Advertisement

ERC-group microflex: microbiology of Dehalococcoides-like Chloroflexi

  • Lorenz AdrianEmail author
Project Update

Abstract

The Microflex project, funded within the first call of the European Research Council, focuses on a specific group of bacteria, the Dehalococcoides-like Chloroflexi. This group of bacteria deeply rooting in the phylogenetic tree is formed by several cultivated strains of the proposed genus “Dehalococcoides” and many sequences of uncultivated organisms mostly from marine sediments or terrestrial subsurface locations. The project compares cultivated Dehalococcoides species growing by organohalide respiration using halogenated compounds as electron acceptors with marine Chloroflexi populations. For this comparison a wide array of different approaches and techniques are used including cultivation, biochemical analyses, molecular tools and isotopic fractionation measurements. The project aims at contributing to the understanding of the physiology of Dehalococcoides-like Chloroflexi in deep marine sediments and their mode of living. A second aim of the project is the further understanding of the physiology and biochemistry of dehalogenating Dehalococcoides species and how these bacteria can be used efficiently for bioremediation of contaminated subsurface environments.

Keywords

Marine sediments Anaerobic bacteria Reductive dehalogenation 

Notes

Acknowledgments

Funding source: ERC starting grant

References

  1. Adrian L, Szewzyk U, Wecke U, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583CrossRefGoogle Scholar
  2. Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323CrossRefGoogle Scholar
  3. Adrian L, Duková V, Demnerová K, Bedard DL (2009) Dehalococcoides strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1260. Appl Environ Microbiol 75:4516–4524CrossRefGoogle Scholar
  4. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851CrossRefGoogle Scholar
  5. Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360CrossRefGoogle Scholar
  6. Coolen MJL, Cypionka H, Sass AM, Sass A, Overmann J (2002) Ongoing modification of Mediterranean pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410CrossRefGoogle Scholar
  7. Dang H, Li J, Chen M, Li T, Zeng Z, Yin X (2009) Pine-scale vertical distribution of bacteria in the East Pacific deep-sea sediments determined via 16S rRNA gene T-RFLP and clone library analyses. World J Microbiol Biotechnol 25:179–188CrossRefGoogle Scholar
  8. Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081CrossRefGoogle Scholar
  9. He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65CrossRefGoogle Scholar
  10. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235CrossRefGoogle Scholar
  11. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D′Hondt S (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820CrossRefGoogle Scholar
  12. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273CrossRefGoogle Scholar
  13. May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74:2089–2094CrossRefGoogle Scholar
  14. Maymó-Gatell X, Chien Y-T, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571CrossRefGoogle Scholar
  15. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851CrossRefGoogle Scholar
  16. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KT, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108CrossRefGoogle Scholar
  17. Willms R, Sass H, Köpke B, Köster J, Cypionka H, Engelen B (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764CrossRefGoogle Scholar
  18. Yan J, Rash BA, Rainey FA, Moe WM (2009) Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Helmholtzzentrum für Umweltforschung, UFZLeipzigGermany

Personalised recommendations