Sustainability in metal mining: from exploration, over processing to mine waste management

  • Bernhard DoldEmail author
Review Paper


Metal mining or more general mineral mining, is the base industry of the economic wealth and development of numerous countries. However, mining has a negative reputation due to the complex problems of environmental contamination like SO2 and CO2 emissions and acid mine drainage (AMD) formation, which endangers vital limited resources, like air, water, and soils. This view paper highlights the environmental problems of todays metal mining operations and explores possibilities of future more sustainable mining operations with focus on enhanced and optimized metal recovery systems in combination with a minimization of the environmental impact. These changes depend on a change in mentality and in the mining operation process, which can nowadays yet be observed in some modern mining operations. The goal for the future will be to implement these changes as standard for all future mining operations.


Acid mine drainage Biomining Tailings Pollution Sulfides Sulfates Sustainable Prevention Treatment Remediation Environment 


  1. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRefGoogle Scholar
  2. Banfield JF, Nealson, KH (ed) (1997) Geomicrobiology. Reviews in mineralogy, vol 35. MSA, Washington, DCGoogle Scholar
  3. Braungardt CB, Achterberg EP, Elbaz-Poulichet F, Morley NH (2003) Metal geochemistry in a mine-polluted estuarine system in Spain. Appl Geochem 18:1757–1771CrossRefGoogle Scholar
  4. Brimhall GH, Alpers CN, Cunningham AB (1985) Analysis of supergene ore-forming processes and ground-water solute transport using mass balance principles. Econ Geol 80:1227–1257CrossRefGoogle Scholar
  5. Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage. Science 106:253–256CrossRefGoogle Scholar
  6. Demergasso CS et al (2005) Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253CrossRefGoogle Scholar
  7. Diaby N, Dold B, Buselli E, Vicetti R (2006) Effects on elements mobility due to the implementation of a wetland on the marine shore porphyry copper tailings disposal Bahia de Ite, Peru. In: Barnhisel RI (ed) 7th International conference on Acid Rock Drainage (ICARD). American Society of Mining and Reclamation, St. Louis, pp 498–506Google Scholar
  8. Diaby N et al (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307CrossRefGoogle Scholar
  9. Dold B (2003) Enrichment processes in oxidizing sulfide mine tailings: lessons for supergene ore formation. SGA News 1:10–15Google Scholar
  10. Dold B (2006a) Element flows associated with marine shore mine tailings deposits. Environ Sci Technol 40:752–758CrossRefGoogle Scholar
  11. Dold B (2006b) Geochemical modeling of the exotic copper mineralization at the Exotica deposit, Chuquicamata, Chile. In: XI Congreso Geologico Chileno, Antofagasta, Chile, pp 274–250Google Scholar
  12. Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55CrossRefGoogle Scholar
  13. Dold B, Blowes DW, Dickhout R, Spangenberg JE, Pfeifer HR (2005) Low molecular weight carboxylic acids in oxidizing porphyry copper tailings. Environ Sci Technol 39:2515–2521CrossRefGoogle Scholar
  14. Dold B, Wade C, Fontbote L (2008) Water management for acid mine drainage control at the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit Cerro de Pasco, Peru. J Geochem Explor (in press)Google Scholar
  15. Domenech C, Ayora C, de Pablo J (2002) Sludge weathering and mobility of contaminants in soil affected by the Aznalcollar tailing dam spill (SW Spain). Chem Geol 190:355–370CrossRefGoogle Scholar
  16. Domic EM (2007) A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, BerlinGoogle Scholar
  17. Donati ER, Sand W (2007) Microbial processing of metal sulfides. Springer, DordrechtCrossRefGoogle Scholar
  18. du Plessis CA, Batty JD, Dew DW (2007) Comercial applications of thermophile bioleaching. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, BerlinGoogle Scholar
  19. Ehrlich HL (1996) Geomicrobiology. Dekker, New YorkGoogle Scholar
  20. Evans AM (1993) Ore geology and industrial minerals. Blackwell Scientific Publications, OxfordGoogle Scholar
  21. Galan E et al (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421CrossRefGoogle Scholar
  22. Giesler R et al (2000) Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. The podzolization process. Geoderma 94:249–263CrossRefGoogle Scholar
  23. Grimalt JO, Ferrer M, Macpherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242:3–11CrossRefGoogle Scholar
  24. Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, BerlinGoogle Scholar
  25. Holmstrom H, Ohlander B (1999) Oxygen penetration and subsequent reactions in flooded sulphidic mine tailings: a study at Stekenjokk, northern Sweden. Appl Geochem 14:747–759CrossRefGoogle Scholar
  26. Holmstrom H, Salmon UJ, Carlsson E, Petrov P, Ohlander B (2001) Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Sci Total Environ 273:111–133CrossRefGoogle Scholar
  27. Ingeneria y Geotecnia LTDA (1990) Levantamiento catastral de los tranques de relaves en Chile, SantiagoGoogle Scholar
  28. Jänicke M, Weidner H (eds) (1997) National environmental policies. A comparative study of capacity-building. Springer, BerlinGoogle Scholar
  29. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473CrossRefGoogle Scholar
  30. Kelley KD, Taylor CD (1997) Environmental geochemistry of shale-hosted AgPbZn massive sulfide deposits in northwest Alaska: natural background concentrations of metals in water from mineralized areas. Appl Geochem 12:397–409CrossRefGoogle Scholar
  31. Korte F, Spiteller M, Coulston F (2000) The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania. Ecotoxicol Environ Safety 46:241–245CrossRefGoogle Scholar
  32. Moses CO, Nordstrom KD, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571CrossRefGoogle Scholar
  33. Mote TI, Becker TA, Renne P, Brimhall GH (2001a) Chronology of exotic mineralization at El Salvador, Chile, by Ar-40/Ar-39 dating of copper wad and supergene alunite. Econ Geol 96:351–366CrossRefGoogle Scholar
  34. Mote TI, Brimhall GH, Tidy-Finch E, Muller G, Carrasco P (2001b) Application of mass-balance modeling of sources, pathways, and sinks of supergene enrichment to exploration and discovery of the Quebrada Turquesa exotic copper orebody, El Salvador district, Chile. Econ Geol 96:367–386CrossRefGoogle Scholar
  35. Münchmeyer C (1996) Exotic deposits-products of lateral migration of supergene solutions from porphyry copper deposits. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Society of Economic Geologist. Special Publication, pp 43–58Google Scholar
  36. Navarro M, Sanchez M, Lopez H, Lopez MC (1993) Arsenic contamination levels in waters, soils, and sludges in Southeast Spain. Bull Environ Contam Toxicol 50:356–362CrossRefGoogle Scholar
  37. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS (ed) Acid sulfate weathering. Soil Science Society America, MadisonGoogle Scholar
  38. Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology. Reviews in mineralogy. Mineralogical Society of America, Washington, DCGoogle Scholar
  39. Plumb JJ, Hawkes RB, Franzmann PD (2007) The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, BerlinGoogle Scholar
  40. Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of ore deposits. Part A: processes, techniques, and health issues. Rev Econ Geol 6: 71–116Google Scholar
  41. Rawlings DE, Johnson DB (2007) Biomining. Springer, BerlinGoogle Scholar
  42. Ritchie AIM (1994) The waste-rock environment. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine-waste. Mineralogical Association of Canada, NepeanGoogle Scholar
  43. Rohwerder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, DordrechtGoogle Scholar
  44. Romero L et al (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18:1399–1416CrossRefGoogle Scholar
  45. Runkel RL, Kimball BA, Walton-Day K, Verplanck PL (2007) A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado. Appl Geochem 22:1899–1918CrossRefGoogle Scholar
  46. Sanchez Espana J et al (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  47. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-base molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, DordrechtGoogle Scholar
  48. Schippers A, Sand W, Glombitza F, Willscher S (eds) (2007) Biohydrometallurgy: from the single cell to the environment. Advanced materials research, vol 20/21. Trans Tech Publications, SchweizGoogle Scholar
  49. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522CrossRefGoogle Scholar
  50. Schwertmann U, Bigham JM, Murad E (1995) The first occurence of schwertmannite in a natural stream environment. Eur J Min 7:547–552Google Scholar
  51. Smuda J, Dold B, Friese K, Morgenster P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92:97–110CrossRefGoogle Scholar
  52. Smuda J, Dold B, Spangenberg JE, Pfeifer HR (2008) Geochemistry of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol. doi: 10.1016/j.chemgeo.2008.08.001 Google Scholar
  53. Southam G, Saunders JA (2006) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084CrossRefGoogle Scholar
  54. Strömberg B, Banwart S (1994) Kinetic modelling of geochemical processes at Aitik mining waste rock site in northern Sweden. Appl Geochem 9:583–595CrossRefGoogle Scholar
  55. van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272CrossRefGoogle Scholar
  56. Wehland F et al (2002) The dam breakage of Baia Mare—a pilot study of magnetic screening. Phys Chem Earth, Parts A/B/C 27:1371–1376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepcionChile

Personalised recommendations