Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review

Reviews

Abstract

Anaerobic digestion of waste activated sludge (WAS) is most commonly used at wastewater treatment facilities to stabilize the sludge. However, poor biodegradation efficiency of sludge and longer retention times (20–30 days) are the major limitations of anaerobic digestion method, which can be overcome by disintegrate the sludge and make intracellular material readily available to anaerobic biodegradation. Several sludge disintegration techniques (Thermal, chemical and mechanical) and their combinations were studied previously in order to improve the anaerobic digestibility of sludge, reduce the sludge retention time and enhance the production of biogas. However, none of the pretreatment technique shows a real breakthrough in enhancement of anaerobic digestibility of WAS due to associated drawbacks, such as high operational and capital cost, poor sanitization and energy intensive. On the other hand, hybrid pretreatment techniques endow with promising outcomes through neutralizing the associated drawbacks with individual pretreatment techniques. Nevertheless, the research on the application of hybrid pretreatment techniques is in its infant stage, presently. Therefore, the satisfactory research in this direction can lead to policy maker and environmental protection agency to select more robust and sustainable solution for sludge treatment. This review encompasses the up-to-date information about the thermal, chemical and mechanical sludge disintegration techniques (principle, performance at lab, pilot and full scale, advantages and disadvantages). A comparative evaluation of these techniques are also presented in terms of COD solubilization, dewaterability, pathogens removal, lab/pilot/full scale application, capital and, operation and maintenance cost involved and energy requirement.

Keywords

Anaerobic digestion Physico-chemical pretreatment Sludge disintegration 

Abbreviations

COD

Chemical oxygen demand

CST

Capillary suction time

DOC

Dissolved organic carbon

DS

Dry solids

EPS

Extracellular polymeric substances

HPH

High pressure homogenizer

HRT

Hydraulic retention time

MW

Microwave

PAH

Polycyclic aromatic hydrocarbons

PCB

Polychlorinated biphenyl

RPM

Rotations per minute

SRF

Specific resistance to filtration

SRT

Sludge retention time

SVI

Sludge volume index

TOC

Total organic carbon

TS

Total solids

TSS

Total suspended solids

VS

Volatile solids

VSS

Volatile suspended solids

WAS

Waste activated sludge

WWTP

Wastewater treatment plants

References

  1. Ahn KH, Park KY, Maeng SK, Hwang JH, Lee JW, Song KG, Choi S (2002) Ozonation of wastewater and ozonation for recycling. Wat Sci Technol 46(10):71–77Google Scholar
  2. Alsop GM, Conway RA (1982) Improved thermal sludge conditioning by treatment with acids and bases. J Wat Poll Contr Fed 3:233–241Google Scholar
  3. Andreottola G, Foladori P (2006) A review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants. J Environ Sci Health Part A 41:1853–1872Google Scholar
  4. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust Sci 34:755–781CrossRefGoogle Scholar
  5. Apul OG, Sanin FD (2010) Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Biores Technol 101:8984–8992CrossRefGoogle Scholar
  6. Ayling GW, Castrantas HM (1981) Waste treatment with hydrogen peroxide. Chem Eng N Y 88:79–82Google Scholar
  7. Bablon G, Bellamy W, Bourbigot M, Daniel F, Dore M, Erb F, Gordon G, Langlais B, Laplanche A, Legube B, Martin G, Masschelein W, Pacey G, Reckhow D, Ventresque C (1991) Fundamental aspects in ozone in water treatment-application and engineering. In: Langlais B, Reckhow D, Brink D (eds) Fundamental aspects in ozone in water treatment—application and engineering. Lewis Publishers, Boca Raton, pp 11–132Google Scholar
  8. Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated sludge. Wat Sci Technol 36(11):137–143CrossRefGoogle Scholar
  9. Bandosz TJ, Block K (2006) Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Appl Catal B Environm 67(1–2):77–85CrossRefGoogle Scholar
  10. Banik S, Bandyopadhyay S, Ganguly S (2003) Bioeffects of microwave. Biores Technol 87(2):155–159CrossRefGoogle Scholar
  11. Beszédes S, László Z, Horváth ZH, Szabó G, Hodúr C (2011) Comparison of the effects of MW irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry. Biores Technol 102:814–821CrossRefGoogle Scholar
  12. Boehler M, Siegrist H (2006) Potential of activated sludge disintegration. Wat Sci Technol 53(12):207–216CrossRefGoogle Scholar
  13. Bougrier C, Carrere H, Battimelli A, Delgenes JP (2004) Effects of various pretreatments on WAS in order to improve matter solubilization and anaerobic digestion. Proceedings, 10th world congress montreal, CanadaGoogle Scholar
  14. Bougrier C, Albasi C, Delgenès JP, Carrère H (2006) Effect of ultrasonic, thermal and ozone pretreatments on WAS solubilization and anaerobic biodegradability. Chem Eng Process 45(8):711–718CrossRefGoogle Scholar
  15. Bougrier C, Delgenès JP, Carrère H (2008) Effects of thermal treatments on five different WAS samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 139(2):236–244CrossRefGoogle Scholar
  16. Braguglia CM, Mininni G, Gianico A (2008) Is sonication effective to improve biogas production and solids reduction in excess sludge digestion? Water Sci Technol 57(4):479–483Google Scholar
  17. Braguglia CM, Gianico A, Mininni G (2010) Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J Environ Manag (in press). doi:10.1016/j.jenvman.2010.07.030
  18. Brooks R (1970) Heat treatment of sewage sludge. Water Pollut Cont Fed 69(2):221–231Google Scholar
  19. Camacho P, Déléris S, Geaugey V, Paul E, Ginestet P (2002) A comparative study between mechanical, thermal and oxidative disintegration techniques of wasted activated sludge. Wat Sci Technol 46(10):79–87Google Scholar
  20. Carballa M, Omil F, Lema JM (2009) Influence of different pretreatments on anaerobically digested sludge characteristics: suitability for final disposal. Water Air Soil Pollut 99:311–321CrossRefGoogle Scholar
  21. Cassidy S (1998) Recovery of valuable products from municipal wastewater sludge. In: Chemical water and wastewater treatment V. In: Hahn HH, Hoffmann E, Ødegaard H (eds) Springer, Heidelberg, pp 325–340Google Scholar
  22. Chang C, Tyagi VK, Lo SL (2011) Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Biores Technol 102(17):7633–7640Google Scholar
  23. Chen GH, Saby S, Djaer M, Mo HK (2001) New approaches to minimize excess sludge in activated sludge systems. Wat Sci Technol 44(10):203–208Google Scholar
  24. Chen SL, Lo SL, Chiueh PT, Kuan WH, Hsieh CH (2007a) The assistance of MW process in sludge stabilization with sodium sulfide and sodium phosphate. J Hazard Mat 147(3):930–937CrossRefGoogle Scholar
  25. Chen Y, Jiang S, Yuan H, Zhou Q, Gu G (2007b) Hydrolysis and acidification of WAS at different pHs. Wat Res 41:683–689CrossRefGoogle Scholar
  26. Chen CL, Lo SL, Kuan WH, Hsieh CH (2009) Stabilization of copper-contaminated sludge using the MW sintering. J Hazard Mat 168:857–861CrossRefGoogle Scholar
  27. Chiu YC, Chang CN, Lin JG, Huang SJ (1997) Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Wat Sci Technol 36(11):155–162CrossRefGoogle Scholar
  28. Cho SK, Kim DH, Shin HS (2010) Combined pretreatments of various (alkaline + ultrasound, alkaline + thermal, alkaline + MW) effect on sewage sludge disintegration. 19th KKNN Symposium. pp 45–22Google Scholar
  29. Choi HB, Hwan KY, Shin EB (1997) Effect on anerobic digestion of sewage sludge pretreatment. Wat Sci Technol 35(10):207–211CrossRefGoogle Scholar
  30. Choi H, Jeong SW, Chung YJ (2006) Enhanced anaerobic gas production of WAS pretreated by pulse power technique. Biores Technol 97:198–203CrossRefGoogle Scholar
  31. Chou SY, Lo SL, Hsieh CH, Chen CL (2009) Sintering of MSWI fly ash by MW energy. J Hazard Mat 163:357–362CrossRefGoogle Scholar
  32. Chu CP, Lee DJ (2004) Effect of pre-hydrolysis on floc structure. J Environ Manag 71:285–292CrossRefGoogle Scholar
  33. Chu CP, Chang BV, Liao GS, Jean DS, Lee DJ (2001) Observations on changes in ultrasonically treated waste-activated sludge. Wat Res 35:1038–1046CrossRefGoogle Scholar
  34. Chu LB, Yan ST, Xing XH, Yu AF, Sun XL, Jurcik B (2008) Enhanced sludge solubilization by microbubble ozonation. Chemosphere 72(2):205–212CrossRefGoogle Scholar
  35. Chu LB, Yan ST, Xing XH, Sun XL, Jurcik B (2009) Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Wat Res 43(7):1811–1822CrossRefGoogle Scholar
  36. Cui R, Jahng D (2006) Enhanced methane production from anaerobic digestion of disintegrated and de-proteinized excess sludge. Biotechnol Lett 28:531–538CrossRefGoogle Scholar
  37. Damodar RA, Chang TC, You SJ, Chuang SH, Chen YY (2009) Study of thermophilic aerobic sludge digestion combined ultrasounds pretreatment in sewage sludge digestion process. 3rd IWA-ASPIRE conference and exhibition, 18–22 October: Oral-433Google Scholar
  38. Deleris S, Geaugey V, Camacho P, Debellefontaine H, Paul E (2002) Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal. Wat Sci Technol 46(10):63–70Google Scholar
  39. Déléris S, Paul E, Audic JM, Roustan M, Debellefontaine H (2000) Effect of ozonation on activated sludge solubilization and mineralization. Ozone Sci Eng 22:473–486CrossRefGoogle Scholar
  40. Dewil R, Baeyens J, Goutvrind R (2006) The use of ultrasonics in the treatment of waste activated sludge. Chin J Chem Eng 14(1):105–113CrossRefGoogle Scholar
  41. Dewil R, Appels L, Baeyens J, Degrève J (2007) Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. J Hazard Mater 146:577–581CrossRefGoogle Scholar
  42. Dichtl N, Muller J, Braunschweig EE, Gunthert FW, Osswald MO (1997) Disintegration von Klarschlammeinaktueller Uberblick. Korrespondez Abwasser 44:1726–1739Google Scholar
  43. Dogan I, Sanin FD (2009a) Alkaline solubilization and MW irradiation as a combined sludge disintegration and minimization method. Wat Res 43:2139–2148CrossRefGoogle Scholar
  44. Dogan I, Sanin FD (2009b) Alkaline solubilization and MW irradiation as a combined sludge disintegration and minimization method. Wat Res 43(8):2139–2148CrossRefGoogle Scholar
  45. Dohanyos M, Zabranska J, Jenicek P (1997) Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge. Wat Sci Technol 36(11):145–153CrossRefGoogle Scholar
  46. Dohanyos M, Zabranska J, Kutil J, Jenicek P (2004) Improvement of anaerobic digestion of sludge. Wat Sci Technol 49(10):89–96Google Scholar
  47. Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Wat Res 41:4273–4286CrossRefGoogle Scholar
  48. Engelhart M, Krüger M, Kopp J, Dichtl N (1999) Effects of disintegration on anaerobic degradation of sewage sludge in down flow stationary fixed film digester. In: II International symposium on anaerobic digestion of solid waste, BarcelonaGoogle Scholar
  49. Erden G, Demir O, Filibeli A (2010) Disintegration of biological sludge: effect of ozone oxidation and ultrasonic treatment on aerobic digestibility. Biores Technol 101:8093–8098CrossRefGoogle Scholar
  50. Eskicioglu C, Kennedy KJ, Droste RL (2006) Characterization of soluble organic matter of WAS before and after thermal pretreatment. Wat Res 40:3725–3736CrossRefGoogle Scholar
  51. Eskicioglu C, Droste RL, Kennedy KJ (2007a) Performance of anaerobic WAS digesters after MW pretreatment. Wat Env Res 79(11):2265–2273CrossRefGoogle Scholar
  52. Eskicioglu C, Kennedy KJ, Droste RL (2007b) Enhancement of batch WAS digestion by MW pretreatment. Wat Environ Res 79(11):2304–2317CrossRefGoogle Scholar
  53. Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007c) Athermal MW effects for enhancing digestibility of WAS. Wat Res 41:2457–2466CrossRefGoogle Scholar
  54. Eskicioglu C, Kennedy KJ, Droste RL (2008) Initial examination of MW pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion. Wat Sci Technol 57(3):311–317CrossRefGoogle Scholar
  55. Eskicioglu C, Kennedy KJ, Droste RL (2009) Enhanced disinfection and methane production from sewage sludge by MW irradiation. Desalination 248(1–3):279–285CrossRefGoogle Scholar
  56. Etzel JE, Born GS, Stein J, Helbing TJ, Baney G (1969) Sewage sludge conditioning and disinfection by gamma irradiation. Am J Public Health 59:2067–3076CrossRefGoogle Scholar
  57. Feng X, Lei HY, Deng JC, Yu Q, Li HL (2009) Physical and chemical characteristics of WAS treated ultrasonically. Chem Eng Process 48(1):187–194Google Scholar
  58. Foladori P, Tamburini S, Bruni L (2010) Bacteria permeabilisation and disruption caused by sludge reduction technologies evaluated by flow cytometry. Wat Res 44(17):4888–4899CrossRefGoogle Scholar
  59. Frølund B, Palmgren R, Keiding K, Neilsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Wat Res 30(8):1749–1758CrossRefGoogle Scholar
  60. Froud C, Weber R, Schmitt W (2005) Collective experience of the crown sludge disintegration system for carbon release for improved biological treatment-final results. In: Proceedings of the 10th European bio-solids and bio-waste conference, Wakefield, UKGoogle Scholar
  61. Gaudy A, Manickam T, Saidi H, Reddy M (1976) Biological treatment of waste with high ash content using a hydrolytically assisted extended aeration process. Biotechnol Bioeng 18:710–721CrossRefGoogle Scholar
  62. Ge HQ, Jensen PD, Batstone DJ (2010) Pretreatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Wat Res 44(1):123–130CrossRefGoogle Scholar
  63. Goel R, Tokutomi T, Yasui H, Noike T (2003a) Optimal process configuration for anaerobic digestion with ozonation. Wat Sci Technol 48(4):85–96Google Scholar
  64. Goel R, Yasui H, Shibayama C (2003b) High-performance closed loop anaerobic digestion using pre/post sludge ozonation. Wat Sci Technol 47(12):261–267Google Scholar
  65. Gogate PR (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res 6:335–358CrossRefGoogle Scholar
  66. Graja S, Chauzy J, Fernandes P, Patria L, Cretenot D (2005) Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation. Wat Sci Technol 52(1–2):267–273Google Scholar
  67. Gronroos A, Kyllonen H, Korpijarvi K, Pirkonen P, Paavola T, Jokela J, Rintala J (2005) Ultrasound assistedmethodto increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrason Sonochem 12(1–2):115–120CrossRefGoogle Scholar
  68. Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240CrossRefGoogle Scholar
  69. Hasegawa S, Shiota N, Katsura K, Akashi A (2000) Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Wat Sci Technol 41(3):163–169Google Scholar
  70. Haug RT (1977) Sludge processing to optimize digestibility and energy production. J Wat Poll Cont Fed 49:1713–1721Google Scholar
  71. Haug RT, Stuckey DC, Gossett JM, Mac Carty PL (1978) Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J Wat Poll Cont Fed 50(1):73–85Google Scholar
  72. Haug RT, LeBrun TJ, Tortorici LD (1983) Thermal pretreatment of sludges- a field demonstration. J Wat Poll Cont Fed 55(1):23–34Google Scholar
  73. Heo N, Park S, Kang H (2003) Solubilization of WAS by alkaline pretreatment and biochemical methane potential (BMP) test for anaerobic co-digestion of municipal organic waste. Wat Sci Technol 48(8):211–219Google Scholar
  74. Hielscher (2010) Ultrasound technology. http://www.hielscher.com/ultrasonics/sludge01.htm
  75. Higgins MJ, Novak JT (1997) Characterization of exocellular protein and its role in bio-flocculation. Issue Ser Title ASCE J Environ Eng 123(5):479–485Google Scholar
  76. Hiraoka M, Takeda N, Sakai S, Yasuda A (1984) Highly efficient anaerobic digestion with thermal pretreatment. Wat Sci Technol 17(4/5):529–539Google Scholar
  77. Hogan F, Mormede S, Clark P, Crane M (2004) Ultrasonic sludge treatment for enhanced anaerobic digestion. Wat Sci Technol 50(9):25–32Google Scholar
  78. Holzer K, Horak O (1999) Behandlung von Problemabwässern und Klärschlammen mit dem BAYER-LEPROX—Verfahren. Pre-prints 4. GVC-Kongress Verfahrenstechnik der Abwasser- und Schlammbehandlung, 6–8 Sept 1999, Bremen, Band 1. pp 177–191Google Scholar
  79. Hong SM, Park JK, Lee YO (2004) Mechanisms of MW irradiation involved in the destruction of fecal coliforms from biosolids. Wat Res 38(6):1615–1625CrossRefGoogle Scholar
  80. Hong SM, Park JK, Teeradej N, Lee YO, Cho YK, Park CH (2006) Pretreatment of sludge with MWs for pathogen destruction and improved anaerobic digestion performance. Wat Environ Res 78:76–83CrossRefGoogle Scholar
  81. Hsiau PC, Lo SL (1998a) Extractabilities of heavy metals in chemically fixed sewage sludges. J Hazard Mater 58:73–82CrossRefGoogle Scholar
  82. Hsiau PC, Lo SL (1998b) Fractionation and lechability of Cu in lime treated sewage sludge. Wat Res 32(4):1103–1108CrossRefGoogle Scholar
  83. Hsieh CH, Lo SL, Chiueh PT, Kuan WH, Chen CL (2007) MW enhanced stabilization of heavy metal sludge. J Hazard Mater 139(1):160–166CrossRefGoogle Scholar
  84. Hua I, Thompson JE (2000) Inactivation of Escherichia coli by sonication at discrete ultrasonic frequencies. Wat Res 34(15):3888–3893CrossRefGoogle Scholar
  85. Imai T, Liu Y, Ukita M, Hung YT (2010) Handbook of environmental engineering, vol. 11. In: Wang et al. (eds) Environmental bioengineering. Springer Science, New York, pp 75–122. doi:10.1007/978-1-60327-031-1_3
  86. Jacob J, Chia L, IH LL, Boey FYC (1995) Review-thermal and non- thermal interaction of MW radiation with materials. J Mater Sci 30(21):5321–5327CrossRefGoogle Scholar
  87. Jean DS, Chang BV, Liao GS, Tsou GW, Lee DJ (2000) Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment. Wat Sci Technol 42(9):97–102Google Scholar
  88. Jin Y, Li H, Mahar RB, Wang Z, Nie Y (2009) Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion. J Environ Sci 21:279–284CrossRefGoogle Scholar
  89. Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ (2002) MW heating applications in environmental engineering-a review. Res Cons Recycl 34(2):3475–3490Google Scholar
  90. Jyoti KK, Pandit AB (2004) Effect of cavitation on chemical disinfection efficiency. Wat Res 38:2249–2258CrossRefGoogle Scholar
  91. Kepp U, Solheim OE (2001) Meeting increased demands on sludge quality—experience with full scale plant for thermal disintegration. Proceedings 9th world congress, anaerobic conversion for sustainabilityGoogle Scholar
  92. Kepp U, Machenbach I, Weisz N, Solheim OE (1999) Enhanced stabilization of sewage sludge through thermal hydrolysis—3 years of experience with full scale plants. Wat Sci Technol 42(9):89–96Google Scholar
  93. Kepp U, Machenbach I, Weisz N, Solheim OE (2000) Enhanced stabilization of sewage sludge through thermal hydrolysis–three years of experience with full scale plant. Wat Sci Technol 42(9):89–96Google Scholar
  94. Khanal SK, Grewell D, Sung S, Leeuwen JV (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37:277–313CrossRefGoogle Scholar
  95. Kidak R, Wilhelm AM, Delmas H (2009) Effect of process parameters on the energy requirement in ultrasonical treatment of waste sludge. Chem Eng Process 48:1346–1352Google Scholar
  96. Kim J, Park C, Kim T, Lee M, Kim S, Kim S, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with WAS. J Biosci Bioeng 95(3):271–275Google Scholar
  97. Kim TH, Lee SR, Nam YK, Yang J, Park C, Lee M (2009) Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination 246:275–284CrossRefGoogle Scholar
  98. Kim DH, Jeong E, Oh SE, Shin HS (2010) Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration. Wat Res 44:3093–3100CrossRefGoogle Scholar
  99. Kopp J, Müller J, Dichtl N, Schwedes J (1997) Anaerobic digestion and dewatering characteristics of mechanically disintegrated sludge. Wat Sci Technol 36(11):129–136CrossRefGoogle Scholar
  100. Kopplow O, Barjenbruc M, Heinz V (2004) Sludge pretreatment with pulsed electric fields. Wat Sci Technol 49(10):123–129Google Scholar
  101. Kuan WH, Chen CL, Lo SL (2008) Application of MW energy on the stabilization of copper-contained industry sludge. Res J Chem Environ 12(3):77–81Google Scholar
  102. Kunz P, Wagner S (1994) Ergebnisse und Perspektiven aus Untersuchungen zur Kla¨rschlammdesintegration awt. Abwassertechnik 44(2):33–40Google Scholar
  103. Kunz P, Mande S, Theunert B, Wagner S (1994) Disintegration von Klarschlamm. Tagungsland der 8. Karlsruher Flochungstage, Universitat Karlsruher Flochungstage, Universitat KarlsruheGoogle Scholar
  104. Lafitte-Trouque S, Forster CF (2002) The use of ultrasound and γ-irradiation as pretreatments for the anaerobic digestion of WAS at mesophilic and thermophilic temperatures. Biores Technol 84(2):113–118CrossRefGoogle Scholar
  105. Laurent J, Casellas M, Pons MN, Dagot C (2009) Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties. Ultrason Sonochem 16:488–494CrossRefGoogle Scholar
  106. Lee JW, Cha HY, Park KY, Song KG, Ahn KH (2005) Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season. Wat Res 39:1199–1204CrossRefGoogle Scholar
  107. Lehne G, Muller A, Schwedes J (2001) Mechanical disintegration of sewage sludge. Wat Sci Technol 43(1):19–26Google Scholar
  108. Li YY, Noike T (1992) Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Wat Sci Technol 26(3–4):857–866Google Scholar
  109. Li H, Jin Y, Nie Y (2009) Application of alkaline treatment for sludge decrement and humic acid recovery. Biores Technol 100:6278–6283CrossRefGoogle Scholar
  110. Lin JG, Chang CN, Chang SC (1997) Enhancement of anaerobic digestion of WAS by alkaline solubilization. Biores Technol 62:85–90CrossRefGoogle Scholar
  111. Liu Y (2003) Chemically reduced excess sludge production in the activated sludge system. Chemosphere 50:1–7CrossRefGoogle Scholar
  112. Liu JC, Lee CH, Lai JY, Wang KC, Hsu YC, Chang BV (2001) Extracellular polymers of ozonized waste activated sludge. Wat Sci Technol 44(10):137–142Google Scholar
  113. Liu X, Liu H, Chen J, Du G, Chen J (2008) Enhancement of solubilization and acidification of waste activated sludge by pretreatment. Waste Manag 28:2614–2622CrossRefGoogle Scholar
  114. Lo SL, Chen YH (1990) Extracting heavy metals from municipal and industrial sludges. Sci Tot Environ 90:99–116CrossRefGoogle Scholar
  115. Lo KV, Liao PH, Yin GQ (2008) Sewage sludge treatment using MW-enhanced advanced oxidation processes with and without ferrous sulfate addition. J Chem Technol Biotechnol 83:1370–1374CrossRefGoogle Scholar
  116. Loupy A (2002) Microwaves in organic synthesis. Wiley-VCH, FranceCrossRefGoogle Scholar
  117. Low EW, Chase HA (1999) Reducing production of excess biomass during wastewater treatment. Wat Res 33(5):1119–1132CrossRefGoogle Scholar
  118. Low EW, Chase HA, Milner MG, Curtis TP (2000) Uncoupling of metabolism to reduce biomass production in the activated sludge process. Wat Res 34(12):3204–3212CrossRefGoogle Scholar
  119. Mao T, Show KY (2006) Performance of high-rate sludge digesters fed with sonicated sludge. Wat Sci Technol 54:27–33Google Scholar
  120. Mao T, Hong SY, Show KY, Tay JH, Lee DJ (2004) A comparison of ultrasound treatment on primary and secondary sludges. Wat Sci Technol 50(9):91–97Google Scholar
  121. Mason CA, Hamer G, Bryers D (1986) The death and lysis of microorganisms in environmental processes. FEMS Microbiol Rev 39:373–401CrossRefGoogle Scholar
  122. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Biores Technol 74(1):3–16CrossRefGoogle Scholar
  123. Moonkhum M (2007) Aerobic digestion of waste activated sludge with ultrasonic pretreatment. Master Thesis, School of environmental resource and development, Asian Institute of Technology, Bangkok, ThailandGoogle Scholar
  124. Mukherjee SR, Levine AD (1992) Chemical solubilization of particulate organics as a pretreatment approach. Wat Sci Technol 26(9–11):2289–2292Google Scholar
  125. Muller J (1996) Mechanischer Kla¨rschlammaufschlb, Ph.D thesis, Technical University of Braunschweig, ISBN 3–82–2053Google Scholar
  126. Muller JA (2001) Prospects and problems of sludge pretreatment processes. Wat Sci Technol 44(10):121–128Google Scholar
  127. Muller J, Pelletier L (1998) Désintégration mécanique des boues activées. Leau Lindustrie Les Nuisances 217:61–66Google Scholar
  128. Muller JA, Winter A, Strunkmann G (2004) Investigation and assessment of sludge pretreatment processes. Wat Sci Technol 49(10):97–104Google Scholar
  129. Muller C, Abu-Orf M, Blumenschein C, Novak J (2005) The impact of ultrasound energy on mesophilic anaerobic digestion. In: WEF proceedings of the residuals and biosolids management conference, Covington, KYGoogle Scholar
  130. Müller J, Lehne G, Schwedes J, Battenberg S, Naveke R, Kopp J, Scheminski A, Krull R, Hempell DC (1998) Disintegration of sewage sludges and influence on anaerobic digestion. Water Sci Technol 38:425–433Google Scholar
  131. Munnich K, Mahler CF, Fricke K (2006) Pilot project of mechanical- biological treatment of waste in Brazil. Waste Manag 26:150–157CrossRefGoogle Scholar
  132. Mustapha S, Forster CF (1985) Examination into the gamma irradiation of activated sludge. Enzyme Microbiol Technol 7:179–181CrossRefGoogle Scholar
  133. Mustranta A, Viikai L (1993) Dewatering of activated sludge by an oxidative treatment. Wat Sci Technol 28(1):213–221Google Scholar
  134. Naddeo V, Belgiorno V, Landi M, Zarra T, Napoli RMA (2009) Effect of sonolysis on WAS solubilization and anaerobic biodegradability. Desalination 249:762–767CrossRefGoogle Scholar
  135. Nah I, Kan Y, Hwang K, Song W (2000) Mechanical pretreatment of WAS for anaerobic digestion process. Wat Res 34(8):2362–2368CrossRefGoogle Scholar
  136. Neis U (2000) Ultrasound in water, wastewater and sludge treatment. Sewage Treat 21:36–39Google Scholar
  137. Neis U, Nickel K, Tiehm A (1997) Intensievierung der Schlammfaulung durch Kla. rschlammaufschlu mit Ultraschall. Korrespondez Abwasser 44:1850–1855Google Scholar
  138. Neyens E, Baeyens J (2003) A review of thermal sludge pretreatment processes to improve dewaterability. J Hazard Mater 98(1–3):51–67CrossRefGoogle Scholar
  139. Neyens E, Baeyens J, Creemers C (2003) Alkaline thermal sludge hydrolysis. J Hazard Mater B97:295–314CrossRefGoogle Scholar
  140. Nges IA, Liu J (2009) Effects of anaerobic pretreatment on the degradation of dewatered sludge. Renew Energ 34:1795–1800CrossRefGoogle Scholar
  141. Nickel K, Neis U (2007) Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason Sonochem 14:450–455CrossRefGoogle Scholar
  142. Nies U, Nickel K, Tiehm A (2000) Enhancement of anaerobic digestion by ultrasonic disintegration. Wat Sci Technol 42(9):73–80Google Scholar
  143. Novak JT, Sadler ME, Murty SN (2003) Mechanisms of floc destruction during anaerobic digestion and the effect on conditioning and dewatering of biosolids. Wat Res 37:3136–3144CrossRefGoogle Scholar
  144. Ødegaard H (2004) Sludge minimization technologies—an overview. Wat Sci Technol 49(10):31–40Google Scholar
  145. Onyeche T (2006) Sewage sludge as source of energy. In: Proceedings of the IWA specialized conference on sustainable sludge management: state-of-the-art, challenges and perspectives, Moscow, Russia, May 29–31. pp 235–241Google Scholar
  146. Ormeci B, Vesilind PA (2000) Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges. Wat Res 35(18):4299–4306CrossRefGoogle Scholar
  147. Ou HH, Lo SL, Liou YH (2007) MW induced titanate nanotubes and the corresponding behavior after thermal treatment. Nanotechnology 18(17):1–6CrossRefGoogle Scholar
  148. Ou HH, Liao CH, Liou YH, Hong YH, Lo SL (2008) Photocatalytic oxidation of aqueous ammonia over MW-induced titanate nanotubes. Environ Sci Technol 42:4507–4512CrossRefGoogle Scholar
  149. Panter K, Kleiven H (2005) Ten years experience of full-scale thermal hydrolysis projects. In: Proceedings of the 10th European biosolids and bio-waste conference, Wakefield, UKGoogle Scholar
  150. Park KY, Ahn KH, Maeng SK (2003) Feasibility of sludge ozonation for stabilization and conditioning. Ozone-Sci Eng 25:73–80Google Scholar
  151. Park B, Ahn J, Kim J, Hwang S (2004) Use of MW pretreatment for enhanced anaerobiosis of secondary sludge. Wat Sci Technol 50(9):17–23Google Scholar
  152. Park C, Lee C, Kim S, Chen Y, Chase HA (2005) Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J Biosci Bioeng 100(2):164–167CrossRefGoogle Scholar
  153. Park WJ, Ahn H, Hwang S, Lee CK (2010) Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Biores Technol 101(1):S13–S16CrossRefGoogle Scholar
  154. Penaud V, Delgenes JP, Moletta R (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microbial Technol 25:258–263CrossRefGoogle Scholar
  155. Penaud V, Delgenes JP, Moletta R, Colas G, Vanhoutte B, Cans P (2000) Influence of thermo-chemical solubilization of a microbial biomass on solubilization and biodegradability performances. Environ Technol 21:87–96CrossRefGoogle Scholar
  156. Perez-Elvira SI, Diez PN, Fernandez-Polanco F (2006) Sludge minimization technologies. Rev Environ Sci Bio/Technol 5(4):375–398CrossRefGoogle Scholar
  157. Perez-Elvira SI, Fernandez-Polanc F, Fernandez-Polanco M, Rodriguez P, Rouge P (2008) Hydrothermal multivariable approach. Full-scale feasibility study. Electron J Biotechnol 11:7–8Google Scholar
  158. Perez-Elvira SI, Fdz-Polanco M, Plaza FI, Garralon G, Fdz-Polanco F (2009) Ultrasound pretreatment for anaerobic digestion improvement. Wat Sci Technol 60(6):1525–1532CrossRefGoogle Scholar
  159. Pinnekamp J (1989) Effects of thermal pretreatment of sewage sludge on anaerobic digestion. Wat Sci Technol 21(4–5):97–108Google Scholar
  160. Pino-Jelcic SA, Hong SM, Park JK (2006) Enhanced anaerobic biodegradability and inactivation of fecal coliforms and salmonella spp. in wastewater sludge by using microwaves. Wat Environ Res 78(2):209–216CrossRefGoogle Scholar
  161. Qiao W, Wang W, Xun R, Lu W, Yin K (2008) Sewage sludge hydrothermal treatment by microwave irradiation combined with alkali addition. J Mater Sci 43:2431–2436CrossRefGoogle Scholar
  162. Rai CL, Rao PG (2009) Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: an approach for excess sludge reduction. Clean Techn Environ Policy 11:437–446CrossRefGoogle Scholar
  163. Recktenwald M, Karlsson I (2003) Recovery of wastewater sludge components by acid hydrolysis. Presented at IWA specialised conference; BIOSOLIDS 2003: wastewater sludge as a resource. Trondheim, Norway, 23–25 JuneGoogle Scholar
  164. Rivard CJ, Nagle NJ (1996) Pretreatment technology for the beneficial reuse of municipal sewage sludges. Appl Bioch Biotechnol 57–58:983–991CrossRefGoogle Scholar
  165. Rocher M, Goma G, Gegue A, Louvel L, Rolls JL (1999) Towards a reduction in excess sludge production in activated sludge processes: biomass physicochemical treatment and biodegradation. Appl Microbiol Biotecnol 51:883–890CrossRefGoogle Scholar
  166. Saktaywin W, Tsuno H, Nagare H, Soyama T (2005) Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Wat Res 39:902–910CrossRefGoogle Scholar
  167. Salsabil MR, Prorot A, Casellas M, Dagot C (2009) Pretreatment of activated sludge: effect of sonication on aerobic and anaerobic digestibility. Chem Eng J 148(2–3):327–335CrossRefGoogle Scholar
  168. Salsabil MR, Laurent J, Casellas M, Dagot C (2010) Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion. J Hazard Mater 174(1–3):323–333CrossRefGoogle Scholar
  169. Scheminski A, Krull R, Hempel DC (1999) Oxidative treatment of digested sewage sludge with ozone. IAQW specialized conference on disposal and utilization of sewage sludge: treatment methods and application modalities. Athens, Greece. pp 241–248Google Scholar
  170. Shang M, Hou H (2009) Studies on effect of peracetic acid pretreatment on anaerobic fermentation biogas production from sludge. Power and energy engineering conference, Asia-PacificGoogle Scholar
  171. Sheppard S, Rigden C (2005) Rapid non-equilibrium decompression (RND) ‘bug buster’ technology. In: Proceedings of the 10th European biosolids and bio-waste conference, Wakefield, UKGoogle Scholar
  172. Shimizu T, Kenzo K, Yoshikazu N (1993) Anaerobic waste-activated sludge digestion-a bioconversion mechanism and kinetic model. Biotechnol Bioeng 41:1082–1091CrossRefGoogle Scholar
  173. Shin KS, Kang H (2003) Electron beam pretreatment of sewage sludge before anaerobic digestion. App Biochem Biotechnol 109(1–3):227–239CrossRefGoogle Scholar
  174. Show KY, Tay J H, Hung YT (2010) Ultrasound pretreatment of sludge for anaerobic digestion from: handbook of environmental engineering, vol. 11. In: LK Wang et al. (eds) Environmental bioengineering, pp 53–73Google Scholar
  175. Sievers M, Ried A, Koll R (2004) Sludge treatment by ozonation-evaluation of full-scale results. Wat Sci Technol 49(4):247–253Google Scholar
  176. Springer A, Higgins J (1999) Mechanical cell lysis and recycle to reduce WAS. In: TAPPI Proceedings of the international environmental conference, Nashville, TN. pp 969–987Google Scholar
  177. Stendahl K, Jäfverström S (2004) Recycling of sludge with the Aqua Reci—process. Wat Sci Technol 49(10):233–240Google Scholar
  178. Stephenson R, Rabinowitz B, Laliberte S, Elson P (2005) Teaching an old digester new tricks: full-scale demonstration of the MicroSludge process to liquefy municipal WAS. In: WEF Proceedings of the residuals and biosolids management conference, Covington, KYGoogle Scholar
  179. Stuckey DC, McCarty PL (1978) Thermochemical pretreatment of nitrogenous materials to increase methane yield. Biotechnol Bioeng Symp 8:219–233Google Scholar
  180. Takashima M, Tanaka Y (2010) Application of acidic thermal treatment for one and two-stage anaerobic digestion of sewage sludge. Wat Sci Technol 11:2647–2654Google Scholar
  181. Tanaka S, Kamiyama K (2002) Thermo-chemical pretreatment in the anaerobic digestion of waste activated sludge. Wat Sci Technol 46:173–179Google Scholar
  182. Tanaka S, Kobayashi T, Kamiyama K, Bildan M (1997) Effects of thermo-chemical pretreatment on the anaerobic digestion of WAS. Wat Sci Technol 35(8):209–215CrossRefGoogle Scholar
  183. Tang B, Yu L, Huang S, Luo J, Zhuo Y (2010) Energy efficiency of pre-treating excess sewage sludge with MW irradiation. Biores Technol 101:5092–5097CrossRefGoogle Scholar
  184. Tchobanoglous G, Barton F, Stensel H (2003) Wastewater engineering treatment and reuse, 4th edn. Metcalfe and Eddy, New YorkGoogle Scholar
  185. Thomas L, Jungschaffer G, Sprossler B (1993) Improved sludge dewatering by enzymatic treatment. Wat Sci Technol 28(1):189–192Google Scholar
  186. Tiehm A, Nickel K, Neis U (1997) The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Wat Sci Technol 36(11):121–128CrossRefGoogle Scholar
  187. Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic WAS disintegration for improving anaerobic stabilization. Wat Res 35:2003–2009CrossRefGoogle Scholar
  188. Toreci I, Kennedy K J, Droste R L (2008) Effect of high temperature MW irradiation on municipal thickened WAS solubilization. In: 11th conference on process integration, modeling and optimization for energy saving and pollution reduction (PRES), 24–28th August, Praha, Czech RepublicGoogle Scholar
  189. Uradzinski J, Wysok B, Bielicki Z, Gomolka-Pawlicka M (2005) Ozonation as an alternative method of disinfecting knives for use in meat processing. Bull Veterin Inst PuLawy 49(4):399–402Google Scholar
  190. Valo A, Carrere H, Delgene J (2004) Thermal, chemical, and thermo-chemical pretreatment of WAS for anaerobic digestion. J Chem Technol Biotechnol 79:1197–1203CrossRefGoogle Scholar
  191. Vanhulle S, Trovaslet M, Enaud E, Lucas M, Taghavi S, Van Der Lelie D (2008) Decolorization, cytotoxicity and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environ Sci Technol 42(2):584–589CrossRefGoogle Scholar
  192. Vavilin VA, Lokshina LY (1996) Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity. Biores Technol 57:69–80CrossRefGoogle Scholar
  193. Vlyssides A, Karlis P (2004) Thermal-alkaline solubilization of WAS as a pretreatment for anaerobic digestion. Biores Technol 91:201–206CrossRefGoogle Scholar
  194. Wang Q, Kuninobo M, Kakimoto K, Ogawa HI, Kato Y (1999) Upgrading of anaerobic digestion of WAS by ultrasonic pretreatment. Biores Technol 68:309–313CrossRefGoogle Scholar
  195. Wang Z, Wang W, Zhang X, Zhang G (2009) Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor. J Hazard Mater 62:799–803CrossRefGoogle Scholar
  196. Wang XX, Qiu ZF, Lu SG, Ying WC (2010) Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge. J Hazard Mater 176(1–3):35–40Google Scholar
  197. Weemaes M, Verstraete WH (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73:83–92CrossRefGoogle Scholar
  198. Weemaes M, Grootaerd H, Simons F, Verstraete W (2000) Anaerobic digestion of ozonized biosolids. Wat Sci Technol 34(8):2330–2336Google Scholar
  199. Wei YS, Van Houten RT, Borger AR, Eikelboom DH, Fan YB (2003) Minimization of excess sludge production for biological wastewater treatment. Wat Res 37(18):4453–4467CrossRefGoogle Scholar
  200. Weise HGG, Jung M (1998) Klarschlammbehandlung mit der Hochleistungspulstechnik. Veroffentlichung des Institutts fur Siedlungswasserwirtschaft der TU Braunschweig, Heft 61:75–82Google Scholar
  201. Weise HGG, Jung M (2001) Sludge disintegration by electrical shockwaves. International conference on pulsed power applications. Gelsenkirchen. March 2001Google Scholar
  202. Weisz N, Kepp U, Norli M, Panter K Solheim O E (2000) Sludge disintegration with thermal hydrolysis—cases from Norway, Denmark and United Kingdom. 1st IWA world congress, Paris 3–7 July. Pre-prints Book 4. pp 288–295Google Scholar
  203. Wett B, Phothilangka P, Eladawy A (2010) Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag 30:1057–1062CrossRefGoogle Scholar
  204. Winter A (2002) Minimization of costs by using disintegration at a full-scale anaerobic digestion plant. Wat Sci Technol 46(4–5):405–412Google Scholar
  205. Wojciechowska E (2005) Application of MWs for sewage sludge conditioning. Wat Res 39(19):4749–4754CrossRefGoogle Scholar
  206. Woodard S, Wukasch R (1994) A hydrolysis/thickening/filtration process for the treatment of waste activated sludge. Wat Sci Technol 30(3):29–38Google Scholar
  207. Xie R, Xing Y, Ghami Yahya A, Ooi K, Ng S (2005) Ultrasound disintegration technology in improving anaerobic digestion of sewage sludge under mesotrophic conditions. In: Proceedings of the 10th European biosolids and bio-waste conference, Wakefield, UKGoogle Scholar
  208. Xu G, Chen S, Shi J, Wang S, Zhu G (2010) Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J Hazard Mater 180:340–346CrossRefGoogle Scholar
  209. Yan ST, Zheng H, Li A, Zhang X, Xing XH, Chu LB, Ding G, Sun XL, Jurcik B (2009) Systematic analysis of biochemical performance and the microbial community of an activated sludge process using ozone-treated sludge for sludge reduction. Biores Technol 100:5002–5009CrossRefGoogle Scholar
  210. Yasui H, Shibata M (1994) An innovative approach to reduce excess sludge production in the activated sludge process. Wat Sci Tech 30(9):11–20Google Scholar
  211. Yeager JG, O’Brien RT (1983) Irradiation as a means to minimize public health risks from sludge-borne pathogens. J Wat Poll Cont Fed 55(7):977–983Google Scholar
  212. Yeom IT, Lee KR, Lee YH, Ahn KH, Lee SH (2002) Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Wat Sci Technol 46(4–5):421–425Google Scholar
  213. Yu Q, Lei H, Yu G, Feng X, Li Z, Wu Z (2009) Influence of microwave irradiation on sludge dewaterability. Chem Eng J 155:88–93CrossRefGoogle Scholar
  214. Yu Q, Lei HY, Li Z, Li HL, Chen K, Zhang XH, Liang RL (2010) Physical and chemical properties of waste-activated sludge after MW treatment. Wat Res 44:2841–2849CrossRefGoogle Scholar
  215. Yuan S, Zheng Z, Mu Y, Yu X, Zhao Y (2008) Use of gamma-irradiation pretreatment for enhancement of anaerobic digestibility of sewage sludge. Frontier Environ Sci Eng China 2(2):247–250CrossRefGoogle Scholar
  216. Yunqin L, Dehan W, Shaoquan W, Chunmin W (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373CrossRefGoogle Scholar
  217. Zabranska J, Dohanyos M, Jenicek P, Kutil J, Cejka J (2006) Mechanical and rapid thermal disintegration methods of enhancement of biogas production—full-scale applications. In: Proceedings of the IWA specialized conference on sustainable sludge management: state-of-the-art, challenges and perspectives, Moscow, Russia, May 29–31. pp 235–241Google Scholar
  218. Zhang GM, Zhang PY, Yang JM, Chen YM (2007) Ultrasonic reduction of excess sludge from the activated sludge system. J Hazard Mater 145(3):515–519CrossRefGoogle Scholar
  219. Zhang G, He J, Zhang P, Zhang J (2009) Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment. J Hazard Mater 164:1105–1109CrossRefGoogle Scholar
  220. Zheng J, Graff RA, Fillos J, Rinard I (1998) Incorporation of rapid thermal conditioning into a wastewater treatment plant. Fuel Process Technol 56:183–200CrossRefGoogle Scholar
  221. Zhou BW, Shin SG, Hwang KH, Ahn JH, Hwang S (2010) Effect of MW irradiation on cellular disintegration of gram positive and negative cells. Appl Microbiol Biotechnol 87:765–770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipei 106Taiwan, Republic of China

Personalised recommendations