Pesticide relevance and their microbial degradation: a-state-of-art

  • Jay Prakash VermaEmail author
  • Durgesh Kumar Jaiswal
  • R. Sagar


The extensive use of pesticide causes imbalance in properties of soil, water and air environments due to having problem of natural degradation. Such chemicals create diverse environmental problem via biomagnifications. Currently, microbial degradation is one of the important techniques for amputation and degradation of pesticide from agricultural soils. Some studies have reported that the genetically modified microorganism has ability to degrade specific pesticide but problem is that they cannot introduce in the field because they cause some other environmental problems. Only combined microbial consortia of indigenous and naturally occurring microbes isolated from particular contaminated environment have ability to degrade pesticides at faster rate. The bioaugumentation processes like addition of necessary nutrients or organic matter are required to speed up the rate of degradation of a contaminant by the indigenous microbes. The use of indigenous microbial strains having plant growth activities is ecologically superior over the chemical methods. In this review, we have attempted to discuss the recent challenge of pesticide problem in soil environment and their biodegradation with the help of effective indigenous pesticides degrading microorganisms. Further, we highlighted and explored the molecular mechanism for the pesticide degradation in soil with effective indigenous microbial consortium. This review suggests that the use of pesticide degrading microbial consortia which is an eco-friendly technology may be suitable for the sustainable agriculture production.


Pesticide Pesticide degrading microorganism Microbial degradation Bioaugumentation Indigenous Biodegradation Sustainable agriculture 



Authors thankful to SERB (Science and Engineering Research Board), New Delhi, India for providing fund for project entitled “Studies of agriculturally important microorganism to develop effective microbial consortium for degradation of pesticide and insecticide in soil to enhance sustainable agriculture” to carry out research on pesticide degradation.


  1. Abbondanzi F, Campisi T, Focanti M, Guerra R, Iacondini A (2005) Assessing degradation capability of aerobic indigenous microflora in PAH-contaminated brackish sediments. Mar Environ Res 59:419–434Google Scholar
  2. Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazar Mater 165(1–3):1–12Google Scholar
  3. Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res. doi: 10.1007/s11356-013-1808-5 Google Scholar
  4. Abo-Amer A (2011) Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. J Microbiol Biotechnol 21(1):71–80Google Scholar
  5. Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities and sediments. Curr Opin Microbiol 5:246–253Google Scholar
  6. Acharya SS (2006) Food security and Indian Agriculture: policies, production performance and marketing environment. Agricult Econom Res Rev 22:1–19Google Scholar
  7. Adhya TK, Barik S, Sethunathan N (1981) Hydrolysis of selected organophosphorus insecticides by two bacterial isolates from flooded soil. J Appl Bacteriol 50:167–172Google Scholar
  8. Agarry SE, Olu-arotiowa OA, Aremu MO, Jimoda LA (2013) Biodegradation of Dichlorovos (Organophosphate Pesticide) in soil by bacterial isolates. J Natural Sci Res 3(8):12–16Google Scholar
  9. Agnihotri NP (1999) Pesticide safety and monitoring. All India Coordinated Research Project on Pesticides Residues, Indian Council of Agricultural Research, New Delhi, IndiaGoogle Scholar
  10. Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil NewZealand. FEMS Microbiol Ecol 52:279–286Google Scholar
  11. Aislabie J, Davison AD, Boul HL, Franzmann PD, Jardine DR, Karuso P (1999) Isolation of Terrabacter sp. strain DDE-1, which metabolizes 1, 1 dichloro-2,2-bis(4 chlorophenyl) ethylene when induced with biphenyl. Appl Environ Microbiol 65(12):5607–11Google Scholar
  12. Al-Arfaj A, Abdel-Megeed A, Ali HM, Al-Shahrani O (2013) Phyto-microbial degradation of glyphosate in Riyadh area. J Pure App Microbio 7(2):1351–1365Google Scholar
  13. Alisi Chiara, Musella Rosario, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032Google Scholar
  14. Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072Google Scholar
  15. Amellal N, Jean-M Portal, Vogel T, Berthelin J (2001) Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12(1):49–57Google Scholar
  16. Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzymes activities of PAH polluted soils. Chemosphere 57:401–412Google Scholar
  17. Anonymous (1991) Survey of the environment, The Hindu, Government of India, Eleventh Five-Year Plan (2008–2012) Planning Commission of India, New Delhi,
  18. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405Google Scholar
  19. Arisoy M, Kolankaya N (1998) Biodegradation of Heptachlor by Phanerochaete chrysosporium ME 446: the toxic effects of Heptachlor and its Metabolites on Mice. Turk J Biol 22:427–434Google Scholar
  20. Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199Google Scholar
  21. Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69Google Scholar
  22. Awad NS, Sabit HH, Abo-Aba SEM, Bayoumi RA (2011) Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. Afr J Microbiol Res 5(18):2855–2862Google Scholar
  23. Awasthi N, Kumar A, Makkar R, Cameotra SS (1999) Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J Environ Sci Health, Part B 34(5):793–803Google Scholar
  24. Bacosa HP, Suto K, Inoue C (2010) Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int Biodeterior Biodegrad 64:702–710Google Scholar
  25. Bacosa HP, Suto K, Inoue C (2013) Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int Biodeterior Biodegrad 74:109–115Google Scholar
  26. Bælum J, Nicolaisen MH, Holben WE, Strobel BW, Sørensen J, Jacobsen CS (2008) Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J 2:677–687Google Scholar
  27. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improvephytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588Google Scholar
