Reviews in Environmental Science and Bio/Technology

, Volume 13, Issue 3, pp 301–320 | Cite as

Methods of energy extraction from microalgal biomass: a review

Reviews

Abstract

The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, The process operations for algal biofuel production can be grouped into three areas: growth, harvesting and energy extraction, with a wide range of combinations of unit operations that can form a microalgal biofuel production system, but as yet there is no successful economically viable commercial system producing biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economic algal biofuel production can be achieved. This article briefly reviews the methods by which useful energy may be extracted from microalgae biomass: (a) direct combustion, (b) pyrolysis, (c) gasification, (d) liquefaction, (e) hydrogen production by biochemical processes in certain algae, (f) fuel cells, (g) fermentation to bioethanol, (h) trans-esterification to biodiesel, (i) anaerobic digestion.

Keywords

Microalgae Bioenergy Anaerobic digestion Pyrolysis Gasification Liquefaction Biodiesel 

References

  1. Afi L, Metzger P, Largeau C, Connan J, Berkaloff C, Rousseau B (1996) Bacterial degradation of green microalgae: incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Org Geochem 25(1–2):117–130. doi:10.1016/s0146-6380(96)00113-1 Google Scholar
  2. Alba LG, Torri C, Samori C, van der Spek J, Fabbri D, Kersten SRA, Brilman DWF (2012) Hydrothermal treatment of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 26(1):642–657. doi:10.1021/ef201415s Google Scholar
  3. Babich IV, van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35(7):3199–3207. doi:10.1016/j.biombioe.2011.04.043 Google Scholar
  4. Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sustain Energy Rev 27:128–148. doi:10.1016/j.rser.2013.06.029 Google Scholar
  5. Bain R (2004) An introduction to biomass thermochemical conversion. Paper presented at the DOE/NASLUGC biomass and solar energy workshops, Golden, ColoradoGoogle Scholar
  6. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573. doi:10.1016/j.pecs.2007.11.001 Google Scholar
  7. Beal CM (2011) Algal biofuels: energy and water. Paper presented at the WEG Symposium, Austin Texas 21-22/01/2011Google Scholar
  8. Belosevic S (2010) Modeling approaches to predict biomass co-firing with pulverized coal. Open Thermodyn J 4:50–70Google Scholar
  9. Ben-Amotz A, Polle JEW, Subba Rao DV (2009) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfleld, NJGoogle Scholar
  10. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300. doi:10.1023/a:1008175112704 Google Scholar
  11. Bhola V, Desikan R, Santosh SK, Subburamu K, Sanniyasi E, Bux F (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J Biosci Bioeng 111(3):377–382. doi:10.1016/j.jbiosc.2010.11.006 Google Scholar
  12. Björkman E, Strömberg B (1997) Release of chlorine from biomass at pyrolysis and gasification conditions. Energy Fuels 11(5):1026–1032Google Scholar
  13. Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 873–975. doi:10.1007/978-1-4614-3348-4_36
  14. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009 Google Scholar
  15. Brown P (2009) Algal biofuels research, development, and commercialization priorities: a commercial economics perspective. ep Overviews Publishing, Inc. http://www.epoverviews.com/oca/Algae%20Biofuel%20Development%20Priorities%20.pdf. Accessed 11/12/2008
  16. Brown MR, Jeffrey SW (1995) The amino acid and gross composition of marine diatoms potentially useful for mariculture. J Appl Phycol 7(6):521–527. doi:10.1007/bf00003938 Google Scholar
  17. Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646. doi:10.1021/ef100203u Google Scholar
  18. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. doi:10.1021/ie50507a033 Google Scholar
  19. Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122. doi:10.1021/ie9008293 Google Scholar
  20. Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng ASCE 129(6):506–512. doi:10.1061/(asce)0733-9372(2003)129:6(506) Google Scholar
  21. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. doi:10.1016/j.biortech.2007.01.057 Google Scholar
  22. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conv Manag 51(7):1412–1421. doi:10.1016/j.enconman.2010.01.015 Google Scholar
  23. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306Google Scholar
  24. Chisti Y, Moo Young M (1986) Disruption of microbial-cells for intracellular products. Enzyme Microb Technol 8(4):194–204Google Scholar
  25. Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101(14):5330–5336. doi:10.1016/j.biortech.2010.02.026 Google Scholar
  26. Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol:null–null. doi:10.1021/es200760n
  27. de Boer K, Moheimani N, Borowitzka M, Bahri P (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24(6):1681–1698. doi:10.1007/s10811-012-9835-z Google Scholar
  28. De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304. doi:10.1002/bit.22257 Google Scholar
  29. Delrue F, Seiter PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200. doi:10.1016/j.biortech.2012.02.020 Google Scholar
  30. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378. doi:10.1016/s0196-8904(00)00137-0 Google Scholar
  31. Demirbas A (2010) Hydrogen from mosses and algae via pyrolysis and steam gasification. Energy Sources Part A Recovery Util Environ Eff 32(2):172–179. doi:10.1080/15567030802464388 Google Scholar
  32. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117. doi:10.1007/s10811-008-9336-2 Google Scholar
  33. Du ZY, Li YC, Wang XQ, Wan YQ, Chen Q, Wang CG, Lin XY, Liu YH, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102(7):4890–4896. doi:10.1016/j.biortech.2011.01.055 Google Scholar
  34. El-Dessouky HT, Ettouney HM (2002) Fundamentals of salt water desalination. Elsevier, New YorkGoogle Scholar
  35. GEA Process Engineering (2011) Algal cell disruption. http://www.niroinc.com/gea_liquid_processing/algae_cells_disruption.asp. Accessed 20/09/2011
  36. Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap. A technology roadmap resulting from the National Algal Biofuels Workshop U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Available online @ http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf, Washington
  37. Geun Goo B, Baek G, Jin Choi D, Il Park Y, Synytsya A, Bleha R, Ho Seong D, Lee C-G, Kweon Park J (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350. doi:10.1016/j.biortech.2012.11.077 Google Scholar
  38. Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials (review). Appl Biochem Microbiol 48(2):126–144. doi:10.1134/s0003683812020068 Google Scholar
  39. Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7(4):219–227Google Scholar
  40. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55Google Scholar
  41. Gonzalez-Delgado AD, Kafarov V (2011) Microalgae based biorefinery: issues to consider. CT F Cienc Tecnol Futuro 4(4):5–21Google Scholar
  42. Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012a) Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod Biorefin 6(2):205–218. doi:10.1002/bbb.337 Google Scholar
  43. Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012b) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111. doi:10.1016/j.biombioe.2012.02.008 Google Scholar
  44. Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, HeidelbergGoogle Scholar
  45. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322 Google Scholar
  46. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174(3):246–263. doi:10.1016/j.plantsci.2007.11.009 Google Scholar
  47. Guan QQ, Savage PE, Wei CH (2012a) Gasification of alga Nannochloropsis sp in supercritical water. J Supercrit Fluids 61:139–145. doi:10.1016/j.supflu.2011.09.007 Google Scholar
  48. Guan QQ, Wei CH, Savage PE (2012b) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14(9):3140–3147. doi:10.1039/c2cp23792j Google Scholar
  49. Gunnison D, Alexander M (1975) Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol Oceanogr 20(1):64–70Google Scholar
  50. Hall CAS, Klitgaard KA (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer, New YorkGoogle Scholar
  51. Hall C, Balogh S, Murphy D (2009) What is the minimum EROI that a sustainable society must have? Energies 2(1):25–47Google Scholar
  52. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784Google Scholar
  53. Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168(3):1079–1084. doi:10.1016/j.cej.2011.01.088 Google Scholar
  54. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203Google Scholar
  55. Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011a) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35(1):741–747. doi:10.1016/j.biombioe.2010.10.007 Google Scholar
  56. Harun R, Jason WSY, Cherrington T, Danquah MK (2011b) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467. doi:10.1016/j.apenergy.2010.10.048 Google Scholar
  57. Harvey PJ, Psycha M, Kokossis A, Abubakar AL, Trivedi V, Swamy R, Cowan AK, Schroeder D, Highfield A, Reinhardt G, Gartner S, McNeil J, Day P, Brocken M, Varrie J, Ben-Amotz A (2012) Glycerol production by halophytic microalgae: strategy for producing industrial quantities in saline water. Paper presented at the 20th European biomass conference and exhibitionGoogle Scholar
  58. Healey FP (1970) Hydrogen evolution by several algae. Planta 91(3):220. doi:10.1007/bf00385481 Google Scholar
  59. Heaven S, Milledge J, Zhang Y (2011) Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29(1):164–167. doi:10.1016/j.biotechadv.2010.10.005 Google Scholar
  60. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34(6):875–882. doi:10.1016/j.biombioe.2010.01.032 Google Scholar
  61. Hidalgo P, Toro C, Ciudad G, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol:1–21. doi:10.1007/s11157-013-9308-0
  62. Hierholtzer A, Akunna JC (2012) Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol 66(7):1565–1573. doi:10.2166/wst.2012.345 Google Scholar
  63. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1–4):399–404. doi:10.1016/s0920-5861(98)00275-2 Google Scholar
  64. Howe C (2012) Direct electricity generation from microalgae using biophotovoltaics. Paper presented at the Algal biotechnology; biofuels and beyond, UCL, LondonGoogle Scholar
  65. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635Google Scholar
  66. Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25(11):5472–5482. doi:10.1021/ef201373m Google Scholar
  67. Jonker JGG, Faaij APC (2013) Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energy 102(0):461–475. doi:10.1016/j.apenergy.2012.07.053
  68. Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10):905–922. doi:10.1016/s0360-5442(02)00025-7 Google Scholar
  69. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. ChemInform 44(22):3358–3393. doi:10.1002/chin.200536238 Google Scholar
  70. Knothe G, Van Gerpen J, Krahl J (eds) (2005) The biodiesel handbook. AOCS, Champaign, ILGoogle Scholar
  71. Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21(3):238–243. doi:10.1016/j.copbio.2010.03.012 Google Scholar
  72. Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970. doi:10.1039/b506923h Google Scholar
  73. Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232. doi:10.3390/en5104209 Google Scholar
  74. Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j Google Scholar
  75. Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102(1):43–49. doi:10.1016/j.biortech.2010.06.034 Google Scholar
  76. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682. doi:10.1016/j.watres.2006.08.027 Google Scholar
  77. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185. doi:10.1016/s0360-3199(03)00094-6 Google Scholar
  78. Liu X, Clarens AF, Colosi LM (2011) Meta-model of algae bio energy life cycles (MABEL). Paper presented at the LCA XI conference, Chicago, 06/10/2011Google Scholar
  79. Liu J, Mukherjee J, Hawkes JJ, Wilkinson SJ (2013) Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis. J Chem Technol Biotechnol:n/a-n/a. doi:10.1002/jctb.4027
  80. Ljunggren M (2011) Biological production of hydrogen and methane. Process evaluation and design through modeling. Lund UniversityGoogle Scholar
  81. Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102(23):11018–11026. doi:10.1016/j.biortech.2011.09.055 Google Scholar
  82. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020 Google Scholar
  83. Mayhew YR, Rogers GFC (1972) Thermodynamic and transport properties of fluids. Blackwell, OxfordGoogle Scholar
  84. McGhee JE, Stjulian G, Detroy RW (1982) Continuous and static fermentation of glucose to ethanol by immobilized Saccharomyces cerevisiae cells of different ages. Appl Environ Microbiol 44(1):19–22Google Scholar
  85. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54. doi:10.1016/s0960-8524(01)00119-5 Google Scholar
  86. McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21(3):244–251. doi:10.1016/j.copbio.2010.02.012 Google Scholar
  87. Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93. doi:10.1016/j.biotec.2004.01.013 Google Scholar
  88. Miao XL, Wu QY, Yang CY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71(2):855–863. doi:10.1016/j.jaap.2003.11.004 Google Scholar
  89. Miles TR, Miles TR Jr, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1996) Boiler deposits from firing biomass fuels. Biomass Bioenergy 10(2):125–138Google Scholar
  90. Milledge JJ (2010a) The challenge of algal fuel: economic processing of the entire algal biomass. Condens Matter Mater Eng Newsl 1(6):4–6Google Scholar
  91. Milledge JJ (2010b) The potential yield of microalgal oil. Biofuels Int 4(2):44–45Google Scholar
  92. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41. doi:10.1007/s11157-010-9214-7 Google Scholar
  93. Milledge JJ (2012) Microalgae—commercial potential for fuel, food and feed. Food Sci Technol 26(1):26–28Google Scholar
  94. Milledge JJ (2013a) Energy balance and techno-economic assessment of algal biofuel production systems. PhD, University of SouthamptonGoogle Scholar
  95. Milledge JJ (2013b) Micro-algal biorefineries. Paper presented at the towards establishing value chains for bioenergy, Swakopmund, Namibia, 29, 30 AprilGoogle Scholar
  96. Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res 1(1):17–24. doi:10.5539/enrr.v1n1p17 Google Scholar
  97. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12(2):165–178. doi:10.1007/s11157-012-9301-z Google Scholar
  98. Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78(10):1213–1215. doi:10.1016/s0016-2361(99)00047-2 Google Scholar
  99. Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738. doi:10.1016/0016-2361(95)80001-x Google Scholar
  100. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348. doi:10.1016/j.biortech.2011.10.059 Google Scholar
  101. Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4(2):103–116. doi:10.1016/0961-9534(93)90032-y Google Scholar
  102. Moheimani NR (2005) The culture of coccolithophorid algae for carbon dioxide bioremediation. Murdoch UniversityGoogle Scholar
  103. Moheimani N, Borowitzka M (2006) The long-term culture of the coccolithophore and Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18(6):703–712. doi:10.1007/s10811-006-9075-1 Google Scholar
  104. Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. AMBIO 37(2):74–79. doi:10.1579/0044-7447(2008)37[74:eroita]2.0.co;2 Google Scholar
  105. Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland—An approach to 2020 targets with a focus on algal biomass. Energies 6(12):6391–6412Google Scholar
  106. Office of Gas and Electricity Markets (2009) Biodiesel, glycerol and the renewables obligation. Decision DocumentGoogle Scholar
  107. Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv 30(5):1031–1046. doi:10.1016/j.biotechadv.2012.05.001 Google Scholar
  108. Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  109. Ozkurt I (2009) Qualifying of safflower and algae for energy. Energy Educ Sci Technol Part A 23(1–2):145–151Google Scholar
  110. Park S, Li YB (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48. doi:10.1016/j.biortech.2012.01.160 Google Scholar
  111. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102 (1, Sp. Iss. SI):35–42. doi:10.1016/j.biortech.2010.06.158
  112. Peacocke C, Joseph S (ND) Notes on terminology and technology in thermal conversion. International Biochar Initiative. http://www.biochar-international.org/publications/IBI#Pyrolysis_guidelines. Accessed 15/04 2014
  113. Peng WM, Wu QY, Tu PG (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12(2):147–152. doi:10.1023/a:1008115025002 Google Scholar
  114. Perry RH, Chilton CH (1973) Chemical engineers’ handbook, 5th edn. McGraw Hill, TokyoGoogle Scholar
  115. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energ Rev 16(5):3043–3053. doi:10.1016/j.rser.2012.02.055 Google Scholar
  116. Powell EE, Evitts RW, Hill GA, Bolster JC (2011) A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sources Part A Recovery Util Environ Eff 33(5):440–448. doi:10.1080/15567030903096931 Google Scholar
  117. Ramakrishnan B, Kumaraswamy S, Mallick K, Adhya TK, Rao VR, Sethunathan N (1998) Effect of various anionic species on net methane production in flooded rice soils. World J Microbiol Biotechnol 14(5):743–749. doi:10.1023/A:1008814925481 Google Scholar
  118. Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han JI (2013) Current status, barriers and developments in biohydrogen production by microalgae. Renew Sustain Energy Rev 22:571–579. doi:10.1016/j.rser.2013.01.051 Google Scholar
  119. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103(0):444–467. doi:10.1016/j.apenergy.2012.10.004
  120. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88(10):3507–3514. doi:10.1016/j.apenergy.2010.12.052 Google Scholar
  121. Roberts K (1974) Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos Trans R Soc Lond B Biol Sci 268(891):129–146Google Scholar
  122. Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264. doi:10.1016/j.copbio.2010.03.010 Google Scholar
  123. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15(5):2262–2289. doi:10.1016/j.rser.2011.02.015 Google Scholar
  124. Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5(10):677–682. doi:10.1007/bf01386361 Google Scholar
  125. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17(1):33–39. doi:10.1016/s0961-9534(99)00019-7 Google Scholar
  126. Schlarb-Ridley B (2011) Algal research in the UK. A report for BBSRC. BBSRCGoogle Scholar
  127. Service RF (2011) Algae’s second try. Science 333:1238–1239Google Scholar
  128. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory NREL, GoldenGoogle Scholar
  129. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001 Google Scholar
  130. Sills DL, Paramita V, Franke MJ, Johnson MC, Akabas TM, Greene CH, Tester JW (2012) Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol 47(2):687–694. doi:10.1021/es3029236 Google Scholar
  131. Singh U, Ahluwalia A (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strat Glob Change 18(1):73–95. doi:10.1007/s11027-012-9393-3 Google Scholar
  132. Singh J, Gu S (2010) Biomass conversion to energy in India—a critique. Renew Sustain Energy Rev 14(5):1367–1378. doi:10.1016/j.rser.2010.01.013 Google Scholar
  133. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. doi:10.1016/j.apenergy.2010.12.012 Google Scholar
  134. Sippula O (2010) Fine particle formation and emissions in biomass combustion. University of Eastern Finland, JoensuuGoogle Scholar
  135. Sorensen B (2012) Hydrogen and fuel cells emerging technologies and applications, 2nd edn. Elsevier, OxfordGoogle Scholar
  136. Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604. doi:10.1016/j.biortech.2011.03.087 Google Scholar
  137. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24(7):4062–4077. doi:10.1021/ef1003123 Google Scholar
  138. Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535–541. doi:10.1039/b819874h Google Scholar
  139. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342. doi:10.1016/j.rser.2012.03.047 Google Scholar
  140. Subhadra B, Grinson G (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91(1):2–13. doi:10.1002/jsfa.4207 Google Scholar
  141. Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates 1, 2. J Am Chem Soc 55(5):2028–2036. doi:10.1021/ja01332a039 Google Scholar
  142. Tarchevsky IA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, BerlinGoogle Scholar
  143. Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36(12):4406–4409. doi:10.1016/j.enpol.2008.09.069 Google Scholar
  144. ter Veld F (2012) Beyond the fossil fuel era: on the feasibility of sustainable electricity generation using biogas from microalgae. Energy Fuels 26(6):3882–3890. doi:10.1021/ef3004569 Google Scholar
  145. Thorne R, Hu HN, Schneider K, Bombelli P, Fisher A, Peter LM, Dent A, Cameron PJ (2011) Porous ceramic anode materials for photo-microbial fuel cells. J Mater Chem 21(44):18055–18060. doi:10.1039/c1jm13058g Google Scholar
  146. Tokusoglu O, Unal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148. doi:10.1111/j.1365-2621.2003.tb09615.x Google Scholar
  147. Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuels 26(1):658–671. doi:10.1021/ef201417e Google Scholar
  148. Twidell J, Weir T (2006) Renewable energy sources, 2nd edn. Taylor & Francis, LondonGoogle Scholar
  149. Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47(9):789–807. doi:10.1134/s0003683811090079 Google Scholar
  150. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076. doi:10.1002/bit.22346 Google Scholar
  151. Velasquez-Orta SB, Lee JGM, Harvey A (2012) Alkaline in situ transesterification of Chlorella vulgaris. Fuel 94:544–550. doi:10.1016/j.fuel.2011.11.045 Google Scholar
  152. Wageningen University (2011) Research on microalgae within Wageningen UR http://www.algae.wur.nl/UK/technologies/biorefinery. Accessed 25/01 2013
  153. Walker DA (2010) Biofuels—for better or worse? Ann Appl Biol 156(3):319–327. doi:10.1111/j.1744-7348.2010.00404.x Google Scholar
  154. Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res. doi:10.1016/j.algal.2014.02.001
  155. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. doi:10.1007/s00253-009-2246-7 Google Scholar
  156. Yang YF, Feng CP, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recycl 43(1):21–33. doi:10.1016/j.resconrec.2004.03.003 Google Scholar
  157. Yang C, Jia LS, Chen CP, Liu GF, Fang WP (2011a) Bio-oil from hydro-liquefaction of Dunaliella sauna over Ni/REHY catalyst. Bioresour Technol 102(6):4580–4584. doi:10.1016/j.biortech.2010.12.111 Google Scholar
  158. Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011b) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017 Google Scholar
  159. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. doi:10.1016/j.biortech.2010.09.017 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Science & EngineeringUniversity of GreenwichChatham MaritimeUK
  2. 2.Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations