Microaeration for hydrogen sulfide removal during anaerobic treatment: a review

  • Lucie Krayzelova
  • Jan Bartacek
  • Israel Díaz
  • David Jeison
  • Eveline I. P. Volcke
  • Pavel Jenicek
Review paper

Abstract

High sulfide concentrations in biogas are a major problem associated with the anaerobic treatment of sulfate-rich substrates. It causes the corrosion of concrete and steel, compromises the functions of cogeneration units, produces the emissions of unpleasant odors, and is toxic to humans. Microaeration, i.e. the dosing of small amounts of air (oxygen) into an anaerobic digester, is a highly efficient, simple and economically feasible technique for hydrogen sulfide removal from biogas. Due to microaeration, sulfide is oxidized to elemental sulfur by the action of sulfide oxidizing bacteria. This process takes place directly in the digester. This paper reviews the most important aspects and recent developments of microaeration technology. It describes the basic principles (microbiology, chemistry) of microaeration and the key technological factors influencing microaeration. Other aspects such as process economy, mathematical modelling and control strategies are discussed as well. Besides its advantages, the limitations of microaeration such as partial oxidation of soluble substrate, clogging the walls and pipes with elemental sulfur or toxicity to methanogens are pointed out as well. An integrated mathematical model describing microaeration has not been developed so far and remains an important research gap.

Keywords

Anaerobic digestion Biogas Elemental sulfur Hydrogen sulfide removal Microaeration Sulfide oxidizing bacteria 

Abbreviations

ABR

Anaerobic baffled reactor

BTF

Biotrickling filter

CSTR

Continuous stirred tank reactor

DO

Dissolved oxygen

EGSB

Expanded granular sludge bed

FBR

Fluidized bed reactor

IC

Internal circuit reactor

MDU

Microaerobic desulfurization unit

ORP

Oxidation–reduction potential

PID

Proportional-integral-derivative

SCADA

Supervisory control and data acquisition

SOB

Sulfide-oxidizing bacteria

SOU

Sulfide-oxidizing unit

SRB

Sulfate-reducing bacteria

TN

Total nitrogen

UAF

Up-flow anaerobic filter

UASB

Up-flow anaerobic sludge blanket reactor

VFA

Volatile fatty acid

Notes

Acknowledgments

This research was financially supported by the specific university research (MSMT No. 20/2015), the International Research Staff Exchange Scheme project “Renewable energy production through microalgae cultivation: Closing material cycles—ALGAENET” (PIRSES-GA-2011-295165) and by the Technology Agency of Czech Republic—Project TA03021413. Lucie Krayzelova received funding for a joint doctorate from Ghent University’s Special Research Fund (BOF—01SF2012). David Jeison would like to thank for support provided by CRHIAM Centre (CONICYT/FONDAP/15130015).

References

  1. Alcántara S, Velasco A, Muñoz A, Cid J, Revah S, Razo-Flores E (2004) Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environ Sci Technol 38(3):918–923CrossRefGoogle Scholar
  2. Alvarez A (2014) Use of a silicone bio-membrane for H2S removal from biogas. In: Department of Water Technology and Environmental Engineering, M.Sc., University of Chemistry and Technology Prague, pp 87Google Scholar
  3. Annachhatre AP, Suktrakoolvait S (2001) Biological sulfide oxidation in a fluidized bed reactor. Environ Technol 22(6):661–672CrossRefGoogle Scholar
  4. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRefGoogle Scholar
  5. Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interface Sci 246(1):1–20CrossRefGoogle Scholar
  6. Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189(3):670–676CrossRefGoogle Scholar
  7. Botheju D, Bakke R (2011) Oxygen effects in anaerobic digestion—a review. Open Waste Manag J 4:1–19CrossRefGoogle Scholar
  8. Botheju D, Lie B, Bakke R (2009) Oxygen effects in anaerobic digestion. Model Identif Control 30(4):191–201CrossRefGoogle Scholar
  9. Botheju D, Lie B, Bakke R (2010) Oxygen effects in anaerobic digestion—II. Model Identif Control 31(2):55–65CrossRefGoogle Scholar
  10. Buisman C, Post R, Ijspeert P, Geraats G, Lettinga G (1989) Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnol 9(3):255–267CrossRefGoogle Scholar
  11. Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990a) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35(1):50–56CrossRefGoogle Scholar
  12. Buisman C, Uspeert P, Janssen A, Lettinga G (1990b) Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Water Res 24(5):667–671CrossRefGoogle Scholar
  13. Camiloti PR, Rodriguez RP, Zaiat M (2013) Silicon membrane for micro-aeration and sulfide oxidation control. In: 13th world congress on anaerobic digestion. Santiago de Compostela, SpainGoogle Scholar
  14. Camiloti PR, Valdés F, Bartacek J, Nuñes DJ, Zaiat M (2014) Sulfate reduction and sulfide oxidation in an UASB reactor combined to a membrane aerated biofilm reactor (MABR). In: 11th Latin-American symposium of anaerobic digestion. La Habana, CubaGoogle Scholar
  15. Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157CrossRefGoogle Scholar
  16. Celis CA (2012) Improvement of anaerobic digestion by using of microaerobic conditions. In: Department of Water Technology and Environmental Engineering, Ph.D., Institute of Chemical Technology in Prague. Prague, pp 181Google Scholar
  17. Chandraa R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16(3):1462–1476CrossRefGoogle Scholar
  18. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by oxygen. Environ Sci Technol 6(6):529–537CrossRefGoogle Scholar
  19. Chu L-B, Zhang X-W, Li X, Yang F-L (2005) Simultaneous removal of organic substances and nitrogen using a membrane bioreactor seeded with anaerobic granular sludge under oxygen-limited conditions. Desalination 172(3):271–280CrossRefGoogle Scholar
  20. Cote P, Bersillon JL, Huyard A, Faup G (1988) Bubble-free aeration using membranes: process analysis. J Water Pollut Control Fed 60(11):1986–1992Google Scholar
  21. Couvert A, Sanchez C, Laplanche A, Renner C (2008) Scrubbing intensification for sulphur and ammonia compounds removal. Chemosphere 70(8):1510–1517CrossRefGoogle Scholar
  22. Cytryn E, Minz D, Gelfand I, Neori A, Gieseke A, De Beer D, Van Rijn J (2005) Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system. Environ Sci Technol 39(6):1802–1810CrossRefGoogle Scholar
  23. de Arespacochaga N, Valderrama C, Mesa C, Bouchy L, Cortina JL (2014) Biogas biological desulphurisation under extremely acidic conditions for energetic valorisation in solid oxide fuel cells. Chem Eng J 255:677–685CrossRefGoogle Scholar
  24. De Zwart J, Sluis J, Kuenen JG (1997) Competition for dimethyl sulfide and hydrogen sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in continuous cultures. Appl Environ Microbiol 63(8):3318–3322Google Scholar
  25. Diak J, Ormeci B, Kennedy KJ (2013) Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. Bioprocess Biosyst Eng 36(4):417–424CrossRefGoogle Scholar
  26. Díaz I, Donoso-Bravo A, Fdz-Polanco M (2011a) Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour Technol 102(21):10139–10142CrossRefGoogle Scholar
  27. Díaz I, Fdz-Polanco M (2012) Robustness of the microaerobic removal of hydrogen sulfide from biogas. Water Sci Technol 65(8):1368–1374CrossRefGoogle Scholar
  28. Díaz I, Lopes AC, Perez SI, Fdz-Polanco M (2011b) Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters. Water Sci Technol 64(1):233–238CrossRefGoogle Scholar
  29. Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730CrossRefGoogle Scholar
  30. Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M (2011c) Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresour Technol 102(4):3768–3775CrossRefGoogle Scholar
  31. Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286CrossRefGoogle Scholar
  32. Duangmanee T, Kumar S, Sung S (2007) Micro-aeration for sulfide removal in anaerobic treatment of high-solid wastewater: a pilot-scale study. Proc Water Environ Fed 2007(16):2748–2760CrossRefGoogle Scholar
  33. Estrada-Vazquez C, Macarie H, Kato MT, Rodriguez-Vazquez R, Esparza-Garcia F, Poggi-Varaldo HM (2003) The effect of the supplementation with a primary carbon source on the resistance to oxygen exposure of methanogenic sludge. Water Sci Technol 48(6):119–124Google Scholar
  34. Fdz-Polanco M, Diaz I, Perez SI, Lopes AC, Fdz-Polanco F (2009) Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci Technol 60(12):3045–3050CrossRefGoogle Scholar
  35. Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366CrossRefGoogle Scholar
  36. Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10(2):209–212CrossRefGoogle Scholar
  37. Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40(12):2436–2446CrossRefGoogle Scholar
  38. Gadre RV (1989) Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng 34(3):410–414CrossRefGoogle Scholar
  39. Guiot SR, Pauss A, Costerton JW (1992) A structured model of the anaerobic granule consortium. Water Sci Technol 25(7):1–10Google Scholar
  40. Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26(2):155–187CrossRefGoogle Scholar
  41. Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGCD (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21:415–422CrossRefGoogle Scholar
  42. Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9(3):213–224CrossRefGoogle Scholar
  43. Ikbal, Tang Y, Shigematsu T, Morimura S, Kida K (2003) Methanogenic activity and repression of hydrogen sulfide evolved during high rate thermophilic methane fermentation of municipal solid waste. Jpn J Water Treat Biol 39(1):17–24CrossRefGoogle Scholar
  44. Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJ (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407(4):1333–1343CrossRefGoogle Scholar
  45. Janssen AJH, Sleyster R, Van der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47(3):327–333CrossRefGoogle Scholar
  46. Jenicek P, Celis CA, Koubova J, Pokorna D (2011a) Comparison of microbial activity in anaerobic and microaerobic digesters. Water Sci Technol 63(10):2244–2249CrossRefGoogle Scholar
  47. Jenicek P, Celis CA, Koubova J, Ruzickova I (2011b) Change of the digested sludge quality at microaerobic digestion. J Residuals Sci Technol 8:39–44Google Scholar
  48. Jenicek P, Celis CA, Krayzelova L, Anferova N, Pokorna D (2014) Improving products of anaerobic sludge digestion by microaeration. Water Sci Technol 69(4):803–809CrossRefGoogle Scholar
  49. Jenicek P, Celis C, Picha A, Pokorna D (2013) Influence of raw sludge quality on the efficiency of microaerobic sulfide removal during anaerobic digestion of sewage sludge. J Residuals Sci Technol 10(1):11–16Google Scholar
  50. Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496CrossRefGoogle Scholar
  51. Jenicek P, Koubova J, Bindzar J, Zabranska J (2010) Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Sci Technol 62(2):427–434CrossRefGoogle Scholar
  52. Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17(1):2–10CrossRefGoogle Scholar
  53. Johansen JE, Bakke R (2006) Enhancing hydrolysis with microaeration. Water Sci Technol. 53:43–50CrossRefGoogle Scholar
  54. Jolley RA, Forster CF (1985) The kinetics of sulphide oxidation. Environ Technol Lett 6(1–11):1–10CrossRefGoogle Scholar
  55. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202CrossRefGoogle Scholar
  56. Kato MT, Field JA, Lettinga G (1993a) High tolerance of methanogens in granular sludge to oxygen. Biotechnol Bioeng 42(11):1360–1366CrossRefGoogle Scholar
  57. Kato MT, Field JA, Lettinga G (1993b) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol Lett 114(3):317–323CrossRefGoogle Scholar
  58. Khanal SK, Huang J-C (2003a) ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res 37(9):2053–2062CrossRefGoogle Scholar
  59. Khanal SK, Huang JC (2003b) Anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity. J Environ Eng 129(12):1104–1111CrossRefGoogle Scholar
  60. Khanal SK, Huang JC (2006) Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Environ Res 78(4):397–408CrossRefGoogle Scholar
  61. Khanal SK, Shang C, Huang JC (2003) Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater. Water Sci Technol 47(12):183–189Google Scholar
  62. Kleinjan W, Keizer A, Janssen AH (2003) Biologically produced sulfur. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds I, vol 230. Springer, Berlin, pp 167–188CrossRefGoogle Scholar
  63. Klok JBM, de Graaff M, van den Bosch PLF, Boelee NC, Keesman KJ, Janssen AJH (2013) A physiologically based kinetic model for bacterial sulfide oxidation. Water Res 47(2):483–492CrossRefGoogle Scholar
  64. Kobayashi T, Li YY, Kubota K, Harada H, Maeda T, Yu HQ (2012) Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Appl Microbiol Biotechnol 93(2):847–857CrossRefGoogle Scholar
  65. Kohl AL, Nielsen R (1997) Gas purification. Elsevier, AmsterdamGoogle Scholar
  66. Krayzelova L, Bartacek J, Kolesarova N, Jenicek P (2014a) Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour Technol 172:297–302CrossRefGoogle Scholar
  67. Krayzelova L, Lynn TJ, Banihani Q, Bartacek J, Jenicek P, Ergas SJ (2014b) A tire-sulfur hybrid adsorption denitrification (T-SHAD) process for decentralized wastewater treatment. Water Res 61:191–199CrossRefGoogle Scholar
  68. Krishnakumar B, Majumdar S, Manilal VB, Haridas A (2005) Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Res 39(4):639–647CrossRefGoogle Scholar
  69. Kuenen JG (1975) Colourless sulfur bacteria and their role in the sulfur cycle. Plant Soil 43(1–3):49–76CrossRefGoogle Scholar
  70. Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Archiv für Mikrobiologie 94(2):173–190CrossRefGoogle Scholar
  71. Larkin JM, Strohl WR (1983) Beggiatoa, thiothrix, and thioploca. Annu Rev Microbiol 37(1):341–367CrossRefGoogle Scholar
  72. Lee EY, Lee NY, Cho K-S, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101(4):309–314CrossRefGoogle Scholar
  73. Lee C-M, Sublette KL (1993) Microbial treatment of sulfide-laden water. Water Res 27(5):839–846CrossRefGoogle Scholar
  74. Lohwacharin J, Annachhatre AP (2010) Biological sulfide oxidation in an airlift bioreactor. Bioresour Technol 101(7):2114–2120CrossRefGoogle Scholar
  75. Lopes AC (2010) Tratamiento anaerobio y microerobio de agua residual rica en sulfato (Anaerobic and microaerobic treatment of sulfate-rich wastewater), Ph.D. thesis, University of Valladolid (Spain)Google Scholar
  76. Luo JF, Lin WT, Guo Y (2011) Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 90(2):769–778CrossRefGoogle Scholar
  77. Luther GW 3rd, Findlay AJ, Macdonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62CrossRefGoogle Scholar
  78. Ma Y, Zhao J, Yang B (2006) Removal of H2S in waste gases by an activated carbon bioreactor. Int Biodeterior Biodegrad 57(2):93–98CrossRefGoogle Scholar
  79. Maestre JP, Rovira R, Alvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D (2010) Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere 80(8):872–880CrossRefGoogle Scholar
  80. Mahmood Q, Zheng P, Cai J, Wu D, Hu B, Li J (2007) Anoxic sulfide biooxidation using nitrite as electron acceptor. J Hazard Mater 147(1–2):249–256CrossRefGoogle Scholar
  81. Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Annu Rev Microbiol 32:433–468CrossRefGoogle Scholar
  82. McComas C, Sublette KL, Jenneman G, Bala G (2001) Characterization of a novel biocatalyst system for sulfide oxidation. Biotechnol Prog 17(3):439–446CrossRefGoogle Scholar
  83. McKinsey Zicari S (2003) Removal of hydrogen sulfide from biogas using cow-manure compost. In Faculty of the Graduate School, M.Sc., Cornell UniversityGoogle Scholar
  84. Migdisov AA, Williams-Jones AE, Lakshtanov LZ, Alekhin YV (2002) Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur. Geochim Cosmochim Acta 66(10):1713–1725CrossRefGoogle Scholar
  85. Munz G, Gori R, Mori G, Lubello C (2009) Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. Chemosphere 76(5):644–650CrossRefGoogle Scholar
  86. Myint M, Nirmalakhandan N, Speece RE (2007) Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis. Water Res 41(2):323–332CrossRefGoogle Scholar
  87. Myung Cha J, Suk Cha W, Lee J-H (1999) Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34(6–7):659–665CrossRefGoogle Scholar
  88. Nelson D, Jannasch H (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136(4):262–269CrossRefGoogle Scholar
  89. Ng YL, Yan R, Chen XG, Geng AL, Gould WD, Liang DT, Koe LC (2004) Use of activated carbon as a support medium for H2S biofiltration and effect of bacterial immobilization on available pore surface. Appl Microbiol Biotechnol 66(3):259–265CrossRefGoogle Scholar
  90. Nghiem LD, Manassa P, Dawson M, Fitzgerald SK (2014) Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour Technol 173:443–447CrossRefGoogle Scholar
  91. Nguyen PHL, Kuruparan P, Visvanathan C (2007) Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour Technol 98:380–387CrossRefGoogle Scholar
  92. Nielsen AH, Vollertsen J, Hvitved-Jacobsen T (2004) Chemical sulfide oxidation of wastewater—effects of pH and temperature. Water Sci Technol 50(4):185–192Google Scholar
  93. O’Brien DJ, Birkner FB (1977) Kinetics of oxygenation of reduced sulfur species in aqueous solution. Environ Sci Technol 11(12):1114–1120CrossRefGoogle Scholar
  94. O’Keefe DM, Brigmon RL, Chynoweth DP (2000) Influence of methane enrichment by aeration of recirculated supernatant on microbial activities during anaerobic digestion. Bioresour Technol 71(3):217–224CrossRefGoogle Scholar
  95. Ongcharit C, Shah YT, Sublette KL (1990) Novel immobilized cell reactor for microbial oxidation of H2S. Chem Eng Sci 45(8):2383–2389CrossRefGoogle Scholar
  96. Petersson A, Wellinger A (2009) Biogas upgrading technologies—developments and innovations. http://typo3.dena.de/fileadmin/biogas/Downloads/Studien/IEA-BiogasUpgradingTechnologies2009.pdf. Accessed 9 Mar 2015
  97. Prescott LM, Harley JP, Klein DA (2002) Microbiology. McGraw-Hill, New YorkGoogle Scholar
  98. Ramos I, Diaz I, Fdz-Polanco M (2012) The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge. Water Sci Technol 66(10):2258–2264CrossRefGoogle Scholar
  99. Ramos I, Fdz-Polanco M (2013) The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: results from a pilot-scale digester treating sewage sludge. Bioresour Technol 140:80–85CrossRefGoogle Scholar
  100. Ramos I, Fdz-Polanco M (2014) Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration. Chem Eng J 250:303–311CrossRefGoogle Scholar
  101. Ramos I, Peña M, Fdz-Polanco M (2014a) Where does the removal of H2S from biogas occur in microaerobic reactors? Bioresour Technol 166:151–157CrossRefGoogle Scholar
  102. Ramos I, Pérez R, Fdz-Polanco M (2013) Microaerobic desulphurisation unit: a new biological system for the removal of H2S from biogas. Bioresour Technol 142:633–640CrossRefGoogle Scholar
  103. Ramos I, Pérez R, Fdz-Polanco M (2014b) The headspace of microaerobic reactors: sulphide-oxidising population and the impact of cleaning on the efficiency of biogas desulphurisation. Bioresour Technol 158:63–73CrossRefGoogle Scholar
  104. Ramos I, Pérez R, Reinoso M, Torio R, Fdz-Polanco M (2014c) Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour Technol 164:338–346CrossRefGoogle Scholar
  105. Ravichandra P, Ramakrishna M, Gangagni RA, Annapurna J (2006) Sulfide oxidation in a batch fluidized bed bioreactor using immobilized cells of isolated Thiobacillus sp. (iict-sob-dairy-201) as biocatalyst. J Eng Sci Technol 1(1):21–30Google Scholar
  106. Rodriguez E, Lopes A, Fdz-Polanco M, Stams AJ, Garcia-Encina PA (2012) Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Appl Microbiol Biotechnol 93(5):2181–2191CrossRefGoogle Scholar
  107. Schneider RL, Quicker P, Anzer T, Prechtl S, Faulstich M (2002) Grundlegende Untersuchungen zur effektiven, kostengünstigen Entfernung von Schwefelwasserstoff aus Biogas. In: Biogasanlagen Anforderungen zur Luftreinhaltung. AusburgGoogle Scholar
  108. Sharma K, Derlon N, Hu S, Yuan Z (2014) Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Water Res 49:175–185CrossRefGoogle Scholar
  109. Shen CF, Guiot SR (1996) Long-term impact of dissolved O2 on the activity of anaerobic granules. Biotechnol Bioeng 49(6):611–620CrossRefGoogle Scholar
  110. Stucki G, Hanselmann KW, Hurzeler RA (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotechnol Bioeng 41(3):303–315CrossRefGoogle Scholar
  111. Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2.1–2.14Google Scholar
  112. Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S (1997) Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry 38(3):227–253CrossRefGoogle Scholar
  113. Tale VP, Maki JS, Zitomer DH (2015) Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res 70:138–147CrossRefGoogle Scholar
  114. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44(1):73–94CrossRefGoogle Scholar
  115. Tang Y, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38(10):2537–2550CrossRefGoogle Scholar
  116. Tartakovsky B, Mehta P, Bourque JS, Guiot SR (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102(10):5685–5691CrossRefGoogle Scholar
  117. Tichý R, Janssen A, Grotenhuis JTC, Lettinga G, Rulkens WH (1994) Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli with respect to bioleaching processes. Bioresour Technol 48(3):221–227CrossRefGoogle Scholar
  118. van den Ende FP, van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13(1):69–77CrossRefGoogle Scholar
  119. van der Zee FP, Villaverde S, García PA, Fdz-Polanco F (2007) Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresour Technol 98(3):518–524CrossRefGoogle Scholar
  120. Vannini C, Munz G, Mori G, Lubello C, Verni F, Petroni G (2008) Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Syst Appl Microbiol 31(6–8):461–473CrossRefGoogle Scholar
  121. Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microbiol 63(8):3123–3127Google Scholar
  122. Wang W, Zhang J, Wang S, Shen J, Pan S-L (2014) Oxygen-limited aeration for relieving the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. Int Biodeterior Biodegrad 95:110–116CrossRefGoogle Scholar
  123. Wase DAJ, Forster CF (1984) Biogas—fact or fantasy. Biomass 4(2):127–142CrossRefGoogle Scholar
  124. Wellinger A, Lindberg A (1999) Biogas upgrading and utilization, Task 24—energy from biological conversion of organic wastes. IEA Bioenergy, pp 1–20. http://www.seai.ie/Renewables/Bioenergy/Biogas_upgrading_and_utilisation_IEA_Bioenergy_Report.pdf
  125. Wilmot PD, Cadee K, Katinic JJ, Kavanagh BV (1988) Kinetics of sulfide oxidation by dissolved oxygen. J Water Pollut Control Fed 60(7):1264–1270Google Scholar
  126. Xu X, Chen C, Lee DJ, Wang A, Guo W, Zhou X, Guo H, Yuan Y, Ren N, Chang JS (2013) Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation. Bioresour Technol 147:202–211CrossRefGoogle Scholar
  127. Xu XJ, Chen C, Wang AJ, Fang N, Yuan Y, Ren NQ, Lee DJ (2012) Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresour Technol 116:517–521CrossRefGoogle Scholar
  128. Xu S, Selvam A, Wong JWC (2014) Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag 34(2):363–369CrossRefGoogle Scholar
  129. Yu H, Chen C, Ma J, Xu X, Fan R, Wang A (2014) Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor. J Environ Sci 26(5):1099–1107CrossRefGoogle Scholar
  130. Zehnder AJB (1988) Biology of anaerobic microorganisms. Wiley, HobokenGoogle Scholar
  131. Zhou W, Imai T, Ukita M, Li F, Yuasa A (2007) Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66(5):924–929CrossRefGoogle Scholar
  132. Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci 23(11):1761–1769CrossRefGoogle Scholar
  133. Zhu M, Lü F, Hao L-P, He P-J, Shao L-M (2009) Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag 29(7):2042–2050CrossRefGoogle Scholar
  134. Zitomer DH, Shrout JD (1998) Feasibility and benefits of methanogenesis under oxygen-limited conditions. Waste Manag 18(2):107–116CrossRefGoogle Scholar
  135. Zitomer DH, Shrout JD (2000) High-sulfate, high chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds. Water Environ Res 72:90–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lucie Krayzelova
    • 1
    • 2
  • Jan Bartacek
    • 1
  • Israel Díaz
    • 3
  • David Jeison
    • 4
  • Eveline I. P. Volcke
    • 2
  • Pavel Jenicek
    • 1
  1. 1.Department of Water Technology and Environmental EngineeringUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  2. 2.Department of Biosystems EngineeringGhent UniversityGhentBelgium
  3. 3.Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain
  4. 4.Departamento de Ingeniería QuímicaUniversidad de La FronteraTemucoChile

Personalised recommendations