Advertisement

Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy

  • Mark D. Redwood
  • Marion Paterson-Beedle
  • Lynne E. Macaskie
Review Paper

Abstract

Biological methods of hydrogen production are preferable to chemical methods because of the possibility to use sunlight, CO2 and organic wastes as substrates for environmentally benign conversions, under moderate conditions. By combining different microorganisms with different capabilities, the individual strengths of each may be exploited and their weaknesses overcome. Mechanisms of bio-hydrogen production are described and strategies for their integration are discussed. Dual systems can be divided broadly into wholly light-driven systems (with microalgae/cyanobacteria as the 1st stage) and partially light-driven systems (with a dark, fermentative initial reaction). Review and evaluation of published data suggests that the latter type of system holds greater promise for industrial application. This is because the calculated land area required for a wholly light-driven dual system would be too large for either centralised (macro-) or decentralised (micro-) energy generation. The potential contribution to the hydrogen economy of partially light-driven dual systems is overviewed alongside that of other bio-fuels such as bio-methane and bio-ethanol.

Keywords

Bio-hydrogen Bioenergy Renewable energy Hydrogen economy Dark fermentation Dual systems Photosynthesis 

Abbreviations

ADP

Adenosine diphosphate

Akinete

Vegetative cyanobacterial cell accumulating carbohydrate. The main component of filaments, including heterocysts

APB

Anoxygenic photosynthetic bacteria

ATP

Adenosine triphosphate

Autotrophy

Metabolism with the synthesis of carbohydrate using light and/or inorganic substrates

Av.

Average

Axenic

Pure culture containing only one type of microorganism

BOD

Biological oxygen demand the mass of oxygen consumed by microorganisms during the oxidation of organic compounds from a sample of water

COD

Chemical oxygen demand the mass of oxygen consumed during the chemical oxidation of organic compounds from a sample of water

CSTR

Continuous stirred tank reactor

Direct bio-photolysis

H2 production from water electrons liberated from H2O by photosystem II recombine with H+ to form H2, catalysed by hydrogenase or nitrogenase

DF

Dark fermentation

DF–PF

Dual system combining dark fermentation and photofermentation

DMFC

Direct methanol fuel cell, a type of PEM-FC using methanol fuel directly without reforming

dw

Dry cell weight

FHL

Formate: hydrogen lyase

Fermentation

Microbial growth mode in which ATP is generated only by substrate level phosphorylation in the absence of exogenous electron acceptors (e.g. O2, NO3 , NO2 2−, SO4 2−)

HRT

Hydraulic retention time. The total flow rate though a diluted system over its volume

Indirect bio-photolysis

H2 production from water via the photosynthesis and fermentation of carbohydrates

Heterocyst

A cyanobacterial cell specialised for N2 fixation

Heterotrophy

Microbial metabolism utilising organic carbon sources

HHV

Higher heating value

Hyperthermophilic

Refers to extreme thermophiles most active in the temperature range 80–110°C

LDH

Fermentative lactate dehydrogenase

Light conversion efficiency

The percentage of available light energy converted to H2, distinct from photosynthetic efficiency (PE)

Mesophilic

Most active in the temperature range 20–40°C

NADH

Nicotinamide-adenine dinucleotide

Net energy ratio

The dimensionless ratio of the energy outputs to primary inputs for the entire operational lifetime of a system

Nitrogenase

Nitrogenase complex (reductase and nitrogenase)

PE

Photosynthetic efficiency. The percentage of photosynthetically active light energy converted to H2 (includes only those wavelengths which interact with photopigments)

PEM-FC

Proton exchange membrane fuel cell a type of low-temperature fuel cell considered most suitable for transport applications

PF

Photofermentation

PHB

Poly-β-hydroxybutyrate, a storage polymer

Photoheterotrophy

Light-driven mode of anaerobic metabolism using organic substrates as electron donors

Pi

Inorganic phosphate

PFL

Pyruvate: formate lyase

PFOR

Pyruvate: ferredoxin oxidoreductase

Photopigments

Light harvesting proteins

Phototrophy

Microbial metabolism using light energy

Photoautotrophy

Microbial metabolism using light energy for the synthesis of carbon sources

PNS bacteria

Purple non-sulfur bacteria

PSI

Photosystem I

PSII

Photosystem II

Reserve

The amount of a resource in place (e.g. oil in the ground) that is economically recoverable

SOFC

Solid oxide fuel cell, a high temperature alkaline fuel cell

SOT medium

Growth medium for cyanobacteria containing salts and trace elements but no carbon source

Thermophilic

Most active in the temperature range 40–60°C

UASB

Upstream anaerobic sludge blanket reactor

Notes

Acknowledgments

We acknowledge the financial support of the Biotechnology and Biological Sciences Research Council (Grant no. BB/C516128/1 and studentship no. 10703 to MDR), Engineering and Physical Sciences Research Council (Grant no. EP/E03488/1) and Department of Environment, Food and Rural Affairs (Contract no. NTFUN2). LEM was supported by a BBSRC/Royal Society Industrial Fellowship in partnership with C-Tech Innovation Ltd.

References

  1. Abdullah AZ, Razali N, Mootabadi H, Salamatinia B (2007) Critical technical areas for future improvements in biodiesel technologies. Environ Res Lett 2:034001. doi: 10.1088/1748-9326/2/3/034001 Google Scholar
  2. Akano T, Miura Y, Fukatsu K, Miyasaka H, Ikuta Y, Matsumoto H, Hamasaki A, Shioji N, Mizoguchi T, Yagi K, Maeda I (1996) Hydrogen production by photosynthetic microorganisms. Appl Biochem Biotechnol 57–58:677–688. doi: 10.1007/BF02941750 Google Scholar
  3. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11–12):1195–1208. doi: 10.1016/S0360-3199(02)00071-X Google Scholar
  4. Alam KY, Clark DP (1989) Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol 171(11):6213–6217Google Scholar
  5. Aldhous P (2006) Green gold. New Sci 25(2540):37–39Google Scholar
  6. Anon (2004) United Kingdom food and drink processing mass balance: biffaward programme on sustainable resource use. C-Tech Innovation, CapenhurstGoogle Scholar
  7. Anon (2005) Agriculture in the United Kingdom. Retrieved Aug 2007, from statistics.defra.gov.uk/esg/publications/auk/2005/default.aspGoogle Scholar
  8. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98(1):114–120. doi: 10.1111/j.1365-2672.2004.02431.x Google Scholar
  9. Aoyama K, Uemura I, Miyake J, Asada Y (1997) Photosynthetic bacterial hydrogen production with fermentation products of cyanobacterium Spirulina platensis. International conference on biological hydrogen production, Plenum, New YorkGoogle Scholar
  10. Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T, Miyake J, Tomiyama M, Kohno H (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy 31(11):1509–1513. doi: 10.1016/j.ijhydene.2006.06.017 Google Scholar
  11. Avi S (2007) Photovoltaics literature survey (No. 51). Prog Photovolt Res Appl 15(1):87–91. doi: 10.1002/pip.747 Google Scholar
  12. Bae J-H, Bardiya N, Reddy MRVP (2005) Bio-hydrogen: technology and future prospects. In: Lal B, Reddy MRVP (eds) Wealth from waste: trends, technologies. TERI, New Delhi, pp 87–132Google Scholar
  13. Banik RM, Santhiagu A, Kanari B, Sabarinath C, Upadhyay SN (2003) Technological aspects of extractive fermentation using aqueous two-phase systems. World J Microbiol Biotechnol 19(4):337–348. doi: 10.1023/A:1023940809095 Google Scholar
  14. Bartelings H, van Beukering P, Kuik O, Linderhof V, Oosterhuis F, Brander L, Wagtendonk A (2005) Effectiveness of landfill taxation, report prepared for the Dutch Ministry of Housing, spatial planning and the environment, Institute for Environmental Studies, Vrije Universiteit, R-05/05, Amsterdam. Available at www.ivm.falw.vu.nl/research_output/index.cfm/home_subsection.cfm/subsectionid/FF91BCBD-EAFE-426A-ABB8184073A39BBF
  15. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. doi: 10.1007/s11274-006-9190-9 Google Scholar
  16. Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103. doi: 10.1038/nbt0996-1101 Google Scholar
  17. Bevan A, Book D, Züttel A, Harris R (2007) The protium project: a hybrid electric canal boat using metal hydride store and a PEM fuel cell. The Oxford-Kobe energy seminar, 22–24th April. Hydrogen storage: the international grand challenge, Kobe Institute, JapanGoogle Scholar
  18. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillacae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Dordrecht, pp 267–273Google Scholar
  19. Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria. Kluwer, DordrechtGoogle Scholar
  20. Bock A, Sawers G (1996) Fermentation. In: Niedhardt FC et al (eds) Escherichia coli and Salmonella typhimurium cellular and molecular biology, vol 1. ASM, Washington DC, pp 262–282Google Scholar
  21. Borodin VB, Tsygankov AA, Rao KK, Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69(5):478–485. doi:10.1002/1097-0290(20000905)69:5<478::AID-BIT2>3.0.CO;2-LGoogle Scholar
  22. Burgess G, Fernandez-Velasco JG (2007) Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production. Int J Hydrogen Energy 32:1225–1234. doi: 10.1016/j.ijhydene.2006.10.055 Google Scholar
  23. Carrieri D, Ananyev G, Garcia Costas AM, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrogen Energy 33(8):2014–2022. doi: 10.1016/j.ijhydene.2008.02.022 Google Scholar
  24. Castenholz RW (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 87–103Google Scholar
  25. Chandel AK, Chan ES, Rudravaram R, Narusu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32Google Scholar
  26. Chen X, Sun Y, Xiu Z, Li X, Zhang D (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31:539–549. doi: 10.1016/j.ijhydene.2005.03.013 Google Scholar
  27. Claassen PAM, de Vrije GJ (2007) Hydrogen from biomass. Public report, BWP II project, Agrotechnology and Food Sciences Group, WageningenGoogle Scholar
  28. Claassen PAM, van Lier JB, Lopez-Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755. doi: 10.1007/s002530051586 Google Scholar
  29. Claassen PAM, Budde MAW, Van Noorden GE, Hoekema S, Hazewinkel JHO, Van Groenestijn JW, De Vrije GJ (2004) Biological hydrogen production from agro-food by-products. Total food: exploiting co-products—minimizing waste. Institute of Food Research, NorwichGoogle Scholar
  30. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5(3):223–234. doi: 10.1016/0168-6445(89)90033-8 Google Scholar
  31. Collet C, Adler N, Schwitzguebel J-P, Peringer P (2004) Hydrogen production by Clostridium thermolactum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479–1485. doi: 10.1016/j.ijhydene.2004.02.009 Google Scholar
  32. Cornet JF, Favier L, Dussap CG (2003) Modeling stability of photoheterotrophic continuous cultures in photobioreactors. Biotechnol Prog 19:1216–1227. doi: 10.1021/bp034041l Google Scholar
  33. Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photo evolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746. doi: 10.1128/JB.186.6.1737-1746.2003 Google Scholar
  34. Dalton H (2005) The Leeuwenhoek lecture 2000 The natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond B Biol Sci 360(1458):1207–1222. doi: 10.1098/rstb.2005.1657 Google Scholar
  35. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28. doi: 10.1016/S0360-3199(00)00058-6 Google Scholar
  36. Davila-Vazquez G, Arriaga S, Alatriste-Mondragón F, de León-Rodríguez A, Rosales-Colunga LM, Razo-Flores E (2008a) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7(1):27–45. doi: 10.1007/s11157-007-9122-7 Google Scholar
  37. Davila-Vazquez G, Alatriste-Mondragón F, de León Rodríguez A, Razo-Flores E (2008b) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrogen Energy 33(19):4989–4997. doi: 10.1016/j.ijhydene.2008.06.065 Google Scholar
  38. Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98(9):1695–1699. doi: 10.1016/j.biortech.2006.07.029 Google Scholar
  39. de Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane & bio-hydrogen. Dutch Biological Hydrogen Foundation, Petten, pp 103–123Google Scholar
  40. de Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, de Waard P, Claassen PAM (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74:1358–1367. doi: 10.1007/s00253-006-0783-x Google Scholar
  41. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196. doi: 10.1385/ABAB:84-86:1-9:181 Google Scholar
  42. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36. doi: 10.1186/1475-2859-4-36 Google Scholar
  43. Easterly JL, Burnham M (1996) Overview of biomass and waste fuel resources for power production. Biomass Bioenergy 10(2–3):79–92. doi: 10.1016/0961-9534(95)00063-1 Google Scholar
  44. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536. doi: 10.1016/j.tibtech.2006.09.001 Google Scholar
  45. Emanuelsson EAC, Arcangeli JP, Livingston AG (2003) The anoxic extractive membrane bioreactor. Water Res 37(6):1231–1238. doi: 10.1016/S0043-1354(02)00487-6 Google Scholar
  46. Ensign JC (1977) Biomass production from animal wastes. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Oxford, pp 455–483Google Scholar
  47. Eroğlu I, Aslan K, Gündüz U, Yücel M, Türker L (1997) Continuous hydrogen production by R. sphaeroides O.U. 001. International conference on biological hydrogen production, Plenum, New YorkGoogle Scholar
  48. Eroğlu E, Gündüz U, Yücel M, Türker L, Eroğlu I (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrogen Energy 29:163–171. doi: 10.1016/S0360-3199(03)00110-1 Google Scholar
  49. Eroğlu E, Eroğlu I, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy 31(11):1527–1535. doi: 10.1016/j.ijhydene.2006.06.020 Google Scholar
  50. Eroğlu I, Tabanoğlu A, Gündüz U, Eroğlu E, Yücel M (2008) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrogen Energy 33:531–541. doi: 10.1016/j.ijhydene.2007.09.025 Google Scholar
  51. Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 30:785–793. doi: 10.1016/j.ijhydene.2004.12.010 Google Scholar
  52. Fang HHP, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683–692. doi: 10.1016/j.ijhydene.2005.07.005 Google Scholar
  53. Fascetti E, D’Addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23(9):753–760. doi: 10.1016/S0360-3199(97)00123-7 Google Scholar
  54. Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21(6–7):855–862. doi: 10.1007/s11274-004-5972-0 Google Scholar
  55. Filatova LV, Berg IA, Krasil’nikova EN, Tsygankov AA, Laurinavichene TV, Ivanovskii RN (2005a) A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: acetate assimilation in Rhodobacter sphaeroides. Microbiology 74(3):265–269. doi: 10.1007/s11021-005-0061-4 Google Scholar
  56. Filatova LV, Berg IA, Krasil’nikova EN, Ivanovskii RN (2005b) A study of the mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate shunt: enzymes of the citramalate cycle in Rhodobacter sphaeroides. Microbiology 74(3):270–278. doi: 10.1007/s11021-005-0062-3 Google Scholar
  57. Filho PA, Badr O (2004) Biomass resources for energy in north-eastern Brazil. Appl Energy 77:51–67. doi: 10.1016/S0306-2619(03)00095-3 Google Scholar
  58. Fissler J, Kohring GW, Giffhorn F (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Microbiol Biotechnol 44:43–46. doi: 10.1007/BF00164478 Google Scholar
  59. Franchi E, Tosi C, Scolla G, Penna GD, Rodriguez F, Pedroni PM (2004) Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar Biotechnol 6:552–565. doi: 10.1007/s10126-004-1007-y Google Scholar
  60. Fuji T, Tarusawa M, Miyanaga M, Kiyota S, Watanabe T, Yabuki M (1987) Hydrogen production from alcohols, malate and mixed electron donors by Rhodopseudomonas sp. No. 7. Agric Biol Chem 51(1):1–7Google Scholar
  61. Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 33:70–72. doi: 10.1042/BST0330070 Google Scholar
  62. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810. doi: 10.1126/science.1137013 Google Scholar
  63. Gosse JL, Engel BJ, Rey FE, Harwood CS, Scriven LE, Flickinger MC (2007) Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol Prog 23(1):124–130. doi: 10.1021/bp060254+ Google Scholar
  64. Grosse S, Laramee L, Wendlandt K-D, McDonald IR, Miguez CB, Kleber H-P (1999) Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic nacterium Methylocystis sp. strain WI 14. Appl Environ Microbiol 65(9):3929–3935Google Scholar
  65. Gübitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82. doi: 10.1016/S0960-8524(99)00069-3 Google Scholar
  66. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52(1–2):21–29Google Scholar
  67. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27(11–12):1185–1193. doi: 10.1016/S0360-3199(02)00131-3 Google Scholar
  68. Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631. doi: 10.1128/JB.182.6.1624-1631.2000 Google Scholar
  69. Haq Z, Easterly JL (2006) Agricultural residue availability in the United States. Appl Biochem Biotechnol 129–132:3–21. doi: 10.1385/ABAB:129:1:3 Google Scholar
  70. Hassan MA, Shirai Y, Kusubayashi N, Karim MIA, Nakanishi K, Hashimoto K (1997) The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83(5):485–488. doi: 10.1016/S0922-338X(97)83007-3 Google Scholar
  71. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27:1339–1347. doi: 10.1016/S0360-3199(02)00090-3 Google Scholar
  72. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184. doi: 10.1016/j.ijhydene.2006.08.014 Google Scholar
  73. Hawkes FR, Forsey H, Premier GC, Dinsdale RM, Hawkes DL, Guwy AJ, Maddy J, Cherryman S, Shine J, Auty D (2008) Fermentative production of hydrogen from a wheat flour industry co-product. Bioresour Technol 99:5020–5029. doi: 10.1016/j.biortech.2007.09.010 Google Scholar
  74. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210. doi: 10.1073/pnas.0604600103 Google Scholar
  75. Hillmer P, Gest H (1977a) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129(2):724–731Google Scholar
  76. Hillmer P, Gest H (1977b) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilisation of H2 by resting cells. J Bacteriol 129(2):732–739Google Scholar
  77. Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy 27(11–12):1331–1338. doi: 10.1016/S0360-3199(02)00106-4 Google Scholar
  78. Hoekema S, Douma RD, Janssen M, Tramper J, Wijffels RH (2006) Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol Bioeng 95(4):613–626. doi: 10.1002/bit.20907 Google Scholar
  79. Holmes B, Jones N (2003) Brace yourself for the end of cheap oil. New Sci 179(2406):9Google Scholar
  80. Hustede E, Steinbuchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in nonsulfur purple bacteria. Appl Microbiol Biotechnol 39(1):87–93Google Scholar
  81. Ike A, Toda N, Murakawa T, Hirata K, Miyamoto K (1997) Hydrogen photoproduction from starch in CO2-fixing microalgal biomass by a halotolerant bacterial community. In: Zaborsky OR (ed) Biohydrogen. Hawaii, Plenum, New York and London, pp 311–318Google Scholar
  82. Ike A, Kawaguchi H, Hirata K, Miyamoto K (2001) Hydrogen photoproduction from starch in algal biomass. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 53–61Google Scholar
  83. Ikuta Y, Akano T, Shioji N, Maeda I (1997) Hydrogen production by photosynthetic microorganisms. In: Zaborsky OR (ed) Biohydrogen. Hawaii, Plenum, New York and London, pp 319–327Google Scholar
  84. Ivanovskii RN, Krasil’nikova EN, Berg IA (1997) The mechanism of acetate assimilation in the purple nonsulfur bacterium Rhodospirillum rubrum lacking isocitrate lyase. Microbiology 66(6):621–626Google Scholar
  85. Jahn A, Keuntje B, Dorffler M, Klipp W, Oelze J (1994) Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene. Appl Microbiol Biotechnol 40:687–690. doi: 10.1007/BF00173330 Google Scholar
  86. Jo JH, Lee DS, Park JM (2006) Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol Prog 22(2):431–437. doi: 10.1021/bp050258z Google Scholar
  87. Kadar Z, de Vrije T, van Noorden GE, Budde MAW, Szengyel Z, Reczey K, Claassen PAM (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113–116:497–508. doi: 10.1385/ABAB:114:1-3:497 Google Scholar
  88. Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 33(3):953–962. doi: 10.1016/j.ijhydene.2007.10.055 Google Scholar
  89. Kataoka N, Miya A, Kiriyama K (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36(6–7):41–47. doi: 10.1016/S0273-1223(97)00505-2 Google Scholar
  90. Katsuda T, Arimoto T, Igarashi K, Azuma M, Kato J, Takakuwa S, Ooshima H (2000) Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and it’s application to hydrogen production by Rhodobacter capsulatus. Biochem Eng J 5:157–164. doi: 10.1016/S1369-703X(00)00054-1 Google Scholar
  91. Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K (2001) H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91(3):277–282. doi: 10.1263/jbb.91.277 Google Scholar
  92. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  93. Kern M, Koch HG, Klemme JH (1992) EDTA activation of H2 photoproduction by Rhodospirillum rubrum. Appl Microbiol Biotechnol 37(4):496–500. doi: 10.1007/BF00180976 Google Scholar
  94. Khatipov E, Miyake M, Miyake J, Asada Y (1998) Accumulation of poly--hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett 162:39–45Google Scholar
  95. Kim M-S, Lee TJ, Yoon YS, Lee IG, Moon KW (2001) Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photo-fermentation. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 263–272Google Scholar
  96. Kim NJ, Lee JK, Lee CJ (2004a) Pigment reduction to improve photosynthetic productivity of Rhodobacter sphaeroides. J Gen Microbiol 1692(28):607–616Google Scholar
  97. Kim S-H, Han S-K, Shin H-S (2004b) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29:1607–1616. doi: 10.1016/j.ijhydene.2004.02.018 Google Scholar
  98. Kim E-J, Kim J-S, Kim M-S, Lee JK (2006a) Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrogen Energy 31:531–538. doi: 10.1016/j.ijhydene.2005.04.053 Google Scholar
  99. Kim M-S, Baek J-S, Lee JK (2006b) Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy 31:121–127. doi: 10.1016/j.ijhydene.2004.10.023 Google Scholar
  100. Kim M-S, Baek J-S, Yun Y-S, Sim SJ, Park S, Kim S-C (2006c) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816. doi: 10.1016/j.ijhydene.2005.06.009 Google Scholar
  101. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183(21):6466–6477. doi: 10.1128/JB.183.21.6466-6477.2001 Google Scholar
  102. Knappe J (1987) Anaerobic dissimilation of pyruvate. In: Niedhardt FC (ed) Escherichia coli and Salmonella typhimurium, vol 1. American Society for Microbiology, Washington DC, pp 151–155Google Scholar
  103. Ko IB, Noike T (2002) Use of blue optical filters for suppression of growth of algae in hydrogen producing non-axenic cultures of Rhodobacter sphaeroides RV. Int J Hydrogen Energy 27(11–12):1297–1302. doi: 10.1016/S0360-3199(02)00119-2 Google Scholar
  104. Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 27:1315–1329. doi: 10.1016/S0360-3199(02)00127-1 Google Scholar
  105. Kondo T, Arakawa M, Wakayama T, Miyake J (2002) Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. Int J Hydrogen Energy 27(11–12):1303–1308. doi: 10.1016/S0360-3199(02)00122-2 Google Scholar
  106. Kondo T, Wakayama T, Miyake J (2006) Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrogen Energy 31(11):1522–1526. doi: 10.1016/j.ijhydene.2006.06.019 Google Scholar
  107. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695. doi: 10.1007/s10529-006-9299-9 Google Scholar