  28. Barathidasan K, Reetha D (2013) Microbial degradation of monocrotophos by Pseudomonas stutzeri. Indian Streams Res J 3(5):1Google Scholar
  29. Barathidasan K, Reetha D, John Milton D, Sriram N, Govindammal M (2014) Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and Phanerochaete chrysosporium. Afr J Microbiol Res 8(9):961–966Google Scholar
  30. Barragan-Huerta BE, Costa-Perez C, Peralta-Cruz J, Barrera-Cortes J, Esparza-Garcıa F, Rodrıguez-Vazquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodegrad 59:239–244Google Scholar
  31. Bastiaens L, Sphingeal D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843Google Scholar
  32. Beate B, Andreas T, Christian F (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59:1927–1930Google Scholar
  33. Beil S, Timmis K, Pieper D (1999) Genetic and biochemical analysis of the tec operon suggests a route for evolution of chlorobenzene degradation genes. J Bacteriol 181:341–346Google Scholar
  34. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. Appl Environ Microbiol 93:224–234Google Scholar
  35. Bhatnagar VK (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31:87–88Google Scholar
  36. Bhuimbar MV, Kulkarni Ashwini N, Ghosh Jai S (2011) Detoxification of chlorpyriphos by Micrococcus luteus NCIM 2103, Bacillus subtilis NCIM 2010 and Pseudomonas aeruginosa NCIM 2036. Res J Envir Earth Sci 3(5):614–619Google Scholar
  37. Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use ofdifferent Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48(2):139–148Google Scholar
  38. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Proc Biochem J 40:1999–2013Google Scholar
  39. Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN (1995) Conctruction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Micorbiol 61:1946–1952Google Scholar
  40. Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406Google Scholar
  41. Burchfield HP, Storrs EE (1957) Effect of chlorine substitution and isomerism on the intractions of S-triazine derivatives with conidia of Neurospora sitophilia. Boyce Thompson Inst Plant Res 18:429–452Google Scholar
  42. Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWWO) catabolic plasmid. Appl Environ Microbiol 55:1323–1328Google Scholar
  43. Cases V, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8(3):213–222Google Scholar
  44. Chacko CI, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation microbes. Sci 154:893–895Google Scholar
  45. Chakoosari MMD (2013) Efficacy of various biological and microbial insecticides. J Biol today’s World 2(5):249–254Google Scholar
  46. Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organiccompounds microbiological reviews. Microbiol Mol Biol Rev 55(1):59–79Google Scholar
  47. Chaudry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293Google Scholar
  48. Chauhan A, Faziurrahman, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113Google Scholar
  49. Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. Trend Biotechnol 16:71Google Scholar
  50. Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Roa Z and Wong LL (2002) Crystal structure of the F87W/ Y96F/V247L mutant of cytochrome P-450 cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenezene. J Biol Chem 277:37519–37526. Google Scholar
  51. Chirnside AEM, Ritter William F, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Bioch 39:3056–3065Google Scholar
  52. Clarke PH (1984) The evolution of degradative pathways. Microbial degradation of organic compounds. Marcel Dekker, New York, pp 11–27Google Scholar
  53. Colombo M, Cavalca L, Bernasconi S, Andreoni V (2011) Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: a feasibility study in solid- and slurry-phase microcosms. Int Biodeter Biodegrad 65:191–197Google Scholar
  54. Colosio C, Tiramani M, Brambilla G, Colombi A, Moretto A (2009) Neurobehavioural effects of pesticides with special focus on organophosphorus compounds: which is the real size of the problem. Neurotoxicol 30(6):1155–1161Google Scholar
  55. Commandeur LCM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodegradation 1:207–220Google Scholar
  56. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms ofaction, and future prospects. Appl Environ Microbiol 71:4951–4959Google Scholar
  57. Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS (2008) Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community biodegradation in phenanthrene-contaminated soil. Microbial Ecol 55:173–183Google Scholar
  58. Cui Z, Li S, Fu G (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925Google Scholar
  59. Da HN, Deng SP (2003) Survival and persistence of genetically modified Sinorhizobium meliloti in soil. Appl Soil Ecol 22:1–14Google Scholar
  60. Daughton CG, Hsieh DP (1977) Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol 34:175–184Google Scholar
  61. Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32(11–12):639–650Google Scholar
  62. Desaint S, Hartmann A, Parekh NR, Fournier JC (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34:173–180Google Scholar
  63. Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7(3):173–180Google Scholar
  64. Didierjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O’Keefe DP, Werck- Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189Google Scholar
  65. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligeneseutrophus. J Bacteriol 145:681–686Google Scholar
  66. Doyle JD, Stotzky G, McClung G, Hendricks CW (1995) Effects of genetically engineered microorganisms on microbial populations and processes in natural habitats. Adv App. Microbiol 40: 237–287Google Scholar
  67. Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152Google Scholar
  68. Pravin D, Bhalani S, Bhatt S, Ghelani A (2012) Degradation oforganophosphate and organochlorine pesticides in liquid culture by marine isolate nocardiopsis species and its bioprospectives. J Envir Res Develop 7(2A):995–1001Google Scholar
  69. Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149:77–83Google Scholar
  70. EI-Bestway E, Mansy AH, Mansee AH, EL-Koweidy AH (2000) Biodegradation of selected chlorinated pesticides contaminating lake Maruiut ecosystem. Pak J Biol Sci 3:1673–1680Google Scholar
  71. Erick RB, Juan A-O, Paulino P, Torres LG (2006) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or pseudomonas fluorescens free cell cultures. J Environ Sci Health, Part B 41:553–569Google Scholar
  72. Evy AAM, Lakshmi V, Das N (2012) Biodegradation of atrazine by Cryptococcus laurentii isolated from contaminated agricultural soil. J Microbiol Biotech Res 2(3):450–457Google Scholar
  73. Evy AA, Jaseetha AS, Das N (2013) Atrazine degradation in liquid culture and soil by a novel yeast Pichia kudriavzevii strain Atz-EN-01 and its potential application for bioremediation. J Appl Pharma Sci 3(06):035–043Google Scholar
  74. Fagervold SK, May HD, Sowers KR (2007) Microbial reductive dechlorination of Aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73(9):3009–3018Google Scholar
  75. Fagervold SK, Watts JEM, May HD, Sowers KR (2011) Effects of bioaugmentation on indigenous PCB dechlorinatingactivity in sediment microcosms. Water Res 4(5):3899–3907Google Scholar
  76. Fang H, Xiang YQ, Hao YJ, Chu XQ, Pan XD, Yu JQ, Yu YL (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi Int. Biodeter Biodegr 61:294–303Google Scholar
  77. FAO (2005) Proceedings of the Asia Regional Workshop, Regional Office for Asia and the Pacific, BangkokGoogle Scholar
  78. FAO (2010) (Food and Agriculture Organization of The United Nations) (
  79. Faulkner JK, Woodcock D (1964) Metabolism of 2, 4-dichlorophenoxyacetic acid (‘2, 4-D’) by Aspergillus Niger van Tiegh. Nature 203:865Google Scholar
  80. Fawzy IE, Hend AM, Osama NM, Khaled MG, Ibrahim MG (2014) Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater. J Am Sci 10(3):98–108Google Scholar
  81. Ferguson JA, Korte F (1977) Epoxidation of aldrin to exo-dieldrin by soil bacteria. Appl Environ Microbiol 34(1):7–13Google Scholar
  82. Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 54:85–110Google Scholar
  83. Filonov AE, Akhmetov LI, Puntus IF, ESikova TZ, Gafarov AB, Izmalkova TY, Sokolov SL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiol 74(4):526–532Google Scholar
  84. Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4:4–14Google Scholar
  85. Frantz B, Chakrabarty AM (1986) Degradative plasmids in Pseudomonas. The biology of Pseudomonas. Academic Press, Inc, New York, pp 295–323Google Scholar
  86. Furukawa K (2003) ‘Super bugs’ for Bioremediation. Trends Biotech 21:187–190Google Scholar
  87. Furukawa K, Simon JR, Chakarbarthy AM (1983) Common induction and regulation of biphenyl, xylene/toluene and salicyalete catabolism in Pseudomonas paucimobilis. J Bacteriol 154:1356–1362Google Scholar
  88. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526Google Scholar
  89. Genthner BRS, Price WA II, Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55:1472–1476Google Scholar
  90. Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus Folia. Microbiol 52:423–427Google Scholar
  91. Ghazali FM, Rahman Raja Noor ZA, Salleh AB, Mahiran Basri (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeter Biodeg 54:61–67Google Scholar
  92. Gibson GT (1999) Beijerinckia sp. strain B1: a strain by any other name. J Indain Microbiol Biotechnol 23:284–293Google Scholar
  93. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252Google Scholar
  94. Gibson GT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia sp. Biochem Biophys Res Commun 50:211–219Google Scholar
  95. Giri K, Rawat AP, Rawat M, Rai JPN (2014) Biodegradation of hexachlorocyclohexane by two species of bacillus isolated from contaminated soil. Chem Ecol 30(2):97–109. doi: 10.1080/02757540.2013.844795 Google Scholar
  96. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117Google Scholar
  97. Glick BR (2003) Phytoremediation: synergistic use of plants and microbes to clean up the environment. Biotechnol Adv 21:383–393Google Scholar
  98. Guzzella L, Capri E, Di Corcia A, Caracciolo AB, Giuliano G (2006) Fate of diuron and linuron in a field lysimeter experiment. J Environ Qual 35:312–323Google Scholar
  99. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243Google Scholar
  100. Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxy-benzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359Google Scholar
  101. Harayama S, Rekik M (1990) The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes. Mol Gen Genet 221:113–120Google Scholar
  102. Harayama S, Rekik M, Wubbolts M, Rose K, Leppi RAK, Timmis KN (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pWWO from Pseudomonasputida and identification of the gene products. J Bacteriol 171:5048–5055Google Scholar
  103. Harayama S, Leppik RA, Rekik M, Mermod N, Lehrbach PR, Reineke W, Timmis KN (1986) Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xyIA product. J Bacteriol 167:455–461Google Scholar
  104. Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Adv Bio Tech 12(09):04–08Google Scholar
  105. Haro MA, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotech 85:105–113Google Scholar
  106. Harwood CS, Parales RE (1996) The b-ketoadipate pathway and the biology of self-identity. Annual Revi Microbiol 50:553–590Google Scholar
  107. Hay AG, Foch DD (1998) Cometabolism of 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146Google Scholar
  108. Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutrophastrain A5. FEMS Microbiol Ecol 31:249–253Google Scholar
  109. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598Google Scholar
  110. Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740Google Scholar
  111. Heijnen CE, van Elsas JD, Kuikman PJ, van Veen JA (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20:483–488Google Scholar
  112. Hernandez F, Beltran J, Forcada M, Lopez FJ, Morell I (1998) Experimental approach for pesticide mobility studies in the unsaturated zone. Int J Environ Anal Chem 71:87–93Google Scholar
  113. Holtel A, Abril MA, Marques S, Timmis KN, Ramos JL (1990) Promoter-upstream activator sequences are required for expression of the xylS gene and upper-pathway operon on the Pseudomonas TOL plasmid. MolMicrobiol 4:1551–1556Google Scholar
  114. Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002a) Identification of an opd (organophosphorus degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376Google Scholar
  115. Horne I, Sutherland TD, Oakeshott JG, Russell RJ (2002b) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology 148:2687–2695Google Scholar
  116. Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25(9):1519–1528Google Scholar
  117. Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4(3):82–85Google Scholar
  118. IARC (1986) Monographs on the evaluation of carcinogenic risks to humans volume 41 some halogenated hydrocarbons and pesticide exposures. Lyon Internation Agency Res Cancer, p 434Google Scholar
  119. Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and Utilization of organophosphorus pesticide Malathion by Cyanobacteria. BioMed Res Inter. doi: 10.1155/2014/392682 Google Scholar
  120. ICAR (1967) Report of the special committee on harmful effects of pesticides. ICAR, New Delhi 78Google Scholar
  121. Isaac P, Sánchez LA, Bourguignon N, Cabral ME, Ferrero MA (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeter Biodegr 82:207–214Google Scholar
  122. Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20Google Scholar
  123. Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643Google Scholar
  124. Jagnow G, Halder K (1972) Evolution of CO2 from soil incubated with dieldrin-14C. SoilBiolog Biochem 4:43Google Scholar
  125. Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112Google Scholar
  126. Jain R, Garg V, Singh KP, Gupta S (2012) Isolation and characterization of monocrotophos degrading activity of soil fungal isolate Aspergillus Niger MCP1 (ITCC7782.10). Int J Envir Sci 3(2):841–850Google Scholar
  127. Jayashree R, Vasudevan N (2007) Effect of tween 80 added to the soil on the degradation of endosulfan by Pseudomonas aeruginosa. Inter J Env Sci Tech 4(2):203–210Google Scholar
  128. Jia KZ, Li XH, He J, Gu LF, Ma JP, Li SP (2007) Isolation of a monocrotophos-degrading bacterial strain and characterization of enzymatic degradation. Huan Jing Ke Xue 28(4):908–912Google Scholar
  129. Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309Google Scholar
  130. Johnsen AR, Wick LY Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84Google Scholar
  131. Johansen JE, Binnerup SJ, Lebolle KB, Masher F, Sorensen J, Keel C (2002) Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. J Appl Microbiol 93:1065–1074Google Scholar
  132. Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biolog Fertil Soils 33(6):443–453Google Scholar
  133. Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16:2177–2188Google Scholar
  134. Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66(8):888–891Google Scholar
  135. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067Google Scholar
  136. Kang H, Hwang SY, Kim YM, Kim E, Kim YS, Kim SK, Kim SW, Cerniglia CE, Shuttleworth KL, Zylstra GJ (2003) Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can J Microbiol 49:139–144Google Scholar
  137. Kannan K, Tanabe S, Ramesh A, Subramanian A, Tatsukawa R (1992) Persistent orgnochlorine residues in food stuffs from India and their implications on human dietary exposure. J Agric Food Chem 40:518–524Google Scholar
  138. Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Techno 44(16):6343–6349Google Scholar
  139. Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098Google Scholar
  140. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Develop 27:29–43Google Scholar
  141. Kim YM, Ahna CK, Wood SH, Jungb GY, Parka JM (2009) Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. J Biotechnol 144:293–298Google Scholar
  142. Kimyoji T, Sugimoto K, Mitani S, Matsuo N, Suzuki K (1995) Biological properties of a new fungicide, fluazinam. J Pest Sci Japan 20:129–135Google Scholar
  143. Klipi S, Backstrom V, Korhola M (1980) Degradation of 2-methyl-4-chlorophenoxy acetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV3. FEMS Microbiol Lett 8:177–182Google Scholar
  144. Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun F (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25(11):2257–2264Google Scholar
  145. Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350Google Scholar
  146. Korte F, Porter PE (1970) Minutes of the fifth meeting of the IUPAC terminal pesticide residues. Erbach, West GermanyGoogle Scholar
  147. Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39:295–304Google Scholar
  148. Kraiser T, Stuardo M, Manzano M, Ledger T, González B (2012) Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host. Plant Soil. doi: 10.1007/s11104-012-1444-8 Google Scholar
  149. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant-Microbe Interact 17:6–15Google Scholar
  150. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural Biol Fertil. Soils 47:219–225Google Scholar
  151. Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22(1):1–26Google Scholar
  152. Kumar K, Devi SS, Krishnamurthi K, Kanade GS, Chakrabarti T (2007) Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosfere 68(2): 317–322Google Scholar
  153. Kumara M, Philipa L (2006) Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioreme J 10(4):179–190Google Scholar
  154. Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Envir Microbiol 61:234–238Google Scholar
  155. Laemmli CM, Leveau JHJ, Zehnder AJB, Van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 182:4165–4172Google Scholar
  156. Lakshmi A (1993) Pesticides in India: risk assessment to aquatic ecosystems. Sci Total Environ 134:243–253Google Scholar
  157. Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeter Biodegr 62:204–209Google Scholar
  158. Lancaster SH, Hollister EB, Senseman SA, Gentry TJ (2010) Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manage Sci 66:59–64Google Scholar
  159. Leveau JHJ, Konig F, Fuchslin H, Werlen C, van der Meer JR (1999) Dynamics of multigene expression during catabolic adaptation of RalstoniaeutrophaJMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol 33:396–406Google Scholar
  160. Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149Google Scholar
  161. Lin X, Li PJ, Xu HX, Zhou Q X, Zhang HR (2004) Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation. J Environm Sci 16(6):987–990Google Scholar
  162. Lipthay JR, Barkay T, Sørensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2, 4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35(1):75–84Google Scholar
  163. Liu Z, Chen X, Shi Y, Su Z (2012) Bacterial degradation of chlorpyrifos by Bacillus cereus. Adv Mater Res 356(360):676–680Google Scholar
  164. Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359Google Scholar
  165. Madueño L, Coppotelli BM, Alvarez HM, Morelli IS (2011) Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. Int Biodete Biodeg 65:345–3511Google Scholar
  166. Magan N, Fragoeiro S (2005) Enzymatic activities, osmotic stree and degradation of pesticide mixtures in soil extract liquid broth inoculated with phanerochaete chrysosporium and Trametes versicolor. Envir Microbiol 7(3):348–355Google Scholar
  167. Mahapatra GK (2008) Helopeltis management by chemicals in Cashew: a critical concern. Indian J Entomol 70:293–308Google Scholar
  168. Mahapatra GK, Panigrahi M (2013) The case for banning endosulfan. Curr Sci 104:1476–1478Google Scholar
  169. Mahiudddin M, Fakhruddin ANM, Abdullah-Al-Mahin, Chowdhury MAZ, Rahman MA, Alam MK (2014) Degradation of the organophosphorus insecticide diazinon by soil bacterial isolate. The Intern J Biotechn 3(1):12–23Google Scholar
  170. Malhotra S, Sharma P, Kumari H, Singh A, Lal R (2007) Localization of HCH catabolic genes (lin) in Sphingobium indicum B90A. Ind J Microbiol 71:8514–8518Google Scholar
  171. Mallick K, Bharati K, Banerji A, Shakil NA, Sethunathan N (1999) Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull Environ Contam Toxicol 62:48–54Google Scholar
  172. Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23:673–682Google Scholar
  173. Masunaga S, Susarla S, Gundersen JL, Yonezawa Y (1996) Pathway and rate of chlorophenols transformation in anaerobic estuarine sediment. Environ Sci Technol 30:1253–1260Google Scholar
  174. Matrubutham U, Harker AR (1994) Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligeneseutrophus JMP134. J Bacteriol 176:2348–2353Google Scholar
  175. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509Google Scholar
  176. Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153:1278–1280Google Scholar
  177. Matsumura F, Boush GM (1967) Dieldrin degradation by soil microorganisms. Science 156:959–961Google Scholar
  178. Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus Trichoderma viride. J Econom Entomol 61:610–612Google Scholar
  179. Matsumura F, Boush GM, Tai A (1968) Breakdown of dieldrin in the soil by a microorganism. Nature 219(5157):965–967Google Scholar
  180. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267Google Scholar
  181. Merlin C, Springael D, Toussaint A (1999) Tn4371: a modular structure encoding a phage-likeintegrase, a pseudomonas-like catabolic pathway and RP4/Ti-like transfer functions. Plasmid 41:40–54Google Scholar
  182. Mohamed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):1–6. doi: 10.2225/vol12-issue4-fulltext-11 Google Scholar
  183. Mohanasrinivasan V, Suganthi V, Selvarajan E, Subathra Devi C, Ajith E, Muhammed FNP, Sreeram G (2013) Bioremediation of endosulfan contaminated soil. Res J Chem Environ 17(11):93–101Google Scholar
  184. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium VanbaaleniiPYR-1. Appl Environ Microbiol 70:340–345Google Scholar
  185. Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012) Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation 23:653–662Google Scholar
  186. Morrissey JP, Walsh UF, O’Donnell A, Moënne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. A van Leeuwenhoek 81:599–606Google Scholar
  187. Mrozi A, Piotrowska-Sege Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375Google Scholar
  188. Mulbry W, Kearney PC (1991) Degradation of pesticides by micro-organisms and the potential for genetic manipulation. Crop Protect 10:334–346Google Scholar
  189. Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310Google Scholar
  190. Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotidesequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB)unites the class IA oxygenases in a single lineage. Microbiol 141:485–495Google Scholar
  191. Nakazawa T, Inouye S, Nakazawa A (1990) Regulatory systems for expression of xyl genes on the TOL plasmid. pp 133–141Google Scholar
  192. Nancharaiah V, Joshi HM, Hausner M, Venugopalan VP (2008) Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere 71:30–35Google Scholar
  193. Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215Google Scholar
  194. Nelson ML, Yaron B, Nye PH (1982) Biologically induced hydrolysis of parathion in soil: kinetics and modelling. Soil Biol Biochem 14:223–228Google Scholar
  195. Ning J, Gang Gang, Bai Z, Qing Hu, Hongyan Qi, Anzhou Ma, Zhuan X, Guoqiang Zhuang (2012) In situ enhanced bioremediation of dichlorvos by a phyllosphere Flavobacterium strain. Front Environ Sci Eng 6(2):231–237Google Scholar
  196. Nishi A, Tominaga K, Furukawa K (2000) A 9-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol 182:1949–1955Google Scholar
  197. Odukkathil G, Vasudevan N (2013) Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. J Environ Sci Health B 48(6):462–469Google Scholar
  198. Ortiz I, Velasco A, Borgne SL, Revah S (2013) Biodegradation of DDT by stimulation of indigenous microbial populations in soil with co substrates. Biodegrad 10532(012):9578–9581Google Scholar
  199. Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revis Internacion de Contamin Ambient 26(1):27–38Google Scholar
  200. Ortiz-Hernández ML, Quintero-Ramírez R, Nava-Ocampo AA, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacteriumsp. for hydrolyzingorganophosphate pesticides. Fundam Clin Pharmacol 17(6):717–723Google Scholar
  201. Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment. Pesticides—formulations, effects, fate, margarita stoytcheva (Ed.) In‐Tech. doi: 10.5772/13534.
  202. Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indigenous mirobial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932Google Scholar
  203. Padmanabhan P, Padmanabhan S, De Rito C, Gray A, Gannon D, Snap JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labelled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C labeled soil DNA. Appl Environ Microbiol 69:1614–1622Google Scholar
  204. Pallud C, Dechesne A, Gaudet JP, Debouzia D, Grundmann GL (2004) Modification of spatial distribution of 2,4-dichlorophenoxy acetic acid degrader microhabitats during growth in soil columns. Appl Environ Microbiol 70:2709–2716Google Scholar
  205. Park JH, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69:3288–3298Google Scholar
  206. Parsek MR, Mc Fall SM, Chakrabarty AM (1995) Microbial degradation of toxic environment pollution: ecological and evolutionary consideration. Int Biodeter Biodegrad 35:175–188Google Scholar
  207. Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. J App Microbiol 19:879–881Google Scholar
  208. Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142Google Scholar
  209. Pelrez-Pantoja D, Guzmaln L, Manzano M, Pieper DH, Gonzallez B (2000) Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstoniaeutropha JMP134 (pJP4). Appl Environ Microbiol 66:1602–1608Google Scholar
  210. Pemberton JM, Fisher PR (1977) 2, 4-D plasmids and persistence. Nature (London) 268:732–733Google Scholar
  211. Pemberton JM, Schmidt R (2001) Catabolic plasmids. Encyclopedia life science. Wiley, New York, pp 1–9Google Scholar
  212. Pereira PM, Sobral Teixeira RS, de Oliveira MAL, da Silva M, Ferreira-Leitão VS (2013) Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J Microb Biochem Technol S 12:006. doi: 10.4172/1948-5948.S12-006 Google Scholar
  213. Perkins EJ, Gordon MP, Calceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2352–2359Google Scholar
  214. Phelps TJ, Segrist RL, Korte NE, Pickering DA, Strong-Guderson JJM, Palumbo AV, Walker JF, Morrissey CM, Mackowski R (1994) Bioremediation of petroleum hydrocarbon in soil column lysimeters from Kwajalein island. Appl Biochem Biotechnol 45(46):835–845Google Scholar
  215. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotech 11(3): 262–270Google Scholar
  216. Pimentel MR, Molina G, Dionísio AP, Maróstica MRJr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol. Res Int 1–11Google Scholar
  217. Pino N, Penuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831Google Scholar
  218. Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191(1):115–121Google Scholar
  219. Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in Sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49(1):1–19Google Scholar
  220. Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp.strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorusand nitrogen. Appl Environ Microbiol 54:2868–2870Google Scholar
  221. Poh RP-C, Smith ARW, Bruce IJ (2002) Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12Google Scholar
  222. Porto AM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides, pesticides in modern world-pesticides use and management. [online]
  223. Pothuluri JV, Chung YC, Xiong Y (1998) Biotransformation of 6-nitrochrysene. Appl Environ Microbiol 64:3106–3109Google Scholar
  224. Prabha Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351Google Scholar
  225. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010a) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeter Biodegr 64:397–402Google Scholar
  226. Purnomo AS, Mori T, Kondo R (2010b) Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int Biodeter Biodegr 64:560–565Google Scholar
  227. Quan X, Tang H, Xiong W, Yang Z (2010) Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 179(1–3):1136–1142Google Scholar
  228. Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiol 149:2879–2890Google Scholar
  229. Reineke W (1984) Microbial degradation of halogenated aromatic compounds. Microbial degradation of organic compounds, Marcel Dekker, New York, pp 319–360Google Scholar
  230. Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287Google Scholar
  231. Rekha SN, Naik RP (2006) Pesticide residue in organic and conventional food—risk analysis. Chem Health Safety 13:12–19Google Scholar
  232. Rheinwald JC, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid.controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA 70:885–889Google Scholar
  233. Ripp S, Nivens DE, Werner C, Sayler GS (2000) Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl Microbiol Biotech 53:736–741Google Scholar
  234. Riya P, Jagatpati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2(7):36–41Google Scholar
  235. Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsio TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72(4):2476–2482Google Scholar
  236. Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus(Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Tech 16:265–276Google Scholar
  237. Saint CP, McClure NC, Venables WA (1990) Physical map of the aromatic amine and m- toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a uniquemeta-cleavage pathway. J Gen Microbiol 136:615–625Google Scholar
  238. Sakamoto M, Tsutsumi T (2004) Applicability of headspace solid-phase microextraction to the determination of multi-class pesticides in waters. J Chromat A 1028(1):63–74Google Scholar
  239. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganismsfor bioremediation processes. Curr Opin Biotechnol 11(3):286–289Google Scholar
  240. Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19:1–20Google Scholar
  241. Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K (2010) Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics 10:1819–1830Google Scholar
  242. Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626Google Scholar
  243. Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79Google Scholar
  244. Seo JSu, Keum YS, Reneen MH, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHS) and organophosphorus pesticides from PAH-contaminated soil in hilo, Hawaii. J Agric Food Chem 55:5383–5389Google Scholar
  245. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canad J Microbiol 50(4):239–249Google Scholar
  246. Sethunathan N, Yoshida T (1973) A Flavobacterium that degrades diazinon and parathion. Can J Microbiol 19:873–875Google Scholar
  247. Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biot 53:348–351Google Scholar
  248. Sharma S, Singh P, Raj M, Chadha BS, Saini HS (2009) Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonasaeruginosa WH-2. J Hazard Mater 171:1178–1182Google Scholar
  249. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110Google Scholar
  250. Shetty PK, Murugan M, Sreeja KG (2008) Crop protection stewardship in India: wanted or unwanted. Curr Sci 95(4):457–464Google Scholar
  251. Shields MS, Hooper SW, Sayler GS (1985) Plasmid mediated mineralization of 4-chlorobiphenyl. J Bacteriol 163:882–889Google Scholar
  252. Shivaramaiah HM (2010) Biodegradation of endosulfan by anabaena pesticide. Res J 22(2):125–128Google Scholar
  253. Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol 26(6):846–849Google Scholar
  254. Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2003) Biodegradation kinetics of endosulfan by Fusarium vetricosum and a Pandoraea species. J Agric Food Chem 51:8015–8019Google Scholar
  255. Silva IS, dos Santos EC, de Menezes CR, de Faria AF, Franciscon E, Grossman M et al (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675Google Scholar
  256. Singh M, Singh DK (2014) Biodegradation of endosulfan in broth medium and in soil microcosm by Klebsiella sp. M3. Bull Environ Contam Toxicol 92(2):237–242Google Scholar
  257. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471Google Scholar
  258. Singh BK, Walker A, Morgan JA, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206Google Scholar
  259. Singh BK, Walker A, Morgan JA, Wright DJ (2004) Biodegradation of chloropyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soil. Appl Environ Microbiol 70(8):4855–4863Google Scholar
  260. Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the Cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351–1359Google Scholar
  261. Sinha N, Narayan R, Shanker R, Saxena DK (1995) Endosulfan-induced biochemical changes in the testis of rats. Vet Hum Toxicol 37:547–549Google Scholar
  262. Sinha N, Narayan R, Saxena DK (1997) Effect of endosulfan on the testis of growing rats. Bull Environ Contamin Tox 58:79–86Google Scholar
  263. Spooner RA, Lindsay K, Franklin FCH (1986) Genetic, functional and sequence analysis of thexylR and xylS regulatory genes of the TOL plasmid pWWO. J Gen Microbiol 132:1347–1358Google Scholar
  264. Springael D, Ryngaert A, Merlin C, Toussaint A, Max M (2001) Occurrence of Tn4371-Related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Appl Environ Microbiol 67(1):42–50Google Scholar
  265. Stockholm Convention Persistent Organic Pollutants, Government of India, 2009Google Scholar
  266. Stockholm Convention Persistent Organic Pollutants, Government of India, 2011.
  267. Strong LC, McTavish H, Sadowsky MJ, Wacket LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinantEscherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98Google Scholar
  268. Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18:1204–1209Google Scholar
  269. Suenaga H, Mitsuoka M, Ura Y, Watanable T, Furukawa K (2001) Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene and alkylbenzenes. J Bacteriol 183:5441–5444Google Scholar
  270. Swissa N, Nitzan Y, Langzam Y, Cahan R (2014) Atrazine biodegradation by a monoculture of Raoultella planticolaisolated from a herbicides wastewater treatment facility. Int Biodeter Biodeg 92:6–11Google Scholar
  271. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(2):8500–8505Google Scholar
  272. Tamer MAMT, El-Naggar MAH (2013) Diazinon decomposition by soil bacteria and identification of degradation products by GC-MS. Soil Environ 32(2):96–102Google Scholar
  273. Tan HM (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51(1):12Google Scholar
  274. The Directorate of Plant Protection, Quarantine and Storage, Government of India (2010) Total pesticides consumed during 2005–2006 to 2009–2010, as per official data of (
  275. Themel K, Sparling R, Oleszkiewicz J (1996) Anaerobic dehalogenation of 2-chlorophenol by mixed bacterial cultures in absence methanogenesis. Environ Technol 17:869–875Google Scholar
  276. Thomas B, Parkins IB (1995) Assimilative capacity of subsurface for the pesticides, atrazine and alachlor and nitrate. FEDRIP-Data base, National Technical Information Service (NTIS), USAGoogle Scholar
  277. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677Google Scholar
  278. Tomlin CDS (2002) The e-Pesticide Manual, Version 2.2. [CD-ROM], 12th edn. The Britich Crop Protection Council, UKGoogle Scholar
  279. Top EM, van Daele P, de Saeyer N, Forney LJ (1998) Enhancement of 2,4-dichlorophenoxyaceticacid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Anton van Leeuwen 73:87–94Google Scholar
  280. Torres JPM, Fróes-Asmus CIR, Weber R, Vijgen J (2013a) HCH contamination from farmer pesticide production in Brazil—a challenge for the Stockholm Convention implementation. Environ Sci Pollut Res. doi: 10.1007/s11356-012-1089-4 Google Scholar
  281. Torres JPM, Leite C, Krauss T, Weber R (2013b) Landfill mining from a deposit of the chlorine/organochlorine industry as source of dioxin contamination of animal feed and assessment of the responsible processes. Environ Sci Pollut Res. doi: 10.1007/s11356-012-1073-z Google Scholar
  282. Tralau T, Cook AM, Ruff J (2001) Map of the IncPb plasmid pTSA encoding widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T2. Appl Environ Microbiol 67:1508–1516Google Scholar
  283. Tsuda M, Tan HM, Nishi A, Furukawa K (1999) Mobile catabolic genes in bacteria. J Biosci Bioeng 87:401–410Google Scholar
  284. Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745Google Scholar
  285. UN/DESA (2008) Changing unsustainable patterns of consumption and production, Johannesburg plan on implementation of the world summit on sustainable development, Johannesburg, 2002 (Chapter III)Google Scholar
  286. United Nations Environment Programme Chemicals (2011) UNEP Persistent OrganicGoogle Scholar
  287. Vaccari DA, Strom PF, Alleman JE (2006) Pollutants. Accessed 5th July 2010,
  288. Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48(1):19–34Google Scholar
  289. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310Google Scholar
  290. Van der Meer JR, Zehnder AJB, de Vos WM (1991) Identification of a novel composite transposable element Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol 173:7077–7083Google Scholar
  291. van der Meer J R, Ravatn R, Sentchilo V (2001) The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol 175:79–85Google Scholar
  292. van der Meer JR, De-Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetics adaptation to xenobiotic compounds. Microbiol Review 56:677–94Google Scholar
  293. Van Elsas JD, Dijkstra AF, Govaert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilus introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160Google Scholar
  294. Van Herwijnen R, Van de Sande BF, Van der Wielen FWM, Springael D, Govers HAJ, Parsons JR (2003) Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostatcultures. FEMS Microbiol Ecol 46:105–111Google Scholar
  295. Van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current feature and future perspectives. Appl Microbiol Biotechnol 50:16–23Google Scholar
  296. Vargas JM Jr (1975) Pesticide degradation. In: Presented at the international shade tree conference in Detroit, Michigan. J Arboricult 232–233Google Scholar
  297. Velicer GJ (1999) Pleiotropic effects of adaptation to a single carbon source for growth on alternative substrates. Appl Environ Microbiol 65:264–269Google Scholar
  298. Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621Google Scholar
  299. Verma P, Verma P, Sagar R (2013) Variation in N mineralization and herbaceous species diversity due to sites, seasons, and N treatment in a seasonally dry tropical environment of India. For Ecol Manage 297:15–26Google Scholar
  300. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586Google Scholar
  301. Vollmer MD, Hoier H, Hecht HJ, Schell U, Groning J, Goldman A, Schlomann M (1998) Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild type enzyme and engineered variants. Appl Environ Microbiol 64:3290–3299Google Scholar
  302. Wang W-D, Niu JL, Cui ZJ (2005) Biodegradation of pesticides: a review. J Heilongj Aug First Land Reclama Univ 17(2):18Google Scholar
  303. Wang Y, Xiao M, Geng X, Liu J, Chen J (2007) Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere. Appl Microbiol Biotechnol 77:733–739Google Scholar
  304. Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn andwheat by horizontal gene transfer within endophytic bacteria.Soil Bio. Biochem 42:1051–1057Google Scholar
  305. Wang L, Chi X-Q, Zhang J–J, Sun D-L, Zhou N-Y (2014) Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp. strain WBC 3. Inte Biodete Biodeg 87:116–121Google Scholar
  306. Wasilkowski D, Swędzioł Ż, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediationof contaminated environments. Science 66(8):817–826Google Scholar
  307. Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons J R, Renard M E, Cornelis G R. (2001). Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152(10):861–872Google Scholar
  308. Weber R, Varbelow HG (2013) Dioxin/POPs legacy of pesticide production in Hamburg: part 1—securing of the production area. Environ Sci Pollut Res. doi: 10.1007/s11356-012-1011-0 Google Scholar
  309. WHO (2004) The WHO recommended classification of pesticides by hazard and guidelines to classification, 2004Google Scholar
  310. Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828Google Scholar
  311. Wolfe NL, Zepp RG, Paris DF (1978) Use of structure-reactivity relationships to estimate hydrolytic persistence of carbamate pesticides. Water Resour 12:561–563Google Scholar
  312. Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578Google Scholar
  313. World Bank (2010). World Development Indicators; Rising Global Interest in Farmland. Can it Yield Sustainable and Equitable Benefits? Washington. (available from
  314. Xiao PF, Kondo R (2013) Biodegradation of dieldrin by cordyceps fungi and detection of metabolites. Appl Mecha Mater 295–298:30–34Google Scholar
  315. Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white-rot fungi, belonging to genus phlebia. Microbiol Lett 314(2):140–146Google Scholar
  316. Xu GM, Li YY, Zheng W, Peng X, Li W, Yan YC (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon sp. Biotechnol Lett 29:1469–1473Google Scholar
  317. Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeter Biodegr 62:51–56Google Scholar
  318. Yan DZ, Lui H, Zhou NY (2006) Conversion of SphingobiumchlorophenolicumATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286Google Scholar
  319. Yang, Zhao Y, Zhang B, Yang C, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73Google Scholar
  320. Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43(5):915–922Google Scholar
  321. Ye D, Siddiqi MA, Maccubbin AE, Kuma S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142Google Scholar
  322. Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118Google Scholar
  323. Yim YJ, Seo J, Kang SI, Ahn JH, Hur HG (2008) Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch Environ Contam Toxicol 54:406–411Google Scholar
  324. You M, Liu X (2004) Biodegradation and bioremediation of pesticide pollution. Chin J Ecol 23:73–77Google Scholar
  325. Yrjala K, Paulin L, Romantschuk M (1997) Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408Google Scholar
  326. Yuan Y, Guo SH, Li FM, Li TT (2013) Effect of an electric field on n-hexadecane microbial degradation in contaminated soil. Int Biodeterior Biodegrad 77:78–84Google Scholar
  327. Yu YL, Shan M, Fang H, Wang X, Chu XQ (2006) Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J Agric Food Chem 54:10070–10075Google Scholar
  328. Zaitsev G, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogentad benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201Google Scholar
  329. Zboinska E, Lejczak B, Kafarski P (1992) Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58:2993–2999Google Scholar
  330. Zhao H-P, Wu Q-S, Wang L, Zhao X-T, Gao H-W (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J Hazard Mater 164:863–869Google Scholar
  331. Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2410–2413Google Scholar
  332. Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jay Prakash Verma
    • 1
    Email author
  • Durgesh Kumar Jaiswal
    • 1
  • R. Sagar
    • 2
  1. 1.Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations