One-step synthesis of polyesters specialties for biomedical applications

Science Career

Abstract

Polyesters are widely used for biomedical applications such as drug delivery systems and resorbable implants. The degradation kinetic of these biopolymers can be tailored by the introduction of functional groups in their backbone, leading to a modification of their morphology and hydrophilicity. This is usually realized via long multistep reaction pathways. This contribution describes the emergence of one-step procedures for this purpose including enzymatic and Lewis acid catalyzed polycondensation as well as coordinative ring opening polymerization.

Keywords

Biodegradable polymers Bone and tissue engineering Biocompatibility 

References

  1. Albertsson AC, Varma KI (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486. doi:10.1021/bm034247 CrossRefGoogle Scholar
  2. Hu J, Gao W, Kulshrestha A, Gross RA (2006) “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols. Macromolecules 39:6789–6792. doi:10.1021/ma0612834 CrossRefGoogle Scholar
  3. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132. doi:10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X CrossRefGoogle Scholar
  4. Kline BJ, Beckman EJ, Russel AJ (1998) One-step biocatalytic synthesis of linear polyesters with pendant hydroxyl groups. J Am Chem Soc 120:9475–9480. doi:10.1021/ja980890 CrossRefGoogle Scholar
  5. Kumar A, Kulshresta S, Gao W, Gross RA (2003) Versatile route to polyol polyesters by lipase catalysis. Macromolecules 36:8219–8221. doi:10.1021/ma0351827 CrossRefGoogle Scholar
  6. Marcincinova-Benabdillah K, Boustta M, Coudane J, Vert M (2001) Novel degradable polymers combining d-gluconic acid, a sugar of vegetal origin, with lactic and glycolic acids. Biomacromolecules 2:1279–1284. doi:10.1021/bm015585j CrossRefGoogle Scholar
  7. Masato Minami K (2002) Aliphatic polyester, method for manufacturing aliphatic polyester and method for recycling cellulose. US Patent 6,420,513 B2Google Scholar
  8. Place ES, Evans ED, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470. doi:10.1038/nmat2441 CrossRefGoogle Scholar
  9. Takasu A, Shibata Y, Narukawa Y, Hirabayashi T (2007) Chemoselective dehydration polycondensations of dicarboxylic acids and diols having pendant hydroxyl groups using the room temperature polycondensation method. Macromolecules 40:151–153. doi:10.1021/ma06514 CrossRefGoogle Scholar
  10. Uhlrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. doi:10.1021/cr940351 CrossRefGoogle Scholar
  11. Uyama H, Inada K, Kobayashi S (2001) Regioselectivity control in lipase-catalyzed polymerization of divinyl sebacate and triols. Macromol Biosci 1:40–44. doi:10.1002/1616-5195(200101)1:1<40::AID-MABI40>3.0.CO;2-T CrossRefGoogle Scholar

Weblinks

  1. Marie Curie Fellowship Association, http://mcfa.eu/
  2. Unity of Catalysis and Solid State Chemistry, http://uccs.univ-lille1.fr/
  3. The Biomaterials Federation of the North of France, http://www.biomaterials.com.fr/

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Université Lille Nord de France—ENSCL, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Equipe Synthèses Organométalliques et Catalyse, Cité ScientifiqueVilleneuve d’AscqFrance

Personalised recommendations