  108. Kurokawa T, Shigeharu T (2005) Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Mar Biotechnol 7:112–118. doi: 10.1007/s10126-004-3088-z Google Scholar
  109. Kvaalen E, Wankat PC, McKenzie BA (2006) Alcohol distillation: basic principles, equipment, performance relationships, and safety. www.ces.purdue.edu/extmedia/AE/AE-117.html, Accessed May 2008
  110. Kyazze G, Dinsdale R, Guwy AJ, Hawkes FR, Premier GC, Hawkes DL (2007) Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnol Bioeng 97(4):759–770. doi: 10.1002/bit.21297 Google Scholar
  111. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, ChichesterGoogle Scholar
  112. Laurinavichene TV, Fedorov AS, Ghirardi ML, Siebert M, Tsygankov AA (2006) Demonstration of sustained hydrogen production by immobilised, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrogen Energy 31:659–667. doi: 10.1016/j.ijhydene.2005.05.002 Google Scholar
  113. Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27(11–12):1309–1313. doi: 10.1016/S0360-3199(02)00102-7 Google Scholar
  114. Levin DB (2004) Re: biohydrogen production: prospects and limitations to practical application-erratum. Int J Hydrogen Energy 29:1425–1426. doi: 10.1016/j.ijhydene.2004.05.004 Google Scholar
  115. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. doi: 10.1016/S0360-3199(03)00094-6 Google Scholar
  116. Levin DB, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31(11):1496–1503. doi: 10.1016/j.ijhydene.2006.06.015 Google Scholar
  117. Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660. doi: 10.1016/j.biortech.2006.02.027 Google Scholar
  118. Li H, Mustacci R, Knowles CJ, Skibar W, Sunderland G, Dalrymple I, Jackman SA (2004) An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron 60:655–661. doi: 10.1016/j.tet.2003.10.110 Google Scholar
  119. Liang TM, Cheng SS, Wu KL (2002) Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27(11–12):1157–1165. doi: 10.1016/S0360-3199(02)00099-X Google Scholar
  120. Liessens J, Verstraete W (1986) Selective inhibitors for continuous non-axenic hydrogen production by Rhodobacter capsulatus. J Appl Bacteriol 61(6):547–557Google Scholar
  121. Lin C-Y, Lay CH (2005) A nutrient formation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30:285–292. doi: 10.1016/j.ijhydene.2004.03.002 Google Scholar
  122. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642. doi: 10.1007/s00253-005-0229-x Google Scholar
  123. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrogen Energy 27(11–12):1271–1281. doi: 10.1016/S0360-3199(02)00111-8 Google Scholar
  124. Ma F, Hanna MH (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. doi: 10.1016/S0960-8524(99)00025-5 Google Scholar
  125. Mabee WE, Fraser EDG, McFarlane PN, Saddler JN (2006) Canadian biomass reserves for biorefining. Appl Biochem Biotechnol 129–132:22–40. doi: 10.1385/ABAB:129:1:22 Google Scholar
  126. Macaskie LE (2004) Biological hydrogen production from crops & sugar wastes. Final report, EPSRC project GR/S62406/01Google Scholar
  127. Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33(Pt 1):76–79. doi: 10.1042/BST0330076 Google Scholar
  128. Macedo IC, Leal MRLV, Silva JEAR (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil, available at www.unica.com.br/i_pages/files/gee3.pdf
  129. Macler BA, Bassham JA (1988) Carbon allocation in wild-type and Glc+ Rhodobacter sphaeroides under photoheterotrophic conditions. Appl Environ Microbiol 54(11):2737–2741Google Scholar
  130. Macler BA, Pelroy RA, Bassham JA (1979) Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas mutant. J Bacteriol 138(2):446–452Google Scholar
  131. Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767. doi: 10.1023/A:1008919200103 Google Scholar
  132. Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 28:831–835. doi: 10.1007/s10529-006-9008-8 Google Scholar
  133. Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89. doi: 10.1016/j.foodchem.2005.01.059 Google Scholar
  134. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58(5):618–624Google Scholar
  135. McCormick DB (1998) Oxidation–reduction reactions. Encyclopedia of life sciences. Wiley, ChichesterGoogle Scholar
  136. Melis A, Happe T (2004) Trails of green alga hydrogen research—from Hans Gaffron to new frontiers. Photosynth Res 80(1–3):401–409. doi: 10.1023/B:PRES.0000030421.31730.cb Google Scholar
  137. Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31(11):1563–1573. doi: 10.1016/j.ijhydene.2006.06.038 Google Scholar
  138. Miura Y, Ohta S, Mano M, Miyamoto K (1986) Isolation and characterisation of a unicellular green alga exhibiting high activity in dark hydrogen production. Agric Biol Chem 50(11):2837–2844Google Scholar
  139. Miura Y, Saitoh C, Matsuoka S, Miyamoto K (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotechnol Biochem 56(5):751–754CrossRefGoogle Scholar
  140. Miyake J, Mao X-Y, Kawamura S (1984) Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. J Ferment Technol 62(6):531–535Google Scholar
  141. Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production: research for efficient light conversion. J Biotechnol 70:89–101. doi: 10.1016/S0168-1656(99)00063-2 Google Scholar
  142. Miyamoto K, Ohta S, Nawa Y, Mori Y, Miura Y (1987) Hydrogen production by a mixed culture of a green alga Chlamydomonas reinhardtii and a photosynthetic bacterium Rhodospirillum rubrum. Agric Biol Chem 51(5):1319–1324Google Scholar
  143. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65. doi: 10.1016/S0960-8524(99)00130-3 Google Scholar
  144. Nakada E, Asada Y, Arai T, Miyake J (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioeng 80(1):53–57. doi: 10.1016/0922-338X(95)98176-L Google Scholar
  145. Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84. doi: 10.1080/10408419891294181 Google Scholar
  146. Nastari PM, Macedo IC, Szwarc A (2005) Observations on the draft document entitled “Potential for Biofuels for transport in developing countries”. The World Bank, Air Quality Thematic Group, p 8. http://www.unica.com.br/i_pages/files/ibm.pdf
  147. Nath K, Das D (2003) Hydrogen from biomass. Curr Sci 85(3):265–271Google Scholar
  148. Nath K, Das D (2004a) Biohydrogen production as a potential energy source—present state-of-art. J Sci Ind Res (India) 63(9):729–738Google Scholar
  149. Nath K, Das D (2004b) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529. doi: 10.1007/s00253-004-1644-0 Google Scholar
  150. Nath K, Kumar A, Das D (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68:533–541. doi: 10.1007/s00253-005-1887-4 Google Scholar
  151. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 33(4):1195–1203. doi: 10.1016/j.ijhydene.2007.12.011 Google Scholar
  152. Nielsen AM, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl L-G, Lundstrom I, Svensson BH (2001) Hydrogen production from organic waste. Int J Hydrogen Energy 26:547–550. doi: 10.1016/S0360-3199(00)00125-7 Google Scholar
  153. Nowak M (2004) Urban agriculture on the rooftop, Cornell University, available at www3.telus.net/public/a6a47567/roofgarden_thesis.pdf
  154. Odom JM, Wall JD (1983) Photoproduction of H2 from cellulose by an anerobic bacterial culture. Appl Environ Microbiol 45(4):1300–1305Google Scholar
  155. Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39(19):4673–4682. doi: 10.1016/j.watres.2005.09.019 Google Scholar
  156. Oh Y-K, Seol E-H, Kim M-S, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 29:1115–1121Google Scholar
  157. Ordal EJ, Halvorson HO (1939) A comparison of hydrogen production from sugars and formic acid by normal and variant strains of Escherichia coli. J Bacteriol 38:199–220Google Scholar
  158. Öztürk Y, Yücel M, Daldal F, Mandaci S, Gündüz U, Türker L, Eroğlu I (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrogen Energy 31(11):1545–1552. doi: 10.1016/j.ijhydene.2006.06.042 Google Scholar
  159. Park W, Hyun SH, Oh SE, Logan BE, Kim IS (2005) Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol 39(12):4416–4420. doi: 10.1021/es048569d Google Scholar
  160. Penfold DW, Forster CF, Macaskie LE (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzyme Microb Technol 33(2–3):185–189. doi: 10.1016/S0141-0229(03)00115-7 Google Scholar
  161. Pimentel D (2001) The limitations of biomass energy. In: Meyers R (ed) Encyclopedia of physical science, technology, 3rd edn. Academic Press, San Diego, pp 159–171Google Scholar
  162. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27(11–12):1257–1264. doi: 10.1016/S0360-3199(02)00116-7 Google Scholar
  163. Redwood MD, Macaskie LE (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energy 31(11):1514–1521. doi: 10.1016/j.ijhydene.2006.06.018 Google Scholar
  164. Redwood MD, Macaskie LE (2007a) Method and apparatus for biohydrogen production. British patent application no. 0705583.3, UKGoogle Scholar
  165. Redwood MD, Macaskie LE (2007b) Efficient bio-H2 and PEM-FC catalyst. In: Proceedings of the 7th hydrogen-power and theoretical engineering solutions international symposium (HyPoThESIS VII), Merida. CICY ISBN:968-6114-21-1Google Scholar
  166. Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2007) Dissecting the roles of E. coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55. doi: 10.1111/j.1574-6968.2007.00966.x Google Scholar
  167. Ren N, Li J, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157. doi: 10.1016/j.ijhydene.2006.02.011 Google Scholar
  168. Rocha JS, Barbosa MJ, Wijffels RH (2001) Hydrogen production by photoheterotrophic bacteria: culture media, yields and efficiencies. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 3–32Google Scholar
  169. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Echerichia coli by weak acids. J Bacteriol 180(4):767–772Google Scholar
  170. Rogers PL, Jeon YJ, Svenson CJ (2005) Application of biotechnology to industrial sustainability. Process Saf Environ Prot 83(B6):499–503Google Scholar
  171. Sakurai H, Masukawa H (2007) Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145. doi: 10.1007/s10126-006-6073-x Google Scholar
  172. Sasikala K, Ramana CV, Rao PR, Subrahmanyam M (1990) Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency on the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 15(11):795–797. doi: 10.1016/0360-3199(90)90015-Q Google Scholar
  173. Sasikala K, Ramana CV, Subrahmanyam M (1991) Photoproduction of hydrogen from wastewater of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides. Indian J Exp Biol 29:74–75Google Scholar
  174. Sasikala K, Ramana CV, Rao PR (1992) Photoproduction of hydrogen from the waste water of a distillery by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 17(1):23–27. doi: 10.1016/0360-3199(92)90217-K Google Scholar
  175. Sasikala C, Ramana CV, Prasad GS (1994a) H2 production by mixed cultures. World J Microbiol Biotechnol 10(2):221–223. doi: 10.1007/BF00360892 Google Scholar
  176. Sasikala C, Ramana CV, Rao PR (1994b) Nitrogen fixation by Rhodopseudomonas palustris OU 11 with aromatic compounds as carbon source/electron donors. FEMS Microbiol Lett 122:75–78. doi: 10.1111/j.1574-6968.1994.tb07146.x Google Scholar
  177. Sasikala K, Ramana CV, Rao PR, Kovacs KL (1995) Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology. Adv Appl Microbiol 38:211–295. doi: 10.1016/S0065-2164(08)70217-X Google Scholar
  178. Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase-3 formation in Escherichia coli. Mol Microbiol 6(11):1523–1532. doi: 10.1111/j.1365-2958.1992.tb00873.x Google Scholar
  179. Schnoor JL (2006) Biofuels and the environment. Environ Sci Technol 40(13):4024Google Scholar
  180. Shi X-Y, Yu Q-H (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energy 31:1641–1647. doi: 10.1016/j.ijhydene.2005.12.008 Google Scholar
  181. Sode K, Watanabe M, Makimoto H, Tomiyama M (1999) Construction and characterisation of fermentative lactate dehydrogenase E. coli mutant and its potential for bacterial hydrogen production. Appl Biochem Biotechnol 77–79:317–323. doi: 10.1385/ABAB:77:1-3:317 Google Scholar
  182. Sode K, Yamamoto S, Tomiyama M (2001) Metabolic engineering approaches for the improvement of bacterial hydrogen production based on Escherichia coli mixed acid fermentation. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 195–204Google Scholar
  183. Splendiani A, Nicolella C, Livingston AG (2003) A novel biphasic extractive membrane bioreactor for minimization of membrane-attached biofilms. Biotechnol Bioeng 83(1):8–19. doi: 10.1002/bit.10643 Google Scholar
  184. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4(2):111–133. doi: 10.1016/S1364-0321(99)00013-1 Google Scholar
  185. Staubmann R, Foidl G, Foidl N, Guebitz GM, Lafferty R, Valencia-Arbizu VM, Walter S (1997) Biogas production from Jatropha curcas press-cake. Appl Biochem Biotechnol 63–65:457–467. doi: 10.1007/BF02920446 Google Scholar
  186. Stephenson M, Stickland LH (1932) Hydrogenlyases: bacterial enzymes liberating molecular hydrogen. Biochem J 26:712–724Google Scholar
  187. Stern N (2006) Stern review executive summary. New Economics Foundation. Available at news.bbc.co.uk/1/shared/bsp/hi/pdfs/30_10_06_exec_sum.pdfGoogle Scholar
  188. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 885–914Google Scholar
  189. Taillez P, Girard H, Longin R, Beguin P, Millet J (1983) Cellulose fermentation by an asporogenic mutant and an ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):203–206Google Scholar
  190. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20. doi: 10.1128/MMBR.66.1.1-20.2002 Google Scholar
  191. Tanisho S, Ishiwata Y (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrogen Energy 20(7):541–545. doi: 10.1016/0360-3199(94)00101-5 Google Scholar
  192. Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen evolution by fermentation. Int J Hydrogen Energy 23(7):559–563. doi: 10.1016/S0360-3199(97)00117-1 Google Scholar
  193. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206. doi: 10.1016/j.ijhydene.2006.06.034 Google Scholar
  194. Tao Y, He Y, Wu Y, Liu F, Li X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrogen Energy 33(3):963–973. doi: 10.1016/j.ijhydene.2007.11.021 Google Scholar
  195. Teplyakov VV, Gassanova LG, Sostina EG, Slepova EV, Modigell M, Netrusov AI (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects. Int J Hydrogen Energy 27:1149–1155. doi: 10.1016/S0360-3199(02)00093-9 Google Scholar
  196. Thangaraj A, Kulandaivelu G (1994) Biological hydrogen photoproduction using dairy and sugarcane wastewaters. Bioresour Technol 48:9–12. doi: 10.1016/0960-8524(94)90127-9 Google Scholar
  197. Thauer R (1977) Limitation of microbial H2-formation via fermentation. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Oxford, pp 201–204Google Scholar
  198. Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575. doi: 10.1016/j.biombioe.2007.03.003 Google Scholar
  199. Tosatto SCE, Toppo S, Donatella C, Giacometti GM, Costantini P (2008) Comparative analysis of [FeFe] hydrogenase from Thermotogales indicates the molecular basis of resistance to oxygen inactivation. Int J Hydrogen Energy 33(2):570–578. doi: 10.1016/j.ijhydene.2007.10.010 Google Scholar
  200. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 27(11–12):1283–1289. doi: 10.1016/S0360-3199(02)00103-9 Google Scholar
  201. Tsygankov AA (2001) Laboratory scale photobioreactors. Appl Biochem Microbiol 37(4):333–341. doi: 10.1023/A:1010266116747 Google Scholar
  202. Tsygankov A (2007a) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43(3):250. doi: 10.1134/S0003683807030040 Google Scholar
  203. Tsygankov AA (2007b) Biological generation of hydrogen. Russ J Gen Chem 77(4):685–693. doi: 10.1134/S1070363207040317 Google Scholar
  204. Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49(1):102–107. doi: 10.1007/s002530051144 Google Scholar
  205. Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80(7):777–783. doi: 10.1002/bit.10431 Google Scholar
  206. Turkarslan S, Yiğit OD, Aslan K, Eroğlu I, Gündüz U (1997) Photobiological hydrogen production by R. sphaeroides O.U 001 by utilisation of waste water from milk industry. International conference on biological hydrogen production, Plenum, New YorkGoogle Scholar
  207. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto S (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 97(4):395–397. doi: 10.1016/0922-338X(95)94005-C Google Scholar
  208. Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varraldo HM (2005) Hydrogen generation via anaerobic fermentations of paper mill wastes. Bioresour Technol 96:1907–1913. doi: 10.1016/j.biortech.2005.01.036 Google Scholar
  209. Valdez-Vazquez I, Rios-Leal E, Carmona-Martinez A, Munoz-Paez KM, Poggi-Varaldo HM (2006) Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ Sci Technol 40:3409–3415. doi: 10.1021/es052119j Google Scholar
  210. Van Ginkel S, Logan BE (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9350–9356. doi: 10.1021/es0510515 Google Scholar
  211. Van Groenestijn JW, Hazewinkel JHO, Nienoord M, Bussmann PJT (2002) Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 27(11–12):1141–1147. doi: 10.1016/S0360-3199(02)00096-4 Google Scholar
  212. Van Haaster DJ, Hagedoorn PL, Jongejan JA, Hagen WR (2005) On the relationship between affinity for molecular hydrogen and the physiological directionality of hydrogenases. Biochem Soc Trans 33(1):12–14. doi: 10.1042/BST0330012 Google Scholar
  213. Van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27(11–12):1390–1398Google Scholar
  214. Van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262. doi: 10.1002/bit.10463 Google Scholar
  215. Van Ooteghem SA, Jones A, van der Lelie D, Dong B, Mahajan D (2004) H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26(15):1223–1232. doi: 10.1023/B:BILE.0000036602.75427.88 Google Scholar
  216. Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1(2):107–125Google Scholar
  217. Vasilyeva L, Miyake M, Khatipov E, Wakayama T, Sekine M, Hara M, Nakada E, Asada Y, Miyake J (1999) Enhanced hydrogen production by a mutant of R. sphaeroides having an altered light-harvesting system. J Biosci Bioeng 87(5):619–624. doi: 10.1016/S1389-1723(99)80124-8 Google Scholar
  218. Vignais PM, Colbeau M, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26:155–234. doi: 10.1016/S0065-2911(08)60397-5 Google Scholar
  219. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501Google Scholar
  220. Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19(8):759–762. doi: 10.1023/A:1018336209252 Google Scholar
  221. Wakayama T, Miyake J (2001) Hydrogen from biomass. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II: an approach to environmentally acceptable technology. Pergamon, Oxford, pp 3–32Google Scholar
  222. Wakayama T, Miyake J (2002) Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV. Int J Hydrogen Energy 27:1495–1500. doi: 10.1016/S0360-3199(02)00088-5 Google Scholar
  223. Wakayama T, Nakada E, Asada Y, Miyake J (2000) Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV—from hour to second range. Appl Biochem Biotechnol 84–86:431–440. doi: 10.1385/ABAB:84-86:1-9:431 Google Scholar
  224. Wall JD, Gest H (1979) Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata. J Bacteriol 137(3):1459–1463Google Scholar
  225. Weetall HH, Sharma BP, Detar CC (1989) Photometabolic production of hydrogen from organic substrates by free and immobilised mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae. Biotechnol Bioeng 23:605–614. doi: 10.1002/bit.260230310 Google Scholar
  226. Willison JC, Madern D, Vignais PM (1984) Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata. Biochem J 219(2):593–600Google Scholar
  227. Worin NA, Lissolo T, Colbeau A, Vignais PM (1996) Increased H2 photoproduction by Rhodobacter capsulatus strains deficient in uptake hydrogenase. J Mar Biotechnol 4:28–33Google Scholar
  228. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron-transport. Plant Physiol 117:129–139. doi: 10.1104/pp.117.1.129 Google Scholar
  229. Yagi K, Maeda I, Idehara K, Miura Y, Akano T, Fukatu K, Ikuta Y, Nakamura HK (1994) Removal of inhibition by ammonium ion in nitrogenase-dependent hydrogen evolution of a marine photosynthetic bacterium, Rhodopseudomonas sp strain W-1s. Appl Biochem Biotechnol 45–46:429–436. doi: 10.1007/BF02941817 Google Scholar
  230. Yetis M, Gündüz U, Eroğlu I, Yücel M, Türker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 25:1035–1041. doi: 10.1016/S0360-3199(00)00027-6 Google Scholar
  231. Yiğit OD, Gündüz U, Türker L, Yücel M, Eroğlu I (1999) Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the waste water of a sugar refinery. J Biotechnol 70:125–131. doi: 10.1016/S0168-1656(99)00066-8 Google Scholar
  232. Ying Li R, Zhang T, Fang HHP (2008) Characteristics of a phototrophic sludge producing hydrogen from acetate and butyrate. Int J Hydrogen Energy 33(9):2147–2155. doi: 10.1016/j.ijhydene.2008.02.055 Google Scholar
  233. Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20(9):895–899. doi: 10.1023/A:1005327912678 Google Scholar
  234. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63. doi: 10.1263/jbb.91.58 Google Scholar
  235. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22:389–395. doi: 10.1016/S0961-9534(02)00014-4 Google Scholar
  236. Yoon JH, Shin JH, Kim M-S, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrogen Energy 31:721–727. doi: 10.1016/j.ijhydene.2005.06.023 Google Scholar
  237. Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukuwa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71(11):6762–6768. doi: 10.1128/AEM.71.11.6762-6768.2005 Google Scholar
  238. Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol NY 9(1):101–112. doi: 10.1007/s10126-006-6035-3 Google Scholar
  239. Yun S-I, Ohta Y (2005) Removal of volatile fatty acids with immobilised Rhodococcus sp. B261. Bioresour Technol 96:41–46. doi: 10.1016/j.biortech.2004.03.006 Google Scholar
  240. Zacchi G, Axelsson A (1989) Economic evaluation of preconcentration in product and of ethanol from dilute sugar solutions. Biotechnol Bioeng 34:223–233. doi: 10.1002/bit.260340211 Google Scholar
  241. Zhu H, Miyake J, Tsygankov AA, Asada Y (1995) Hydrogen production from highly concentrated organic wastewater by photosynthetic bacteria & anaerobic bacteria. Water Treat 10:61–68Google Scholar
  242. Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999a) Hydrogen production from tofu waste water by Rhodobacter sphaeroides immobilised in agar gels. Int J Hydrogen Energy 24:305–310. doi: 10.1016/S0360-3199(98)00081-0 Google Scholar
  243. Zhu H, Wakayama T, Suzuki T, Asada Y, Miyake J (1999b) Entrapment of Rhodobacter sphaeroides in cationic polymer/agar gels for hydrogen production in the presence of NH4 +. J Biosci Bioeng 88(5):507–512. doi: 10.1016/S1389-1723(00)87667-7 Google Scholar
  244. Zhu H, Wakayama T, Asada Y, Miyake J (2001) Hydrogen production by four cultures with participation by anoxygenic photosynthetic bacterium and anaerobic bacterium in the presence of NH4 +. Int J Hydrogen Energy 26(11):1149–1154. doi: 10.1016/S0360-3199(01)00038-6 Google Scholar
  245. Zhu HG, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrogen Energy 27(11-12):1349–1357. doi: 10.1016/S0360-3199(02)00118-0 Google Scholar
  246. Zinchenko VV, Kopteva AV, Belavina NV, Mitronova TN, Frolova VD, Shestakov SV (1991) The study of Rhodobacter sphaeroides mutants of different type with derepressed nitrogenase. Genetika 27(6):991–999Google Scholar
  247. Zinchenko VV, Babykin M, Glaser V, Mekhedov S, Shestakov SV (1997) Mutation in ntrC gene leading to the derepression of nitrogenase synthesis in Rhodobacter sphaeroides. FEMS Microbiol Lett 147:57–61. doi: 10.1111/j.1574-6968.1997.tb10220.x Google Scholar
  248. Zurrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37(5):789–793Google Scholar
  249. Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91(4):157–172. doi: 10.1007/s00114-004-0516-x Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mark D. Redwood
    • 1
  • Marion Paterson-Beedle
    • 1
  • Lynne E. Macaskie
    • 1
  1. 1.School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamUK

Personalised recommendations