Mathematical modelling of anaerobic digestion processes: applications and future needs

  • Damien J. Batstone
  • Daniel Puyol
  • Xavier Flores-Alsina
  • Jorge Rodríguez
Review paper

Abstract

Anaerobic process modelling is a mature and well-established field, largely guided by a mechanistic model structure that is defined by our understanding of underlying processes. This led to publication of the IWA ADM1, and strong supporting, analytical, and extension research in the 15 years since its publication. However, the field is rapidly expanding, in terms of new technology, new processes, and the need to consider anaerobic processes in a much broader context of the wastewater cycle as a whole. Within the area of technologies, new processes are emerging (including high-solids and domestic wastewater treatment). Challenges relating to these new processes, as well as the need to intensify and better operate existing processes have increased the need to consider spatial variance, and improve characterisation of inputs. Emerging microbial processes are challenging our understanding of the role of the central carbon catabolic metabolism in anaerobic digestion, with an increased importance of phosphorous, sulfur, and metals as electron source and sink, and consideration of hydrogen and methane as potential electron sources. The paradigm of anaerobic digestion is challenged by anoxygenic phototrophism, where energy is relatively cheap, but electron transfer is expensive. These new processes are commonly not compatible with the existing structure of anaerobic digestion models. These core issues extend to application of anaerobic digestion in domestic plant-wide modelling, with the need for improved characterisation, new technologies having an increased impact, and a key role for the linked phosphorous–sulfur–iron processes across the cycle. The review overall finds that anaerobic modelling is increasing in complexity and demands on the modeller, but the core principles of biochemical and physicochemical processes, metabolic conservation, and mechanistic understanding will serve well to address the new challenges.

Keywords

ADM1 AnMBR Leach bed Plug-flow Hydraulics Phosphorous Iron Sulfur 

References

  1. Alvarado A, Vedantam S, Goethals P, Nopens I (2012) A compartmental model to describe hydraulics in a full-scale waste stabilization pond Water Research 46:521–530. doi: 10.1016/j.watres.2011.11.038 Google Scholar
  2. Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas Biotech Bioeng 63:363–372Google Scholar
  3. Astals S, Batstone DJ, Mata-Alvarez J, Jensen PD (2014) Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour Technol 169:421–427CrossRefGoogle Scholar
  4. Astals S, Batstone DJ, Tait S, Jensen PD (2015) Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Res 81:208–215. doi: 10.1016/j.watres.2015.05.063 CrossRefGoogle Scholar
  5. Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578. doi: 10.1016/S0043-1354(98)00371-6 CrossRefGoogle Scholar
  6. Barrera EL, Spanjers H, Dewulf J, Romero O, Rosa E (2013) The sulfur chain in biogas production from sulfate-rich liquid substrates: a review on dynamic modeling with vinasse as model substrate. J Chem Technol Biotechnol 88:1405–1420. doi: 10.1002/jctb.4071 CrossRefGoogle Scholar
  7. Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J (2015) Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res 71:42–54. doi: 10.1016/j.watres.2014.12.026 CrossRefGoogle Scholar
  8. Batstone DJ et al (2002) Anaerobic Digestion Model No. 1 (ADM1), IWA task group for mathematical modelling of anaerobic digestion processes. IWA Scientific and Technical Reports. IWA Publishing, LondonGoogle Scholar
  9. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71. doi: 10.1007/s11157-005-7191-z CrossRefGoogle Scholar
  10. Batstone DJ, Rodriguez J (2015) Chapter 7: modelling anaerobic digestion processes. In: Fang HPP, Zhang T (eds) Anaerobic biotechnology: environmental protection and resource recovery. Imperial College Press, SingaporeGoogle Scholar
  11. Batstone DJ, Virdis B (2014) The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 27:142–149. doi: 10.1016/j.copbio.2014.01.013 CrossRefGoogle Scholar
  12. Batstone DJ, Hernandez JLA, Schmidt JE (2005) Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 91:387–391. doi: 10.1002/bit.20483 CrossRefGoogle Scholar
  13. Batstone DJ, Picioreanu C, van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108. doi: 10.1016/j.watres.2006.06.014 CrossRefGoogle Scholar
  14. Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnol Bioeng 102:1513–1520CrossRefGoogle Scholar
  15. Batstone DJ et al (2012) Towards a generalized physicochemical framework. Water Sci Technol 66:1147–1161. doi: 10.2166/wst.2012.300 CrossRefGoogle Scholar
  16. Batstone DJ, Hülsen T, Mehta CM, Keller J (2015) Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 140:2–11. doi: 10.1016/j.chemosphere.2014.10.021 CrossRefGoogle Scholar
  17. Benyahia B, Sari T, Cherki B, Harmand J (2013) Anaerobic membrane bioreactor modeling in the presence of soluble microbial products (SMP): the Anaerobic Model AM2b. Chem Eng J 228:1011–1022. doi: 10.1016/j.cej.2013.05.073 CrossRefGoogle Scholar
  18. Berger K, Melchior S, Miehlich G (1996) Suitability of hydrologic evaluation of landfill performance (HELP) model of the US Environmental Protection Agency for the simulation of the water balance of landfill cover systems. Environ Geol 28:181–189. doi: 10.1007/s002540050092 CrossRefGoogle Scholar
  19. Boyle-Gotla A, Jensen PD, Yap SD, Pidou M, Wang Y, Batstone DJ (2014) Dynamic multidimensional modelling of submerged membrane bioreactor fouling. J Membr Sci 467:153–161. doi: 10.1016/j.memsci.2014.05.028 CrossRefGoogle Scholar
  20. Brandl H, Gross RA, Lenz RW, Lloyd R, Fuller RC (1991) The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch Microbiol 155:337–340CrossRefGoogle Scholar
  21. Bridge TA, White C, Gadd GM (1999) Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiology 145(Pt 10):2987–2995CrossRefGoogle Scholar
  22. Buffiere P, Frederic S, Marty B, Delgenes JP (2008) A comprehensive method for organic matter characterization in solid wastes in view of assessing their anaerobic biodegradability, 58. doi: 10.2166/wst.2008.517
  23. Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15CrossRefGoogle Scholar
  24. Carvajal-Arroyo JM, Puyol D, Li G, Sierra-Álvarez R, Field JA (2014a) The role of pH on the resistance of resting- and active anammox bacteria to NO2—inhibition. Biotechnol Bioeng 111:1949–1956. doi: 10.1002/bit.25269 CrossRefGoogle Scholar
  25. Carvajal-Arroyo JM, Puyol D, Li G, Swartwout A, Sierra-Álvarez R, Field JA (2014b) Starved anammox cells are less resistant to inhibition. Water Res 65:170–176. doi: 10.1016/j.watres.2014.07.023 CrossRefGoogle Scholar
  26. Chen XG, Zheng P, Qaisar M, Tang CJ (2012) Dynamic behavior and concentration distribution of granular sludge in a super-high-rate spiral anaerobic bioreactor. Bioresour Technol 111:134–140. doi: 10.1016/j.biortech.2012.02.044 CrossRefGoogle Scholar
  27. Chen X, Guo J, Shi Y, Hu S, Yuan Z, Ni B-J (2014) Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor. Environ Sci Technol 48:9540–9547. doi: 10.1021/es502608s CrossRefGoogle Scholar
  28. Chen Y, Tang Q, Senko JM, Zhang Newby B-M, Castaneda H, Ju L-K, Cheng G (2015) Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion. Corros Sci 90:89–100. doi: 10.1016/j.corsci.2014.09.016 CrossRefGoogle Scholar
  29. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi: 10.1021/es803531g CrossRefGoogle Scholar
  30. Chitapornpan S, Chiemchaisri C, Chiemchaisri W, Honda R, Yamamoto K (2013) Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresour Technol 141:65–74. doi: 10.1016/j.biortech.2013.02.048 CrossRefGoogle Scholar
  31. Chugh S, Chynoweth DP, Clarke W, Pullammanappallil P, Rudolph V (1999) Degradation of unsorted municipal solid waste by a leach-bed process. Bioresour Technol 69:103–115. doi: 10.1016/S0960-8524(98)00182-5 CrossRefGoogle Scholar
  32. Costello DJ, Greenfield PF, Lee PL (1991a) Dynamic modelling of a single-stage high-rate anaerobic reactor-I. Model Deriv Water Res 25:847–858. doi: 10.1016/0043-1354(91)90166-N Google Scholar
  33. Costello DJ, Greenfield PF, Lee PL (1991b) Dynamic modelling of a single-stage high-rate anaerobic reactor -I. Model Dev Wat Res 25:859–871CrossRefGoogle Scholar
  34. da Rocha D, Paetzold E, Kanswohl N (2013) The shrinking core model applied on anaerobic digestion. Chem Eng Process 70:294–300. doi: 10.1016/j.cep.2013.05.003 CrossRefGoogle Scholar
  35. De Gracia M, Huete E, Beltrán S, Grau P, Ayesa E (2011) Automatic characterisation of primary, secondary and mixed sludge inflow in terms of the mathematical generalised sludge digester model. Water Sci Technol 64:557–567. doi: 10.2166/wst.2011.541 CrossRefGoogle Scholar
  36. Dereli RK, Heffernan B, Grelot A, van der Zee FP, van Lier JB (2015) Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times. Sep Purif Technol 139:43–52. doi: 10.1016/j.seppur.2014.10.029 CrossRefGoogle Scholar
  37. Diaz I, Fdz-Polanco M (2012) Robustness of the microaerobic removal of hydrogen sulfide from biogas. Water Sci Tech 65:1368–1374. doi: 10.2166/wst.2012.013 CrossRefGoogle Scholar
  38. Díaz I, Pérez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253. doi: 10.1016/j.biortech.2015.02.114 CrossRefGoogle Scholar
  39. Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364CrossRefGoogle Scholar
  40. Donoso-Bravo A, Bandara WMKRTW, Satoh H, Ruiz-Filippi G (2013) Explicit temperature-based model for anaerobic digestion: application in domestic wastewater treatment in a UASB reactor. Bioresour Technol 133:437–442. doi: 10.1016/j.biortech.2013.01.174 CrossRefGoogle Scholar
  41. Dvorak SW (2012) Biosolids digester and process for biosolids production. PCT/US2010/058012Google Scholar
  42. Ekama GA, Wentzel MC, Loewenthal RE (2006) Integrated chemical-physical processes kinetic modelling of multiple mineral precipitation problems, 53. doi: 10.2166/wst.2006.407
  43. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236. doi: 10.1128/aem.02848-13 CrossRefGoogle Scholar
  44. Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 30:785–793. doi: 10.1016/j.ijhydene.2004.12.010 CrossRefGoogle Scholar
  45. Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 109:33–45CrossRefGoogle Scholar
  46. Flores-Alsina X, Kazadi-Mbamba C, Solon K, Vrecko D, Tait S, Batstone D, Jeppsson U, Gernaey KV (2015) A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models. Water res. doi:  10.1016/j.watres.2015.07.014 Google Scholar
  47. Focardi S, Pepi M, Focardi SE (2013) Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In: Chamy R (ed) Biodegradation life of science. pp 321–348. doi: 10.5772/56365
  48. Frear C, Dvorak S (2013) Commercial demonstration of nutrient recovery of ammonium sulfate and phosphorus rich fines from AD effluentGoogle Scholar
  49. Gaden D (2014) Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics. University of Manitoba, ManitobaGoogle Scholar
  50. García-Gen S, Rodríguez J, Lema JM (2015) Control strategy for maximum anaerobic co-digestion performance. Water Res 80:209–216. doi: 10.1016/j.watres.2015.05.029 CrossRefGoogle Scholar
  51. Ge H, Zhang L, Batstone D, Keller J, Yuan Z (2013) Impact of iron salt dosage to sewers on downstream anaerobic sludge digesters: sulfide control and methane production. J Environ Eng 139:594–601. doi: 10.1061/(ASCE)EE.1943-7870.0000650 CrossRefGoogle Scholar
  52. Gehring T et al (2015) Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates. Environ Sci Technol 49:4705–4714. doi: 10.1021/es505665z CrossRefGoogle Scholar
  53. Gernaey KV, Jeppsson U, Vanrolleghem PA, Copp JB (2014) Benchmarking of control strategies for wastewater treatment plants. IWA Publishing, LondonGoogle Scholar
  54. Girault R et al (2012) A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res 46:4099–4110. doi: 10.1016/j.watres.2012.04.028 CrossRefGoogle Scholar
  55. Godon J-J, Arcemisbéhère L, Escudié R, Harmand J, Miambi E, Steyer J-P (2013) Overview of the oldest existing set of substrate-optimized anaerobic processes: digestive tracts. Bioenerg Res 6:1063–1081. doi: 10.1007/s12155-013-9339-y CrossRefGoogle Scholar
  56. Golomysova A, Gomelsky M, Ivanov PS (2010) Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. Int J Hydrogen Energy 35:12751–12760. doi: 10.1016/j.ijhydene.2010.08.133 CrossRefGoogle Scholar
  57. González-Cabaleiro R, Lema JM, Rodríguez J (2015) Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations. PLoS ONE. doi: 10.1371/journal.pone.0126739 Google Scholar
  58. Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA (2015) Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J Hazard Mater 283:755–763. doi: 10.1016/j.jhazmat.2014.10.030 CrossRefGoogle Scholar
  59. Gordon GC, McKinlay JB (2014) Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J Bacteriol 196:1231–1237. doi: 10.1128/JB.01299-13 CrossRefGoogle Scholar
  60. Gossett JM, Belser RL (1982) Anaerobic digestion of waste activated sludge. J Environ Eng ASCE 108:1101–1120Google Scholar
  61. Grau P, de Gracia M, Vanrolleghem PA, Ayesa E (2007) A new plant-wide modelling methodology for WWTPs. Water Research 41:4357–4372. doi: 10.1016/j.watres.2007.06.019 CrossRefGoogle Scholar
  62. Grau P, Copp J, Vanrolleghem PA, Takács I, Ayesa E (2009) A comparative analysis of different approaches for integrated WWTP modelling. Water Sci Technol 59:141–147CrossRefGoogle Scholar
  63. Hao TW et al (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21. doi: 10.1016/j.watres.2014.06.043 CrossRefGoogle Scholar
  64. He Z, Cai C, Geng S, Lou L, Xu X, Zheng P, Hu B (2013) Modeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320. doi: 10.1016/j.biortech.2013.08.001 CrossRefGoogle Scholar
  65. Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report, LondonGoogle Scholar
  66. Hinken L, Huber M, Weichgrebe D, Rosenwinkel KH (2014) Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water Res 64:82–93. doi: 10.1016/j.watres.2014.06.044 CrossRefGoogle Scholar
  67. Ho D, Jensen P, Batstone D (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environ Sci Technol 48:6468–6476CrossRefGoogle Scholar
  68. Hoelzle RD, Virdis B, Batstone DJ (2014) Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnol Bioeng 111:2139–2154. doi: 10.1002/bit.25321 CrossRefGoogle Scholar
  69. Hülsen T, Batstone DJ, Keller J (2014) Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res 50:18–26CrossRefGoogle Scholar
  70. Hunter CN (2008) The purple phototrophic bacteria. Springer, BerlinGoogle Scholar
  71. Ikumi D, Brouckaert CJ, Ekama GA (2011) Modelling of struvite precipitation in anaerobic digestion. Paper presented at the WA Watermatex2011, San Sebastian, Spain, 20–22 June 2011Google Scholar
  72. Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496. doi: 10.2166/wst.2008.493 CrossRefGoogle Scholar
  73. Jensen PD, Ge H, Batstone DJ (2011) Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci Technol 64:880–886CrossRefGoogle Scholar
  74. Jensen PD, Astals S, Lu Y, Devadas M, Batstone DJ (2014a) Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res 67:355–366CrossRefGoogle Scholar
  75. Jensen PD, Sullivan T, Carney C, Batstone DJ (2014b) Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl Energy 136:23–31. doi: 10.1016/j.apenergy.2014.09.009 CrossRefGoogle Scholar
  76. Jimenez J, Gonidec E, Cacho Rivero JA, Latrille E, Vedrenne F, Steyer JP (2014) Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res 50:359–372CrossRefGoogle Scholar
  77. Kalyuzhnyi S, Fedorovich V (1998a) Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Biores Tech 65:227–242CrossRefGoogle Scholar
  78. Kalyuzhnyi SV, Fedorovich VV (1998b) Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresour Technol 65:227–242. doi: 10.1016/S0960-8524(98)00019-4 CrossRefGoogle Scholar
  79. Kazadi Mbamba C, Batstone DJ, Flores-Alsina X, Tait S (2015a) A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Res 68:342–353. doi: 10.1016/j.watres.2014.10.011 CrossRefGoogle Scholar
  80. Kazadi Mbamba C, Tait S, Flores-Alsina X, Batstone DJ (2015b) A systematic study of minerals precipitation modelling in wastewater treatment processes. Water Res (in press)Google Scholar
  81. Kim MK, Choi K-M, Yin C-R, Lee K-Y, Im W-T, Lim JH, Lee S-T (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26:819–822CrossRefGoogle Scholar
  82. Kim SY, Tojo Y, Matsuto T (2007) Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill. Waste Manag Res, ISWA 25:524–537CrossRefGoogle Scholar
  83. Klamt S, Schuster S, Gilles ED (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng 77:734–751CrossRefGoogle Scholar
  84. Kleerebezem R, van Loosdrecht MCM (2006) Critical analysis of some concepts proposed in ADM1 54. doi: 10.2166/wst.2006.525
  85. Klein G, Klipp W, Jahn A, Steinborn B, Oelze J (1991) The relationship of biomass, polysaccharide and H2 formation in the wild-type and nifA/nifB mutants of Rhodobacter capsulatus. Arch Microbiol 155:477–482. doi: 10.1007/BF00244965 CrossRefGoogle Scholar
  86. Koch G, Egli K, Van Der Meer JR, Siegrist H (2000) Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci Technol 41(4–5):191–198Google Scholar
  87. la Cour Jansen J (2011) Anaerobic digestion: technology. In: Christensen T (ed) Solid Waste Technol Manag, vol 2. Wiley, London, pp 601–617Google Scholar
  88. Lei Z, Zhang Z, Huang W, Cai W (2015) Recent progress on dry anaerobic digestion of organic solid wastes: achievements and challenges. Curr Org Chem 19:400–412CrossRefGoogle Scholar
  89. Li YF, Chen PH, Yu Z (2014) Spatial and temporal variations of microbial community in a mixed plug-flow loop reactor fed with dairy manure. Microb Biotechnol 7:332–346. doi: 10.1111/1751-7915.12125 CrossRefGoogle Scholar
  90. Liang C-M, Hung C-H, Hsu S-C, Yeh I-C (2010) Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability under different cultivation conditions. Appl Microbiol Biotechnol 86:709–719. doi: 10.1007/s00253-009-2348-2 CrossRefGoogle Scholar
  91. Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36:489–530. doi: 10.1080/10643380600678146 CrossRefGoogle Scholar
  92. Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164. doi: 10.1080/10409230490475507 CrossRefGoogle Scholar
  93. Linke B, Rodríguez-Abalde Á, Jost C, Krieg A (2015) Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage. Bioresour Technol 177:34–40. doi: 10.1016/j.biortech.2014.11.070 CrossRefGoogle Scholar
  94. Lizarralde I et al (2015) A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models. Water Research 74:239–256. doi: 10.1016/j.watres.2015.01.031 CrossRefGoogle Scholar
  95. Long JH, Aziz TN, Reyes FL III, Ducoste JJ (2012) Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf Environ Prot 90:231–245. doi: 10.1016/j.psep.2011.10.001 CrossRefGoogle Scholar
  96. Lopes F et al (2011) Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932. doi: 10.1016/j.apgeochem.2011.06.021 CrossRefGoogle Scholar
  97. Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  98. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  99. Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111. doi: 10.3109/07388551.2010.525496 CrossRefGoogle Scholar
  100. McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer-can this be achieved? Environ Sci Technol 45:7100–7106. doi: 10.1021/es2014264 CrossRefGoogle Scholar
  101. McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci 107:11669–11675. doi: 10.1073/pnas.1006175107 CrossRefGoogle Scholar
  102. Melnicki MR, Eroglu E, Melis A (2009) Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. Int J Hydrogen Energy 34:6157–6170CrossRefGoogle Scholar
  103. Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  104. Muñoz-Tamayo R, Laroche B, Walter É, Doré J, Leclerc M (2010) Mathematical modelling of carbohydrate degradation by human colonic microbiota. J Theor Biol 266:189–201. doi: 10.1016/j.jtbi.2010.05.040 CrossRefGoogle Scholar
  105. Nopens I, Batstone DJ, Copp JB, Jeppsson U, Volcke E, Alex J, Vanrolleghem PA (2009) An ASM/ADM model interface for dynamic plant-wide simulation. Water Res 43:1913–1923CrossRefGoogle Scholar
  106. Nopharatana A, Pullammanappallil PC, Clarke WP (2003) A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochem Eng J 13:21–33CrossRefGoogle Scholar
  107. Overmann J, Garcia-Pichel F (1998) The phototrophic way of life: The Prokaryotes: an evolving electronic resource for the microbiological community M Dworkin. Springer, New YorkGoogle Scholar
  108. Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104. doi: 10.1016/j.seppur.2013.06.036 CrossRefGoogle Scholar
  109. Pagés-Díaz J, Westman J, Taherzadeh MJ, Pereda-Reyes I, Sárvári Horváth I (2015) Semi-continuous co-digestion of solid cattle slaughterhouse wastes with other waste streams: Interactions within the mixtures and methanogenic community structure. Chem Eng J 273:28–36. doi: 10.1016/j.cej.2015.03.049 CrossRefGoogle Scholar
  110. Papadopoulos A, Parisopoulos G, Papadopoulos F, Karteris A (2003) Sludge accumulation pattern in an anaerobic pond under Mediterranean climatic conditions. Water Res 37:634–644. doi: 10.1016/S0043-1354(02)00307-X CrossRefGoogle Scholar
  111. Pavlostathis SG, Gossett JM (1986) A kinetic model for anaerobic digestion of biological sludge. Biotech Bioeng 28:1519–1530CrossRefGoogle Scholar
  112. Peiris BRH, Rathnasiri PG, Johansen JE, Kuhn A, Bakke R (2006) ADM1 simulations of hydrogen production. 53. doi: 10.2166/wst.2006.243
  113. Penumathsa BKV, Premier GC, Kyazze G, Dinsdale R, Guwy AJ, Esteves S, Rodríguez J (2008) ADM1 can be applied to continuous bio-hydrogen production using a variable stoichiometry approach. Water Res 42:4379–4385. doi: 10.1016/j.watres.2008.07.030 CrossRefGoogle Scholar
  114. Pikaar I, Sharma KR, Hu S, Gernjak W, Keller J, Yuan Z (2014) Reducing sewer corrosion through integrated urban water management. Science 345:812–814CrossRefGoogle Scholar
  115. Pratt S, Liew D, Batstone DJ, Werker AG, Morgan-Sagastume F, Lant PA (2012) Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. J Biotechnol 159:38–43. doi: 10.1016/j.jbiotec.2012.02.001 CrossRefGoogle Scholar
  116. Pullammanappallil PC, Svoronos SA, Chynoweth DP, Lyberatos G (1998) Expert system for control of anaerobic digesters. Biotechnol Bioeng 58:13–22. doi: 10.1002/(SICI)1097-0290(19980405)58:1<13:AID-BIT2>3.0.CO;2-X CrossRefGoogle Scholar
  117. Puyol D, Carvajal-Arroyo J, Sierra-Alvarez R, Field J (2014) Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnol Lett 36:547–551CrossRefGoogle Scholar
  118. Raghoebarsing AA et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921. http://www.nature.com/nature/journal/v440/n7086/suppinfo/nature04617_S1.html
  119. Razaviarani V, Buchanan ID (2015) Calibration of the Anaerobic Digestion Model No. 1 (ADM1) for steady-state anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste. Chem Eng J 266:91–99. doi: 10.1016/j.cej.2014.12.080 CrossRefGoogle Scholar
  120. Ren T-T, Mu Y, Ni B-J, Yu H-Q (2009) Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE J 55:516–528. doi: 10.1002/aic.11667 CrossRefGoogle Scholar
  121. Rivera-Salvador V, López-Cruz IL, Espinosa-Solares T, Aranda-Barradas JS, Huber DH, Sharma D, Toledo JU (2014) Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. Bioresour Technol 167:495–502. doi: 10.1016/j.biortech.2014.06.008 CrossRefGoogle Scholar
  122. Robles A, Ruano MV, Ribes J, Ferrer J (2013a) Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs). J Membr Sci 430:330–341. doi: 10.1016/j.memsci.2012.11.078 CrossRefGoogle Scholar
  123. Robles A, Ruano MV, Ribes J, Seco A, Ferrer J (2013b) A filtration model applied to submerged anaerobic MBRs (SAnMBRs). J Membr Sci 444:139–147. doi: 10.1016/j.memsci.2013.05.021 CrossRefGoogle Scholar
  124. Robles A, Ruano MV, Ribes J, Seco A, Ferrer J (2014) Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). J Membr Sci 465:14–26. doi: 10.1016/j.memsci.2014.04.012 CrossRefGoogle Scholar
  125. Rodriguez-Freire L, Sierra-Alvarez R, Root R, Chorover J, Field JA (2014) Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Res 66:242–253CrossRefGoogle Scholar
  126. Rosen C, Vrecko D, Gernaey KV, Pons MN, Jeppsson U (2006) Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink, vol 54Google Scholar
  127. Saqqar MM, Pescod MB (1995) Modelling sludge accumulation in anaerobic wastewater stabilization ponds. Water Sci Technol 31:185–190. doi: 10.1016/0273-1223(95)00505-H CrossRefGoogle Scholar
  128. Saravanan V, Sreekrishnan TR (2006) Modelling anaerobic biofilm reactors-A review. J Environ Manage 81:1–18. doi: 10.1016/j.jenvman.2005.10.002 CrossRefGoogle Scholar
  129. Saritpongteeraka K, Boonsawang P, Sung S, Chaiprapat S (2014) Co-fermentation of oil palm lignocellulosic residue with pig manure in anaerobic leach bed reactor for fatty acid production. Energy Convers Manag 84:354–362. doi: 10.1016/j.enconman.2014.04.056 CrossRefGoogle Scholar
  130. Shewani A, Horgue P, Pommier S, Debenest G, Lefebvre X, Gandon E, Paul E (2015) Assessment of percolation through a solid leach bed in dry batch anaerobic digestion processes. Bioresour Technol 178:209–216. doi: 10.1016/j.biortech.2014.10.017 CrossRefGoogle Scholar
  131. Shilton A, Harrison J (2003) Development of guidelines for improved hydraulic design of waste stabilisation ponds. Water Sci Technol 48:173–180Google Scholar
  132. Shin C, McCarty PL, Kim J, Bae J (2014) Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour Technol 159:95–103. doi: 10.1016/j.biortech.2014.02.060 CrossRefGoogle Scholar
  133. Siegrist H, Renggli D, Gujer W (1993) Mathematical modelling of anaerobic mesophilic sewage sludge treatment. Wat Sci Tech 27:25–36CrossRefGoogle Scholar
  134. Siegrist H, Vogt D, Garcia-Heras J, Gujer W (2002) Mathematical model for meso and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123CrossRefGoogle Scholar
  135. Solon K et al (2015) Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion. Water Res 70:235–245. doi: 10.1016/j.watres.2014.11.035 CrossRefGoogle Scholar
  136. Spagni A, Ferraris M, Casu S (2015) Modelling wastewater treatment in a submerged anaerobic membrane bioreactor. J Environ Sci Health Part A 50:325–331. doi: 10.1080/10934529.2015.981123 CrossRefGoogle Scholar
  137. Stuckey DC (2012) Recent developments in anaerobic membrane reactors. Bioresour Technol 122:137–148. doi: 10.1016/j.biortech.2012.05.138 CrossRefGoogle Scholar
  138. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi: 10.1016/j.bej.2008.12.011 CrossRefGoogle Scholar
  139. Thamsiriroj T, Nizami AS, Murphy JD (2012) Use of modeling to aid design of a two-phase grass digestion system. Bioresource Technology 110:379–389. doi: 10.1016/j.biortech.2012.01.113 CrossRefGoogle Scholar
  140. Tugtas AE, Tezel U, Pavlostathis SG (2010) A comprehensive model of simultaneous denitrification and methanogenic fermentation processes. Biotechnol Bioeng 105:98–108. doi: 10.1002/bit.22443 CrossRefGoogle Scholar
  141. Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48. doi: 10.1002/tox.10031 CrossRefGoogle Scholar
  142. Van Hulle SWH, Vesvikar M, Poutiainen H, Nopens I (2014) Importance of scale and hydrodynamics for modeling anaerobic digester performance. Chem Eng J 255:71–77CrossRefGoogle Scholar
  143. van Niftrik L et al (2008a) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190:708–717CrossRefGoogle Scholar
  144. van Niftrik L et al (2008b) Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J Struct Biol 161:401–410. doi: 10.1016/j.jsb.2007.05.005 CrossRefGoogle Scholar
  145. Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Biores Tech 56:229–237CrossRefGoogle Scholar
  146. Vavilin VA, Lokshina LY, Rytov SV, Kotsyurbenko OR, Nozhevnikova AN, Parshina SN (1997) Modelling methanogenesis during anaerobic conversion of complex organic matter at low temperatures. Wat Sci Tech 36:531–538CrossRefGoogle Scholar
  147. Volcke EIP, van Loosdrecht MCM, Vanrolleghem PA (2006) Continuity-based model interfacing for plant-wide simulation: a general approach. Water Res 40:2817–2828. doi: 10.1016/j.watres.2006.05.011 CrossRefGoogle Scholar
  148. Weijma J, Copini CFM, Buisman CJN, Schultz CE (2002) Biological recovery of metals, sulfur and water in the mining and metallurgical industry. IWA Publishing, London, pp 605–622Google Scholar
  149. Wett B, Takács I, Batstone D, Wilson C, Murthy S (2014) Anaerobic model for high-solids or high-temperature digestion—additional pathway of acetate oxidation. Water Sci Technol 69:1634–1640. doi: 10.2166/wst.2014.047 CrossRefGoogle Scholar
  150. Wu D et al (2013) A new biological phosphorus removal process in association with sulfur cycle. Water Res 47:3057–3069. doi: 10.1016/j.watres.2013.03.009 CrossRefGoogle Scholar
  151. Wu D et al (2014) Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process. Water Res 49:251–264. doi: 10.1016/j.watres.2013.11.029 CrossRefGoogle Scholar
  152. Zaher U, Buffiere P, Steyer JP, Chen S (2009) A procedure to estimate proximate analysis of mixed organic wastes. Water Environ Res 81:407–415. doi: 10.2175/106143008X370548 CrossRefGoogle Scholar
  153. Zhang F, Ding J, Zhang Y, Chen M, Ding Z-W, van Loosdrecht MCM, Zeng RJ (2013) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129. doi: 10.1016/j.watres.2013.07.033 CrossRefGoogle Scholar
  154. Zhu G, Zou R, Jha AK, Huang X, Liu L, Liu C (2015) Recent developments and future perspectives of anaerobic baffled bioreactor for wastewater treatment and energy recovery. Crit Rev Environ Sci Technol 45:1243–1276. doi: 10.1080/10643389.2014.924182 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Damien J. Batstone
    • 1
  • Daniel Puyol
    • 2
  • Xavier Flores-Alsina
    • 3
  • Jorge Rodríguez
    • 4
  1. 1.Advanced Water Management CentreThe University of QueenslandSt LuciaAustralia
  2. 2.Chemical and Environmental Engineering GroupUniversity Rey Juan CarlosMostolesSpain
  3. 3.CAPEC-PROCESS, Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  4. 4.Department of Chemical and Environmental Engineering (CEE), Institute Centre for Water and Environment (iWater)Masdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations