Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators

  • EvelynEmail author
  • Yan Li
  • Aaron Marshall
  • Peter A. Gostomski


Microbial fuel cell (MFC) is an emerging technology for sustainable energy generation and waste treatment. This paper reviews the potential of a gaseous substrate when it is combined with a mediator in an MFC to generate electricity and to treat toxic gaseous pollutants. Most MFCs for waste water treatment often cannot use mediator to enhance the electron transfer from the microbe to the anode because of the difficulty in recovering the expensive and potentially toxic compound. Combining gas feeds with mediators is possible since the soluble mediator would remain in the anode chamber as the gas passes through the reactor. In addition, this type of MFC is possible to be integrated into an anaerobic biofiltration system (BF-MFC), where the biofilter removes the gaseous contaminant and produces the reduced mediator and the MFC produces the electricity and recycles the reoxidised mediator. This paper also talks about the past research on gaseous feed MFCs, and reviews the mechanism and strategies of electron transfer in MFC using redox mediator. The advantages, process parameters and challenges of BF-MFC are discussed. This knowledge is very much required in the design and scale up of BF-MFC. This paper will be useful for those who work in the area of gaseous pollutant treatment and electricity generation.


Gaseous substrate Mediator Microbial fuel cell Biofilter 

List of symbols


Vibration frequency of motion of the nuclei (1013/s)


Distance decay constant (Å−1)


Interatomic distance between donor and acceptor (Å)


Close contact distance (a value of 3 Å)


Marcus reorganisation energy (eV)


Standard free energy change for the reaction (eV)


Gas constant


Absolute temperature (K)


Substrate/gaseous pollutant


Oxidised mediator


Reduced mediator



The authors would like to express their gratitude to the Directorate General of Higher Education Ministry of Education and Culture of Indonesia for a scholarship.


  1. Alzate-Gaviria L (2011) Microbial fuel cells for wastewater treatment, waste water-treatment and reutilization. IntechOpen. Accessed 2 June 2013
  2. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129CrossRefGoogle Scholar
  3. ASM (2013) Bacteria use hydrogen, carbon dioxide to produce electricity. Sci Dly. Accessed 1 June 2013
  4. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  5. Barriere F (2010) Enzyme and microbes for energy production by fuel cells. In: Crabtree RH (ed) Inorganic chemical strategies for a warming world, 2nd edn. Wiley, New York, pp 73–87Google Scholar
  6. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187. doi: 10.1126/science.1169984 CrossRefGoogle Scholar
  7. Bidoia E, Montagnolli R, Lopes P (2010) Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. Appl Microbiol Microb Biotechnol 7:1277–1288Google Scholar
  8. Boetius A, Ravenschlag K, Schubert CJ, Rickert D (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626. doi: 10.1038/35036572 CrossRefGoogle Scholar
  9. Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI (2012) On electron transport through Geobacter biofilms. ChemSusChem 5(6):1099–1105CrossRefGoogle Scholar
  10. Bruce EL, Rabaey K (2012) Review: conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, vol 337. Accessed 2 June 2013
  11. Cai XB, Yang Y, Sun YP, Zhang L, Xiao Y, Zhao H (2010) Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology. Huan Jing Ke Xue 31(10):2512–2517Google Scholar
  12. Chen G-W, Choi S-J, Lee T-H, Lee G-Y, Cha J-H, Kim C-W (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79(3):379–388. doi: 10.1007/s00253-008-1451-0 CrossRefGoogle Scholar
  13. Cheng KY, Ho G, Cord-Ruwisch R (2012) Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). Bioresour Technol 126:431–436CrossRefGoogle Scholar
  14. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360CrossRefGoogle Scholar
  15. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913CrossRefGoogle Scholar
  16. De Clippeleir H, Courtens E, Mosquera M, Vlaeminck SE, Smets BF, Boon N, Verstraete W (2012) Efficient total nitrogen removal in an ammonia gas biofilter through high-rate OLAND. Environ Sci Technol 46(16):8826–8833. doi: 10.1021/es301717b CrossRefGoogle Scholar
  17. Detchanamurthy S, Gostomski PA (2012) Biofiltration for treating VOCs: an overview. Rev Environ Sci Biotechnol 11(3):231–241CrossRefGoogle Scholar
  18. Devinny JS, Ramesh J (2005) A phenomenological review of biofilter models. Chem Eng J 113(2):187–196CrossRefGoogle Scholar
  19. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. CRC Press LLC, FloridaGoogle Scholar
  20. Dos Santos AB, Bisschops IAE, Cervantes FJ, van Lier JB (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 °C) and thermophilic (55 °C) treatments for decolourisation of textile wastewaters. Chemosphere 55(9):1149–1157. doi: 10.1016/j.chemosphere.2004.01.031 CrossRefGoogle Scholar
  21. Emde R, Swain A, Schink B (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32(2):170–175. doi: 10.1007/bf00165883 CrossRefGoogle Scholar
  22. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas-Schoonen KT, Op Den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548. doi: 10.1038/nature08883 CrossRefGoogle Scholar
  23. Evelyn E, Li Y, Marshall A, Gostomski P (2012) Ethanol oxidation in microbial fuel cell (MFC) utilising various mediators and potential integration of an MFC into an anaerobic biofiltration system. In: Chemeca 2012: quality of life through chemical engineering New Zealand: 23–26 September 2012, Wellington, New Zealand, vol 2012. Barton A. C. T., Engineers Australia, pp 1204–1213.;dn=865248895085124;res=IELENG. EISBN: 9781922107596
  24. Fan Y, Hu H, Liu H (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354. doi: 10.1016/j.jpowsour.2007.06.220 CrossRefGoogle Scholar
  25. Fornero JJ, Rosenbaum M, Angenent LT (2010) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22(7–8):832–843CrossRefGoogle Scholar
  26. Franks AE, Malvankar N, Nevin KP (2010) Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels 1(4):589–604CrossRefGoogle Scholar
  27. Girard M, Ramirez AA, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry—influence of the methane and nitrogen concentrations. Chem Eng J 168(1):151–158CrossRefGoogle Scholar
  28. Girguis PR, Reimer CE (2009) Methane powered microbial fuel cell. US Patent 27 May 2009Google Scholar
  29. Giri B, Mudliar S, Deshmukh S, Banerjee S, Pandey R (2010) Treatment of waste gas containing low concentration of dimethyl sulphide (DMS) in a bench-scale biofilter. Bioresour Technol 101(7):2185–2190CrossRefGoogle Scholar
  30. Gomes AS, La Rotta CE, Nitschke M, González ER (2011) Evaluation of current output in Pseudomonas aeruginosa microbial fuel cells using glycerol as susbtrate and Nafion 117 as proton exchange membrane. ECS Trans 41(1):2011–2017CrossRefGoogle Scholar
  31. González-Sánchez A, Revah S, Deshusses MA (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42(19):7398–7404CrossRefGoogle Scholar
  32. Gostomski P, Cudmore R (2005) Biofilter design and operation for odor control—the New Zealand experience. In: Shareefdeen Z, Singh A (eds) Biotechnology for odor and air pollution control. Springer, Berlin, pp 235–254Google Scholar
  33. Hayes E, Curran T, Dodd V (2006) A dispersion modelling approach to determine the odour impact of intensive poultry production units in Ireland. Bioresour Technol 97(15):1773–1779CrossRefGoogle Scholar
  34. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18(19–20):2009–2015. doi: 10.1002/elan.200603628 CrossRefGoogle Scholar
  35. Huang L, Wang Q, Quan X, Liu Y, Chen G (2013) Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Bioelectrochemistry 94:13–22. doi: 10.1016/j.bioelechem.2013.05.001 CrossRefGoogle Scholar
  36. Jun C, Yifeng J, Haolei S, Jianmeng C (2008) Effect of key parameters on nitric oxide removal by an anaerobic rotating drum biofilter. Environ Technol 29(11):1241–1247CrossRefGoogle Scholar
  37. Katz E, Shipway AN, Willner I (2003) Biochemical fuel cell. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 1. Wiley, UK, pp 355–381Google Scholar
  38. Kavanagh P, Leech D (2013) Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys Chem Chem Phys 15(14):4859–4869. doi: 10.1039/c3cp44617d CrossRefGoogle Scholar
  39. Kazemi S, Fatih K, Alzate V, Mohseni M, Wang H (2010) Energy recovery from ethanol in wastewater in a microbial fuel cell. In: 218th ECS meeting, Las VegasGoogle Scholar
  40. Kim JR, Cheng S, Oh S-E, Logan BE (2007a) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41(3):1004–1009. doi: 10.1021/es062202m CrossRefGoogle Scholar
  41. Kim JR, Jung SH, Regan JM, Logan BE (2007b) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98(13):2568–2577CrossRefGoogle Scholar
  42. Latos M, Karageorgos P, Mpasiakos C, Kalogerakis N, Lazaridis M (2010) Dispersion modelling of odours emitted from pig farms: winter spring measurements. Glob Nest J 12:46–53Google Scholar
  43. Lee BD, Apel WA, Miller AR (1999) Removal of low concentrations of carbon tetrachloride in compost-based biofilters operated under methanogenic conditions. J Air Waste Manag Assoc 49(9):1068–1074CrossRefGoogle Scholar
  44. Legrand P, Malhautier L, Geiger P, Fanol JL (2011) Biofiltration of reduced sulphur compounds: impact of packing material inoculation with acclimatized microbial communities on performance. J Residuals Sci Technol 8:45–51Google Scholar
  45. Leson G, Winer AM (1991) Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manag Assoc 41(8):1045–1054CrossRefGoogle Scholar
  46. Lewis K (1966) Symposium on bioelectrochemistry of microorganisms IV: biochemical fuel cell. Bacteriol Rev 30(1):101–113Google Scholar
  47. Li Z, Zhang X, Zeng Y, Lei L (2009) Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresour Technol 100(9):2551–2555CrossRefGoogle Scholar
  48. Li B, Scheible K, Curtis M (2011) Electricity generation from anaerobic wastewater treatment in microbial fuel cells. Accessed 24 Nov 2012
  49. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046CrossRefGoogle Scholar
  50. Liu Z, Liu J, Zhang S, Su Z (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem Eng J 45:185–191CrossRefGoogle Scholar
  51. Logan BE (2008) Microbial fuel cells. Wiley, New JerseyGoogle Scholar
  52. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefGoogle Scholar
  53. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322CrossRefGoogle Scholar
  54. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968–3973. doi: 10.1073/pnas.0710525105 CrossRefGoogle Scholar
  55. Mehta P, Hussain A, Tartakovsky B, Neburchilov V, Raghavan V, Wang H, Guiot SR (2010) Electricity generation from carbon monoxide in a single chamber microbial fuel cell. Enzyme Microbiol Technol 46(6):450–455CrossRefGoogle Scholar
  56. Monica C (2002) Rational design of mediators for optimising electron transfer between enzymes and electrode in functional oligonucleotide recognition nanomodules for electrochemical DNA biosensors. PhD thesis, University of Rovira i Virgili, SpainGoogle Scholar
  57. Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manag 91(5):1039–1054CrossRefGoogle Scholar
  58. Nanda S, Sarangi PK, Abraham J (2012) Microbial biofiltration technology for odour abatement: an introductory review. J Soil Sci Environ Manag 3(2):28–35Google Scholar
  59. Nevin KP, Zhang P, Franks AE, Woodard TL, Lovley DR (2011) Anaerobes unleashed: aerobic fuel cells of Geobacter sulfurreducens. J Power Sources 196(18):7514–7518. doi: 10.1016/j.jpowsour.2011.05.021 CrossRefGoogle Scholar
  60. Nicell JA (2009) Assessment and regulation of odour impacts. Atmos Environ 43(1):196–206CrossRefGoogle Scholar
  61. Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. In: Hastings JW (ed) National Academy of Sciences, United States of America, vol 19, pp 7856–7861. doi: 10.1073/pnas.1220823110
  62. Omri I, Bouallagui H, Aouidi F, Godon J-J, Hamdi M (2011) H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour Technol 102(22):10202–10209. doi: 10.1016/j.biortech.2011.05.094 CrossRefGoogle Scholar
  63. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRefGoogle Scholar
  64. Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K (2011a) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energ Rev 15(2):1305–1313Google Scholar
  65. Pant D, Van Bogaert G, Porto-Carrero C, Diels L, Vanbroekhoven K (2011b) Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Sci Technol 63(10):2457–2461CrossRefGoogle Scholar
  66. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297CrossRefGoogle Scholar
  67. Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77(5):1119–1129CrossRefGoogle Scholar
  68. Popat SC, Deshusses MA (2009) Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter. Environ Sci Technol 43(20):7856–7861CrossRefGoogle Scholar
  69. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298CrossRefGoogle Scholar
  70. Raghoebarsing AA, Pol A, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921. doi: 10.1038/nature04617 CrossRefGoogle Scholar
  71. Rahimnejad M, Najafpour G, Ghoreyshi AA (2011) Effect of mass transfer on performance of microbial fuel cell. In: Markoš J (ed) Mass transfer in chemical engineering processes, vol 5. Intech, pp 233–250. doi: 10.5772/19675
  72. Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K (2012) Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environ Sci Technol 46(16):8542–8573. doi: 10.1021/es203906c CrossRefGoogle Scholar
  73. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101CrossRefGoogle Scholar
  74. Roche I, Katuri K, Scott K (2010) A microbial fuel cell using manganese oxide oxygen reduction catalysts. J Appl Electrochem 40(1):13–21. doi: 10.1007/s10800-009-9957-4 CrossRefGoogle Scholar
  75. Sabatier P (2010) Study of microbial catalysis of the electrochemical reduction of dioxygen. PhD thesis, University of Toulouse, FrenchGoogle Scholar
  76. Sanchez DVP, Huynh P, Kozlov ME, Baughman RH, Vidic RD, Yun M (2010) Carbon nanotube/platinum (Pt) sheet as an improved cathode for microbial fuel cells. Energy Fuels 24(11):5897–5902. doi: 10.1021/ef100825h CrossRefGoogle Scholar
  77. Schaetzle O, Barrière F, Baronian K (2008) Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ Sci 1(6):607–620. doi: 10.1039/b810642h CrossRefGoogle Scholar
  78. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465(7298):606–608CrossRefGoogle Scholar
  79. Scott K, Murano C (2007) Microbial fuel cells utilising carbohydrate. J Chem Technol Biotechnol 82:92–100CrossRefGoogle Scholar
  80. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan T, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206CrossRefGoogle Scholar
  81. Shareefdeen Z, Singh A (2005) Biotechnology for odor and air pollution control. Springer, BerlinCrossRefGoogle Scholar
  82. Soreanu G, Falletta P, Béland M, Edmonson K, Seto P (2008) Study on the performance of an anoxic biotrickling filter for the removal of hydrogen sulphide from biogas. Water Qual Res J Can 43(2/3):211–218Google Scholar
  83. Sugiura K, Hayami H, Yamauchi M, Nishioka M (2011) Improvement of microbial fuel cells using a mechanical approach. ECS Trans 42(1):67–74Google Scholar
  84. Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour Technol. doi: 10.1016/j.biortech.2013.05.039
  85. Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568. doi: 10.1007/s00253-007-1038-1 CrossRefGoogle Scholar
  86. Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27(3):256–277. doi: 10.1016/j.biotechadv.2009.01.004 CrossRefGoogle Scholar
  87. Van Hees W (1965) A bacterial methane fuel cell. J Electrochem Soc 2:14–19Google Scholar
  88. Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44(16):6036–6041. doi: 10.1021/es101013e CrossRefGoogle Scholar
  89. Watson VJ, Saito T, Hickner MA, Logan BE (2011) Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. J Power Sources 196(6):3009–3014CrossRefGoogle Scholar
  90. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344CrossRefGoogle Scholar
  91. Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11(1):291–296. doi: 10.1021/nl103905t CrossRefGoogle Scholar
  92. Xing D, Zuo Y, Cheng S, Regan J, Logan BE (2008) High power generation by a photosynthetic bacterium in single chamber air-cathode MFCs. Paper presented at the 1st international MFC symposium, Penn State US, May 27–29Google Scholar
  93. Yang Y, Allen ER (1994) Biofiltration control of hydrogen sulfide 1. Design and operational parameters. Air Waste 44(7):863–868CrossRefGoogle Scholar
  94. Yang C, Chen H, Zeng G, Yu G, Luo S (2010) Biomass accumulation and control strategies in gas biofiltration. Biotechnol Adv 28(4):531–540CrossRefGoogle Scholar
  95. Yang Y, Sun G, Xu M (2011) Microbial fuel cells come of age. J Chem Technol Biotechnol 86(5):625–632. doi: 10.1002/jctb.2570 CrossRefGoogle Scholar
  96. Zhang Y, Angelidaki I (2012a) Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies. PhD thesis, Technical University of Denmark Danmarks Tekniske Universitet, DenmarkGoogle Scholar
  97. Zhang Y, Angelidaki I (2012b) Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosens Bioelectron 35(1):265–270CrossRefGoogle Scholar
  98. Zhang F, He Z (2013) A cooperative microbial fuel cell system for waste treatment and energy recovery. Environ Technol 1–9. doi: 10.1080/09593330.2013.770540
  99. Zhang F, Saito T, Cheng S, Hickner MA, Logan BE (2010) Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environ Sci Technol 44(4):1490–1495. doi: 10.1021/es903009d CrossRefGoogle Scholar
  100. Zhang F, Pant D, Logan BE (2011a) Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens Bioelectron 30(1):49–55Google Scholar
  101. Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011b) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresour Technol 102(1):372–375CrossRefGoogle Scholar
  102. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7(12):1405–1410CrossRefGoogle Scholar
  103. Zhou M, Wang H, Hassett DJ, Gu T (2012) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol BiotechnolGoogle Scholar
  104. Zilli M, Del Borghi A, Converti A (2000) Toluene vapour removal in a laboratory-scale biofilter. Appl Microbiol Biotechnol 54(2):248–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Evelyn
    • 1
    • 2
    Email author
  • Yan Li
    • 2
  • Aaron Marshall
    • 2
  • Peter A. Gostomski
    • 2
  1. 1.Department of Chemical EngineeringUniversity of RiauPekanbaruIndonesia
  2. 2.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations