
  22. Cavinato C, Bolzonella D, Pavan P, Cecchi F (2016) Two-phase anaerobic digestion of food wastes for hydrogen and methane production. In: Marcello De Falco, Angelo Basile (eds) Enriched methane, green energy and technology. Springer, Switzerland. doi: 10.1007/978-3-319-22192-2_5
  23. Chatzipaschali AA, Stamatis AG (2012) Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects. Energies 5:3492–3525CrossRefGoogle Scholar
  24. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  25. Cheung H, Tanke RS, Torrence GP (2000) Acetic acid. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, New YorkCrossRefGoogle Scholar
  26. Chung KT (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl Environ Microbiol 31:342–348Google Scholar
  27. Cirne D, Paloumet X, Björnsson L, Alves M, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew Energy 32:965–975CrossRefGoogle Scholar
  28. Corbitt RA (1998) Standard handbook of environmental engineering, vol 2. Mc Graw-Hill, PennsylvaniaGoogle Scholar
  29. Dahiya S, Sarkar O, Swamy YV, Venkata Mohan S (2015) Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182:103–113CrossRefGoogle Scholar
  30. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129CrossRefGoogle Scholar
  31. Davidsson Å, Gruvberger C, Christensen TH et al (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag 27:406–414CrossRefGoogle Scholar
  32. Davila-Vazquez G, de León-Rodríguez A, Alatriste-Mondragón F, Razo-Floresa E (2011) The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass Bioenergy 25:3174–3181CrossRefGoogle Scholar
  33. de Almeida EF, Bomtempo JV, De Souza e Silva C (2007) The performance of Brazilian biofuels: an economic, environmental and social analysis. OECD/ITF Joint Transport Research Centre Discussion Papers, No. 2007/05, OECD Publishing, Paris. doi: 10.1787/234818225330
  34. De Bere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290Google Scholar
  35. De la Rubia M, Perez M, Romero L, Sales D (2006) Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Process Biochem 41:79–86CrossRefGoogle Scholar
  36. Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755CrossRefGoogle Scholar
  37. Denac M, Miguel A, Dunn I (1988) Modeling dynamic experiments on the anaerobic degradation of molasses wastewater. Biotechnol Bioeng 31:1–10CrossRefGoogle Scholar
  38. Department for Environment Food and Rural Affair (Defra) (2012) Wastewater treatment in the United Knigdom-2012. Crown Copyright 2012Google Scholar
  39. Dias JM, Lemos PC, Serafim LS et al (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906CrossRefGoogle Scholar
  40. Dionisi D, Majone M, Vallini G et al (2006) Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 93:76–88CrossRefGoogle Scholar
  41. Dionisi D, Anderson JA, Aulenta F et al (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:366–383CrossRefGoogle Scholar
  42. Dwidar M, Park J, Mitchell RJ, Sang B (2012) The future of butyric acid in industry. Sci World J. http://dx.doi.org/10.1100/2012/471417
  43. Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53:352–366Google Scholar
  44. Ethanol Producer Magazine (2015) US Ethanol Production. http://www.ethanolproducer.com/plants/listplants/US/Existing/Sugar-Stach. Accessed Dec 2015
  45. European Commission (2014) Large scale demonstration of refuelling infrastructure for road vehicles. Call FCH-01.7-2014Google Scholar
  46. Fan Y, Zhang Y, Zhang S et al (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505CrossRefGoogle Scholar
  47. Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31:683–692CrossRefGoogle Scholar
  48. Feng L, Chen Y, Zheng X (2009) Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol 43:4373–4380CrossRefGoogle Scholar
  49. Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14:463–471CrossRefGoogle Scholar
  50. Frohning CD, Kohlpaintner CW, Bohnen H-W (2002) Carbon monoxide and synthesis gas chemistry. In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, 2nd edn. Wiley, Weinheim. doi: 10.1002/9783527618231.ch2a
  51. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRefGoogle Scholar
  52. Gerin PA, Vliegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627CrossRefGoogle Scholar
  53. Gilroyed BH, Chang C, Chu A, Hao X (2008) Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int J Hydrog Energy 33:4301–4308CrossRefGoogle Scholar
  54. Global Methane Initiative (2013) Successful applications of anaerobic digestion from across the world. https://www.globalmethane.org/documents/GMI%20Benefits%20Report.pdf
  55. Guo XM, Trably E, Latrille E, Carrère H, Steyer J (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673CrossRefGoogle Scholar
  56. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567CrossRefGoogle Scholar
  57. Helsel RW (1977) Removing carboxylic acids from aqueous wastes. Chem Eng Progr 73:55–59Google Scholar
  58. Hoornweg D, Bhada-Tata P (2012) What a waste. A global review of solid waste management. No. Urban Development Series. Knowledge papers. World BankGoogle Scholar
  59. Huang YL, Wu Z, Zhang L et al (2002) Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour Technol 82:51–59CrossRefGoogle Scholar
  60. Inamdar STA (2012) Biochemical engineering: principles and concepts. PHI Learning Pvt. Ltd, New DelhiGoogle Scholar
  61. Joseck F, Sutherland E (2014) Early market hydrogen cost target calculation. DOE Fuel Cell Technologies Office Record. Report No. 14013, Department of Energy, USAGoogle Scholar
  62. Jung K, Kim D, Shin H (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35:13370–13378CrossRefGoogle Scholar
  63. Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 33:953–962CrossRefGoogle Scholar
  64. Kawabata N, Yasuda S, Yamazaki T (1982) Process for Recovering a Carboxylic Acid. Patent US4323702 AGoogle Scholar
  65. Kent JA (2010) Kent and Riegel’s Handbook of industrial chemistry and biotechnology, vol 1. Springer, BerlinGoogle Scholar
  66. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212CrossRefGoogle Scholar
  67. Kleerebezem R, Joosse B, Rozendal R, van Loosdrecht MCM (2015) Anaerobic digestion without biogas? Rev Environ Sci Biotechnol. doi: 10.10007/s11157-015-9374-6 Google Scholar
  68. Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 & #xB0;C) by mixed culture fermentation. Water Res 43:1414–1424CrossRefGoogle Scholar
  69. Kongjan P, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105:899–908Google Scholar
  70. Koopmans A, Koppejan J (1997) Agricultural and forest residues. Generation, utilization and availability. Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 JanuaryGoogle Scholar
  71. Kubitschke J, Lange H, Strutz H (1986) Carboxylic acids, aliphatic. Ullmann’s Encyclopaedia of Industrial Chemistry, Wiley, New YorkGoogle Scholar
  72. Kumar S (2011) Composting of municipal solid waste. Crit Rev Biotechnol 31:112–136CrossRefGoogle Scholar
  73. Kumar S, Babu B (2008) Propionic acid production via fermentation route using renewable sources. Chem Ind Dig 9:76–81Google Scholar
  74. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB (2006) Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod 23:288–296CrossRefGoogle Scholar
  75. Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Water Pollut Control Fed 41:R1–R17Google Scholar
  76. Lay J, Li Y, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524CrossRefGoogle Scholar
  77. Lay C, Wu J, Hsiao C et al (2010) Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. Int J Hydrog Energy 35:13445–13451CrossRefGoogle Scholar
  78. Lee G, McCain J, Bhasin M (2007) Synthetic organic chemicals. In: James A Kent (ed) Kent and Riegel’s handbook of industrial chemistry and biotechnology. Springer, BerlinGoogle Scholar
  79. Levy PF, Sanderson JE, Kispert RG, Wise DL (1981) Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microbial Technol 3:207–215CrossRefGoogle Scholar
  80. Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39CrossRefGoogle Scholar
  81. Licht FO (2008) World fuel ethanol production. Renew Fuels Assoc. http://www.ethanolrfa.org/resource/facts/trade/
  82. Lin C, Lay C, Sen B et al (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642CrossRefGoogle Scholar
  83. Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95CrossRefGoogle Scholar
  84. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236CrossRefGoogle Scholar
  85. Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70° C). Biotechnol Bioeng 100:1108–1114CrossRefGoogle Scholar
  86. Ma Q, Lu H (2011) Wind energy technologies integrated with desalination systems: review and state-of-the-art. Desalination 277:274–280CrossRefGoogle Scholar
  87. Majone M, Aulenta F, Dionisi D et al (2010) High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor. Water Res 44:2745–2752CrossRefGoogle Scholar
  88. Martinez FAC, Balciunas EM, Salgado JM et al (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83CrossRefGoogle Scholar
  89. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  90. Miller C, Fosmer A, Rush B et al (2011) Industrial production of lactic acid. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 179–188CrossRefGoogle Scholar
  91. Mizuno O, Dinsdale R, Hawkes FR et al (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65CrossRefGoogle Scholar
  92. NASDAQ stock market (2015). Retrieved February 2015. www.nasdaq.com
  93. National Hydrogen Association (2010) Hydrogen and fuel cells. The U.S. market report. http://www.hydrogenassociation.org/market report
  94. Newsome DS (1980) The water-gas shift reaction. Catal Rev Sci Eng 21:275–318CrossRefGoogle Scholar
  95. Nges IA, Liu J (2010) Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew Energy 35:2200–2206CrossRefGoogle Scholar
  96. Ogilvie D (1998) National study of the composition of sewage sludge. New Zealand Water and Wastes Association, WellingtonGoogle Scholar
  97. Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, bacterial biodegradable polymers. Afr J Biotechnol 3:18–24CrossRefGoogle Scholar
  98. Olson DG, McBride JE, Joe Shaw A, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405CrossRefGoogle Scholar
  99. Orbichem Tecnon (2013) Chem-net facts-acetic acid. Chemical market insight and foresight. http://www.orbichem.com/userfiles/CNF%20Samples/aac_13_11.pdf
  100. Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken. doi: 10.1002/9781118845394.ch3
  101. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12(4):247–256CrossRefGoogle Scholar
  102. Randhawa MA, Ahmed A, Akram K (2012) Optimization of lactic acid production from cheap raw material: sugarcane molasses. Pak J Bot 44:333–338Google Scholar
  103. Ren N, Li J, Li B et al (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31:2147–2157CrossRefGoogle Scholar
  104. Rogers P, Lee K, Skotnicki M, Tribe D (1982) Ethanol production by Zymomonas mobilis. In: Fiechter A (ed) Microbial reactions. Springer, Berlin, pp 37–84Google Scholar
  105. Rosales-Colunga LM, de León Rodríguez A (2015) Escherichia coli and its application to biohydrogen production. Rev Environ Sci Biotechnol 14:123–135CrossRefGoogle Scholar
  106. Rostrup-Nielsen T (2005) Manufacture of hydrogen. Catal Today 106:293–296CrossRefGoogle Scholar
  107. Roychowdhury S, Cox D, Levandowsky M (1988) Production of hydrogen by microbial fermentation. Int J Hydrog Energy 13:407–410CrossRefGoogle Scholar
  108. Ruzicka M (1996) The effect of hydrogen on acidogenic glucose cleavage. Water Res 30:2447–2451CrossRefGoogle Scholar
  109. Sans C, Mata-Alvarez J, Cecchi F et al (1995) Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour Technol 51:89–96CrossRefGoogle Scholar
  110. Satchatippavarn S, Martinex-Hernandez E, Leung Pah Hang MY et al (2015) Urban biorefinery for waste processing. Chem Eng Res Design. doi: 10.1016/j.cherd.2015.09.022 Google Scholar
  111. Scottish Environmental Protection Agency (SEPA) (2014). Household waste summary data and commentary text. http://sepa.org.uk/environment/waste/waste-data/waste-data-reporting/household-waste-data/. Accessed Dec 2015
  112. Sebastiani E, Lacquaniti L (1967) Acetic acid—water system thermodynamical correlation of vapor—liquid equilibrium data. Chem Eng Sci 22:1155–1162CrossRefGoogle Scholar
  113. Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263CrossRefGoogle Scholar
  114. Shea TG, Pretorius W, Cole R, Pearson E (1968) Kinetics of hydrogen assimilation in the methane fermentation. Water Res 2:833–848CrossRefGoogle Scholar
  115. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40:3412–3418CrossRefGoogle Scholar
  116. Siso MG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11CrossRefGoogle Scholar
  117. Smejkal Q, Linke D, Baerns M (2005) Energetic and economic evaluation of the production of acetic acid via ethane oxidation. Chem Eng Process 4:421–428CrossRefGoogle Scholar
  118. Sousa DZ, Pereira MA, Stams AJ et al (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73:1054–1064CrossRefGoogle Scholar
  119. Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Report No. 1998-09-30 Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, ViennaGoogle Scholar
  120. Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307CrossRefGoogle Scholar
  121. Tang G, Huang J, Sun Z et al (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106:80–87CrossRefGoogle Scholar
  122. Temudo MF, Kleerebezem R, van Loosdrecht M (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostst study. Biotechnol Bioeng 98:69–79CrossRefGoogle Scholar
  123. Temudo MF, Mato T, Kleerebezem R, van Loosdrecht MC (2009) Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231–239CrossRefGoogle Scholar
  124. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  125. Timmer J, Kromkamp J, Robbertsen T (1994) Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. J Membr Sci 92:185–197CrossRefGoogle Scholar
  126. Traverso P, Pavan P, Bolzonella D et al (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414CrossRefGoogle Scholar
  127. Turick CE, Peck MW, Chynoweth DP (1991) Methane fermentation of woody biomass. Bioresour Technol 37:141–147CrossRefGoogle Scholar
  128. Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126:1076–1081CrossRefGoogle Scholar
  129. Villano M, Beccari M, Dionisi D et al (2010) Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem 45:714–723CrossRefGoogle Scholar
  130. Visser A, Gao Y, Lettinga G (1993) Effects of pH on methanogenesis and sulphate reduction in thermophilic (55 & #xB0;C) UASB reactors. Bioresour Technol 44:113–121CrossRefGoogle Scholar
  131. Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. FAO RAP Publication 2013/04Google Scholar
  132. Wardell JM, King CJ (1978) Solvent equilibriums for extraction of carboxylic acids from water. J Chem Eng Data 23:144–148CrossRefGoogle Scholar
  133. Wee Y, Kim J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  134. Weimer PJ (2015) Ruminal fermentations to produce liquid and gaseous fuels. In: Anil Kumar Puniya, Rameshwar Singh, Devki Nandan Kamra (eds) Rumen microbiology: from evolution to revolution, vol 18. Springer India, pp 265–280Google Scholar
  135. Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experentia 36:1434–1446CrossRefGoogle Scholar
  136. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile clostridium thermohydrosulfuricum. J Bacteriol 139:800–810Google Scholar
  137. Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432CrossRefGoogle Scholar
  138. Winter C (2009) Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrog Energy 34:S1–S52CrossRefGoogle Scholar
  139. Wu H, Yang D, Zhou Q, Song Z (2009) The effect of pH on anaerobic fermentation of primary sludge at room temperature. J Hazard Mater 172:196–201CrossRefGoogle Scholar
  140. Xu Z, Jiang L (2011) Butyric acid. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic press, Burlington, pp 207–215CrossRefGoogle Scholar
  141. Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32:4761–4771CrossRefGoogle Scholar
  142. Yang S, El-Ensashy H, Thongchul N (2013) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New YorkCrossRefGoogle Scholar
  143. Yang F, Liu Z, Afzal W et al (2015) Pretreatment of miscanthus giganteus with lime and oxidants for biofuels. Energy Fuels 29:1743–1750CrossRefGoogle Scholar
  144. Yokoyama H, Waki M, Moriya N et al (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483CrossRefGoogle Scholar
  145. Yoneda N, Kusano S, Yasui M et al (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A 221:253–265CrossRefGoogle Scholar
  146. Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27:1359–1365CrossRefGoogle Scholar
  147. Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valorisation 4:557–581CrossRefGoogle Scholar
  148. Zero Waste Scotland, Natural Scotland. (2010). The composition of municipal solid waste in Scotland. Final Report, Project Code EVA098-001Google Scholar
  149. Zhang B, Zhang L, Zhang S et al (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26:329–340CrossRefGoogle Scholar
  150. Zhang M, Fan Y, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRefGoogle Scholar
  151. Zhang Y, Banks CJ, Heaven S (2012a) Anaerobic digestion of two biodegradable municipal waste streams. J Environ Manag 104:166–174CrossRefGoogle Scholar
  152. Zhang Y, Banks CJ, Heaven S (2012b) Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol 114:168–178CrossRefGoogle Scholar
  153. Zoetemeyer RJ, Vandenheuvel JC, Cohen A (1982a) pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16:303–311CrossRefGoogle Scholar
  154. Zoetemeyer RJ, Arnoldy P, Cohen A, Boelhouwer C (1982b) Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Res 16:313–321CrossRefGoogle Scholar
  155. Zong W, Yu R, Zhang P et al (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Materials and Chemical Engineering Group, School of EngineeringUniversity of AberdeenAberdeenUK

Personalised recommendations