Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications

Review Paper

Abstract

Green synthesis of metallic nanoparticles has become a promising field of research in recent years. Syntheses of gold and silver nanoparticles by various chemical and physical methods as well as the biosynthetic approach mediated by numerous microorganisms have been actively researched. A more scalable and economic route to produce these metallic nanoparticles would be through the plant-mediated synthetic approach. Owing to the biodiversity of plant biomasses, the mechanism by which bioconstituents of plants have contributed to the synthetic process is yet to be fully understood. Nevertheless, the feasibility of controlling the shape and size of nanoparticles by varying the reaction conditions has been demonstrated in many studies. This paper provides an overview of the plant-mediated syntheses of gold and silver nanoparticles, possible compounds and mechanisms that might be responsible for the bioreduction process as well as the potential applications of biosynthesized nanoparticles in different fields. The challenges and limitations of this plant-mediated biosynthetic approach are also discussed.

Keywords

Biosynthesis Plant-mediated Nanoparticles Gold Silver 

Notes

Acknowledgments

We acknowledge financial support from the National University of Singapore, National Research Foundation and Economic Development Board (SPORE, COY-15-EWI-RCFSA/N197-1), and Ministry of Education (R-143-000-441-112).

References

  1. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104(2–3):276–283Google Scholar
  2. Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A Chem 212(1–2):141–149Google Scholar
  3. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B 81(1):81–86Google Scholar
  4. Alvarez-Puebla RA, Dos Santos DS Jr, Aroca RF (2007) SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. Analyst 132(12):1210–1214Google Scholar
  5. Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35(3):82–88Google Scholar
  6. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382Google Scholar
  7. Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1–3):65–72Google Scholar
  8. Bali R, Harris AT (2010) Biogenic synthesis of Au nanoparticles using vascular plants. Ind Eng Chem Res 49(24):12762–12772. doi:10.1021/ie101600m Google Scholar
  9. Bangs LB (1996) New developments in particle-based immunoassays: introduction. Pure Appl Chem 68(10):1873–1879Google Scholar
  10. Bankar A, Joshi B, Ravi Kumar A, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B 80(1):45–50Google Scholar
  11. Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005) Bioleaching of sand by the fungus fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17(7):889–892Google Scholar
  12. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A 339(1–3):134–139Google Scholar
  13. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910Google Scholar
  14. Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273(1):72–80Google Scholar
  15. Becker RO (1999) Silver ions in the treatment of local infections. Met-Based Drugs 6(4–5):311–314Google Scholar
  16. Bhattarai SR, Bahadur KCR, Aryal S, Bhattarai N, Kim SY, Yi HK, Hwang PH, Kim HY (2008) Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. J Nanopart Res 10(1):151–162Google Scholar
  17. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426Google Scholar
  18. Burns C, Spendel WU, Puckett S, Pacey GE (2006) Solution ionic strength effect on gold nanoparticle solution color transition. Talanta 69(4):873–876Google Scholar
  19. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697Google Scholar
  20. Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2010) Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem Eng J 164(1):92–97Google Scholar
  21. Chang ALS, Khosravi V, Egbert B (2006) A case of argyria after colloidal silver ingestion. J Cutan Pathol 33(12):809–811Google Scholar
  22. Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4(11):6387–6394Google Scholar
  23. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607Google Scholar
  24. Christensen CH, Nørskov JK (2010) Green gold catalysis. Science 327(5963):278–279Google Scholar
  25. Chuang YC, Li JC, Chen SH, Liu TY, Kuo CH, Huang WT, Lin CS (2010) An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials 31(23):6087–6095Google Scholar
  26. Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291(1–2):222–229Google Scholar
  27. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327Google Scholar
  28. Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B 81(1):67–73Google Scholar
  29. Das RK, Gogoi N, Bora U (2011a) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619Google Scholar
  30. Das RK, Sharma P, Nahar P, Bora U (2011b) Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater Lett 65(4):610–613Google Scholar
  31. Davies RL, Etris SF (1997) The development and functions of silver in water purification and disease control. Catal Today 36(1):107–114Google Scholar
  32. Dhar S, Maheswara Reddy E, Shiras A, Pokharkar V, Prasad BLV (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(33):10244–10250Google Scholar
  33. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170Google Scholar
  34. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B 80(1):26–33Google Scholar
  35. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369(1–3):27–33Google Scholar
  36. Dwivedi AD, Gopal K (2011) Plant-mediated biosynthesis of silver and gold nanoparticles. J Biomed Nanotechnol 7(1):163–164Google Scholar
  37. Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A 168(1):87–96Google Scholar
  38. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6Google Scholar
  39. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926Google Scholar
  40. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72(15):3573–3580Google Scholar
  41. Gamez G, Gardea-Torresdey JL, Tiemann KJ, Parsons J, Dokken K, Yacaman MJ (2003) Recovery of gold (III) from multi-elemental solutions by alfalfa biomass. Adv Environ Res 7(2):563–571Google Scholar
  42. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, José-Yacamán M (1999) Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J Nanopart Res 1(3):397–404Google Scholar
  43. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002a) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401Google Scholar
  44. Gardea-Torresdey JL, Tiemann KJ, Parsons JG, Gamez G, Herrera I, Jose-Yacaman M (2002b) XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass. Microchem J 71(2–3):193–204Google Scholar
  45. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361Google Scholar
  46. Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B 75(2):584–589Google Scholar
  47. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661Google Scholar
  48. Girling CA, Peterson PJ (1978) Uptake, transport and localization of gold in plants. Trace Subst Environ Health 12:105–111Google Scholar
  49. Girling CA, Peterson PJ (1980) Gold in plants. Gold Bull 13(4):151–157Google Scholar
  50. Girling CA, Peterson PJ, Warren HV (1979) Plants as indicators of gold mineralization at Watson bar, British Columbia, Canada. Economic Geol Lancaster Pa 74(4):902–907Google Scholar
  51. Goodman CM, Chari NS, Han G, Hong R, Ghosh P, Rotello VM (2006) DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements. Chem Biol Drug Des 67(4):297–304Google Scholar
  52. Goodwin TW, Mercer EI (1985) Introduction to plant biochemistry, 2nd edn. Pergamon Press, New York, pp 140–161Google Scholar
  53. Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Catalysis by gold nanoparticles. Gold Bull 35(2):39–45Google Scholar
  54. Gruen LC (1975) Interaction of amino acids with silver(I) ions. Biochim Biophys Acta 386(1):270–274Google Scholar
  55. Han MJ, Hao J, Xu Z, Meng X (2011) Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta 692(1–2):96–102Google Scholar
  56. Haratifar E, Shahverdi HR, Shakibaie M, Mollazadeh Moghaddam K, Amini M, Montazeri H, Shahverdi AR (2009) Semi-biosynthesis of magnetite-gold composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study of the surface chemistry. J Nanomater 2009(962021):5. doi:10.1155/2009/962021
  57. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463Google Scholar
  58. He L, Ni J, Sun H, Cao Y (2009) Gold nanocatalysis for green synthesis of fine chemicals: Opportunities and challenges. Cuihua Xuebao/Chinese J Catalysis 30(9):958–964Google Scholar
  59. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007a) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104Google Scholar
  60. Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007b) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753Google Scholar
  61. Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47(16):6081–6090Google Scholar
  62. Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437(7062):1132–1135Google Scholar
  63. Hung LH, Lee AP (2007) Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng 27(1):1–6Google Scholar
  64. Hutchings GJ, Haruta M (2005) A golden age of catalysis: a perspective. Appl Catal A 291(1–2):2–5Google Scholar
  65. Inbakandan D, Venkatesan R, Ajmal Khan S (2010) Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B Biointerfaces 81(2):634–639Google Scholar
  66. Jha AK, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B 73(2):219–223Google Scholar
  67. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346Google Scholar
  68. Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2(3):335–338Google Scholar
  69. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11(5):1075–1085Google Scholar
  70. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677Google Scholar
  71. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “Spectroscopically Silent” heavy metal ions. Nano Lett 1(4):165–167. doi:10.1021/nl0100116 Google Scholar
  72. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20Google Scholar
  73. Konwarh R, Gogoi B, Philip R, Laskar MA, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B 84(2):338–345Google Scholar
  74. Kotelnikova NE, Wegener G, Stoll M, Demidov VN (2003) Comparative study of intercalation of zero-valent silver into the cellulose matrix by raster and transmission microscopy. Russ J Appl Chem 76(1):117–123. doi:10.1023/a:1023312404620 Google Scholar
  75. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100Google Scholar
  76. Krasteva N, Besnard I, Guse B, Bauer RE, Müllen K, Yasuda A, Vossmeyer T (2002) Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett 2(5):551–555Google Scholar
  77. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56Google Scholar
  78. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157. doi:10.1002/jctb.2023 Google Scholar
  79. Kumar SA, Peter Y-A, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19(49):495101Google Scholar
  80. Kumar DVR, Kasture M, Prabhune AA, Ramana CV, Prasad BLV, Kulkarni AA (2010a) Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants. Green Chem 12(4):609–615Google Scholar
  81. Kumar V, Yadav SC, Yadav SK (2010b) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309Google Scholar
  82. Kundu S, Panigrahi S, Praharaj S, Basu S, Ghosh SK, Pal A, Pal T (2007) Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18(7):075712Google Scholar
  83. Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113(13):5150–5156Google Scholar
  84. Kwon C, Park B, Kim H, Jung S (2009) Green synthesis of silver nanoparticles by sinorhizobial octasaccharide isolated from Sinorhizobium meliloti. Bull Korean Chem Soc 30(7):1651–1654Google Scholar
  85. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 18:2058–2059Google Scholar
  86. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys 5(9):1917–1923Google Scholar
  87. Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99(18):7036–7041Google Scholar
  88. Leonard K, Ahmmad B, Okamura H, Kurawaki J (2011) In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf B 82(2):391–396Google Scholar
  89. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283Google Scholar
  90. Lin SY, Liu SW, Lin CM, Chen CH (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74(2):330–335Google Scholar
  91. Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta Part A Mol Biomol Spectrosc 61(4):761–765Google Scholar
  92. Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, He N, Wang Y (2010) Nature factory of silver nanowires: plant-mediated synthesis using broth of Cassia fistula leaf. Chem Eng J 162(2):852–858Google Scholar
  93. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353(2):433–444Google Scholar
  94. Luty-Blocho M, Pacławski K, Jaworski W, Streszewski B, Fitzner K (2010) Kinetic studies of gold nanoparticles formation in the batch and in the flow microreactor system. Prog Colloid Polym Sci 138:39–43. doi:10.1007/978-3-642-19038-4_7 Google Scholar
  95. Mafuné F, Kohno JY, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control. J Phys Chem B 106(31):7575–7577Google Scholar
  96. Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indian Acad Sci Chem Sci 114(5):513–520Google Scholar
  97. Meyre ME, Tréguer-Delapierre M, Faure C (2008) Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Langmuir 24(9):4421–4425Google Scholar
  98. Mohammed Fayaz A, Girilal M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf B 88(1):287–291Google Scholar
  99. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B 85(2):360–365Google Scholar
  100. Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra C, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4Google Scholar
  101. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859–862Google Scholar
  102. Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A 188(1–2):337–353Google Scholar
  103. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172Google Scholar
  104. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590Google Scholar
  105. Narayanan KB, Sakthivel N (2010a) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13Google Scholar
  106. Narayanan KB, Sakthivel N (2010b) Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61(11):1232–1238. doi:10.1016/j.matchar.2010.08.003 Google Scholar
  107. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir: null–null. doi:10.1021/la103190n
  108. Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 79(5):1461–1465Google Scholar
  109. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18(26):10407–10410Google Scholar
  110. Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y (2007) Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett 61(16):3429–3431Google Scholar
  111. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal Chem 77(10):3261–3266Google Scholar
  112. Paciotti GF, Myer L, Kingston DGI, Ganesh T, Tamarkin L (2005) Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies. In: Technical proceedings of the 2005 NSTI nanotechnology conference and trade show, pp 7–10Google Scholar
  113. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720Google Scholar
  114. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949Google Scholar
  115. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076Google Scholar
  116. Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105Google Scholar
  117. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414. doi:10.1007/s11051-004-6575-2 Google Scholar
  118. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111(12):4596–4605Google Scholar
  119. Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87(3–4):133–139Google Scholar
  120. Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Chapter 21 use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 5Google Scholar
  121. Pavlov V, Xiao Y, Willner I (2005) Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett 5(4):649–653Google Scholar
  122. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119Google Scholar
  123. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectroch Acta Part A Mol Biomol Spectrosc 73(2):374–381Google Scholar
  124. Philip D (2010a) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 42(5):1417–1424Google Scholar
  125. Philip D (2010b) Honey mediated green synthesis of silver nanoparticles. Spectroch Acta Part A Mol Biomol Spectrosc 75(3):1078–1081Google Scholar
  126. Philip D (2010c) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectroch Acta Part A Mol Biomol Spectrosc 77(4):807–810Google Scholar
  127. Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-Dimens Syst Nanostruct 43(7):1318–1322Google Scholar
  128. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13(13):3266–3276Google Scholar
  129. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74(1):309–316Google Scholar
  130. Pradeep T, Anshup A (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478Google Scholar
  131. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82(1):152–159Google Scholar
  132. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (psidium guajava) leaf extract. Nano Biotechnol 5(1–4):34–41Google Scholar
  133. Rajani P, SriSindhura K, Prasad TNVKV, Hussain OM, Sudhakar P, Latha P, Balakrishna M, Kambala V, Raja Reddy K (2010) Fabrication of biogenic silver nanoparticles using agricultural crop plant leaf extracts. In: AIP conference proceedings, pp 148–153Google Scholar
  134. Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5(3):247–253Google Scholar
  135. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. doi:10.1007/s00436-010-2115-4 Google Scholar
  136. Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  137. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73(2):332–338Google Scholar
  138. Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101(20):7958–7965Google Scholar
  139. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111Google Scholar
  140. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923Google Scholar
  141. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943Google Scholar
  142. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631Google Scholar
  143. Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502Google Scholar
  144. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488Google Scholar
  145. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726Google Scholar
  146. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Tarasankar P (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142Google Scholar
  147. Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus epicoccum nigrum. J Cluster Sci 22(4):661–665Google Scholar
  148. Shukla VK, Singh RP, Pandey AC (2010) Black pepper assisted biomimetic synthesis of silver nanoparticles. J Alloy Compd 507(1):L13–L16. doi:10.1016/j.jallcom.2010.07.156 Google Scholar
  149. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353Google Scholar
  150. Singh A, Shirolkar M, Lalla NP, Malek CK, Kulkarni SK (2009) Room temperature, water-based, microreactor synthesis of gold and silver nanoparticles. Int J Nanotechnol 6(5–6):541–551Google Scholar
  151. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12(5):1667–1675Google Scholar
  152. Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Catalysis by gold nanoparticles: epoxidation of propene. Top Catal 29(3–4):95–102Google Scholar
  153. Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones—an agricultural waste. Bioresour Technol 99(13):5374–5383Google Scholar
  154. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637Google Scholar
  155. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B 65(1):1–10Google Scholar
  156. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using magnolia kobus and diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138Google Scholar
  157. Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia 3 (3 SPEC. ISS.):351–358Google Scholar
  158. Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99(E-SUPPL. 1):ES60–ES77Google Scholar
  159. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908Google Scholar
  160. Sugano K, Uchida Y, Tsuchiya T, Tabata O (2010) Mixing speed-and temperature-controlled microreactor for gold nanoparticle synthesis. IEE J Trans Sensors Micromach 130(7):292–299Google Scholar
  161. Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215Google Scholar
  162. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152Google Scholar
  163. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551Google Scholar
  164. Tan S, Erol M, Sukhishvili S, Du H (2008) Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. Langmuir 24(9):4765–4771Google Scholar
  165. Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132(16):5677–5686Google Scholar
  166. Tanaka K (1999) Nanotechnology towards the 21st century. Thin Solid Films 341(1):120–125Google Scholar
  167. Thomas M, Ranson SL, Richardson JA (1973) Plant physiology, 5th edn. Longman Group Publishers, London, pp 422–448Google Scholar
  168. Thomson RH (1976) Quinone: nature, distribution and biosynthesis. Chemistry and biochemistry of plant pigments, pp 527–559Google Scholar
  169. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246Google Scholar
  170. Trop M (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 61(4):1024Google Scholar
  171. Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206(1–4):314–320Google Scholar
  172. Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Aspects 389(1–3):188–194Google Scholar
  173. Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C 31(8):1723–1728Google Scholar
  174. Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomater Biostruct 4(2):349–355Google Scholar
  175. Verma A, Simard JM, Worrall JWE, Rotello VM (2004) Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations. J Am Chem Soc 126(43):13987–13991Google Scholar
  176. Vijayaraghavan K, Nalini SPK (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5(10):1098–1110. doi:10.1002/biot.201000167 Google Scholar
  177. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33(8):979–985Google Scholar
  178. Wachs IE, Madix RJ (1978) The oxidation of methanol on a silver (110) catalyst. Surf Sci 76(2):531–558Google Scholar
  179. Wang JC, Neogi P, Forciniti D (2006) On one-dimensional self-assembly of surfactant-coated nanoparticles. J Chem Phys 125(19):194717Google Scholar
  180. Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B 73(1):75–79Google Scholar
  181. Wangoo N, Bhasin KK, Mehta SK, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254Google Scholar
  182. Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Enhanced optical sensing of anions with amide-functionalized gold nanoparticles. Chem Commun 23:2866–2867Google Scholar
  183. Xiong Y, Adhikari CR, Kawakita H, Ohto K, Inoue K, Harada H (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100(18):4083–4089Google Scholar
  184. Yang SY, Cheng FY, Yeh CS, Lee GB (2010) Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluid Nanofluid 8(3):303–311Google Scholar
  185. Yeh P, Perricaudet M (1997) Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 11(8):615–623Google Scholar
  186. Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4):1251–1255. doi:10.1021/es0720199 Google Scholar
  187. Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin L, Li Q, Du M (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5(8):1351–1359Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistryNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations