Arsenic in drinking water: sources, occurrence and health effects (a review)

Review Paper

Abstract

Because dramatic cases of arsenic contamination of water resources, soils, vegetables, humans and animals increase, this review has focussed on the fate and behaviour of this element and what kind of health impacts are related with its release in surface or ground waters. In a first part, we point out how the primary minerals can lead to As mobilization and exportation by surface waters and suspended matter. We also emphasize the particular key role for As retention through both adsorption onto natural Fe(III) (hydr)oxides, Mn oxides and/or precipitation as Fe(III) arsenates. Nowadays, numerous and efficient systems for arsenic removal from any natural resources are available to produce good quality drinking water (with <10 μg/l As); however it is not within the scope of the present review. In a second part we focus on recent knowledge about the human toxicity of the various arsenic species. Chronic exposure to As in drinking water lead to many health diseases and, although the mechanisms of toxification/detoxification are not well identified, the role of methylated species is discussed. Some epidemiologic studies are cited, but the exact relationship between past chronic As exposure and present health diseases has been questioned.

Keywords

Arsenic Speciation Geological origin Drinking water Toxicity Human exposure Epidemiologic studies Health risks 

Notes

Acknowledgments

Both authors wish to thank their respective collaborators, either at Girona or Limoges, for which due credit is given here. Our studies on Arsenic were funded, respectively, by Ministerio de Educación y Ciencia (Spain) (under project CTM2005-07342-C02-01/TECNO) and by Conseil Régional du Limousin (France), whose supports are greatly acknowledged.

References

  1. Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW et al (2006) Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 114:1193–1198. doi: 10.1289/ehp.9008 CrossRefGoogle Scholar
  2. Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19:1–15. doi: 10.1021/tx050106d CrossRefGoogle Scholar
  3. Ayotte JD, Nolan BT, Nuckols JR, Cantor KP, Robinson GR, Baris D et al (2006) Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ Sci Technol 40:3578–3585. doi: 10.1021/es051972f CrossRefGoogle Scholar
  4. Azcue JM, Muroch A, Rosa F, Hall GEM (1994) Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs lake B.C. Environ Technol 15:669–678CrossRefGoogle Scholar
  5. Baeyens W, de Brauwere A, Brion N, De Gieter M, Leermakers M (2007) Arsenic speciation in the River Zenne, Belgium. Sci Total Environ 384:409–419. doi: 10.1016/j.scitotenv.2007.05.044 CrossRefGoogle Scholar
  6. Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K et al (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization and performance in reactors. J Appl Microbiol 93:656–667. doi: 10.1046/j.1365-2672.2002.01726.x CrossRefGoogle Scholar
  7. Bednar AJ, Garbarino JR, Ferrer I, Rutherford DW, Wershaw J, Ranville F et al (2003) Photodegradation of Roxarsone in poultry litter leachates. Sci Total Environ 302:237–245. doi: 10.1016/S0048-9697(02)00322-4 CrossRefGoogle Scholar
  8. Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18. doi: 10.1002/aheh.200390025 CrossRefGoogle Scholar
  9. Bodénan F, Baranger P, Piantone P, Lassin A, Azaroual M, Gaucher E et al (2004) Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signatures. Appl Geochem 19:1785–1800. doi: 10.1016/j.apgeochem.2004.03.012 CrossRefGoogle Scholar
  10. Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47:204–212. doi: 10.1016/j.yrtph.2006.09.005 CrossRefGoogle Scholar
  11. Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ et al (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid mine drainage (Carnoulès, France). J Appl Microbiol 95:492–499. doi: 10.1046/j.1365-2672.2003.02004.x CrossRefGoogle Scholar
  12. Buckley AN, Walker W (1988) The surface composition of arsenopyrite exposed to oxidizing environments. Appl Surf Sci 35:227–240. doi: 10.1016/0169-4332(88)90052-9 CrossRefGoogle Scholar
  13. Carbonell-Barrachina AA, Rocamora A, Garcia-Gomis C, Martinez-Sanchez F, Burlo F (2004) Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcollar environmental disaster. Geoderma 122:195–203. doi: 10.1016/j.geoderma.2004.01.008 CrossRefGoogle Scholar
  14. Carrillo-Chávez A, Drever JI, Martínez M (2000) Arsenic content and groundwater geochemistry of the San Antonio-El Triunfo, Carrizal and Los Planes Aquifers in Southernmost Baja California, Mexico. Environ Geol 39:1295–1303. doi: 10.1007/s002540000153 CrossRefGoogle Scholar
  15. Ćavar C, Klapec T, Grubešić RJ, Valek M (2005) High exposure to arsenic from drinking water at several localities in Eastern Croatia. Sci Total Environ 339:277–282. doi: 10.1016/j.scitotenv.2004.12.013 CrossRefGoogle Scholar
  16. Charlet L, Chakraborty S, Appelo CAJ, Roman-Ross G, Nath B, Ansari AA et al (2007) Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. Appl Geochem 22:1273–1292. doi: 10.1016/j.apgeochem.2006.12.022 CrossRefGoogle Scholar
  17. Chen CJ, Wang SL, Chiou JM, Tseng CH, Chiou HY, Hsueh YM et al (2007) Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharmacol 222:298–304. doi: 10.1016/j.taap.2006.12.032 CrossRefGoogle Scholar
  18. Cheng Z, Van Geen A, Seddique AA, Ahmed KM (2005) Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environ Sci Technol 39:4759–4766. doi: 10.1021/es048065f CrossRefGoogle Scholar
  19. Concha G, Nermell B, Vahter M (2006) Spatial and temporal variations in arsenic exposure via drinking-water in Northern Argentina. J Health Popul Nutr 24:317–326Google Scholar
  20. Courtin-Nomade A, Néel C, Bril H, Davranche M (2002) Study of the trapping and mobilisation of arsenic and lead in former metallic mine tailings—environmental’s conditions effects. Bull Soc Géol Fr 173:479–485. doi: 10.2113/173.5.479 CrossRefGoogle Scholar
  21. Courtin-Nomade A, Bril H, Néel C, Lenain JF (2003) Evolution of arsenic ironpans developed within tailings of a former metallic mine—Enguialès, Aveyron, France. Appl Geochem 18:395–408. doi: 10.1016/S0883-2927(02)00098-7 CrossRefGoogle Scholar
  22. Courtin-Nomade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some current iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396. doi: 10.1016/j.apgeochem.2004.08.002 CrossRefGoogle Scholar
  23. Dobran S, Zagury GJ (2006) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 64:239–250. doi: 10.1016/j.scitotenv.2005.06.006 Google Scholar
  24. Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55. doi: 10.1016/S0375-6742(01)00174-1 CrossRefGoogle Scholar
  25. Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29:297–305. doi: 10.1016/0043-1354(94)E0089-O CrossRefGoogle Scholar
  26. Engel RR, Smith AH (1994) Arsenic in drinking water and mortality from vascular disease: an ecological analysis in 30 counties in the United States. Arch Environ Health 79:418–427Google Scholar
  27. Erickson ML, Barnes RJ (2005) Well characteristics influencing arsenic concentrations in ground water. Water Res 39:4029–4039. doi: 10.1016/j.watres.2005.07.026 CrossRefGoogle Scholar
  28. European Union (1998) Council directive 98/83/CE of 03 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330:32–54 (5.12.1998)Google Scholar
  29. Feldman PR, Rosenboom JW, Saray M, Navuth P, Samnang C, Iddings S (2007) Assessment of the chemical quality of drinking water in Cambodia. J Water Health 5:101–116. doi: 10.2166/wh.2006.048 CrossRefGoogle Scholar
  30. Feng M, Schrlau JE, Snyder R, Snyder GH, Chen M, Cisar JL et al (2005) Arsenic transport and transformation associated with MSMA application on a golf course green. J Agric Food Chem 53:3556–3562. doi: 10.1021/jf047908j CrossRefGoogle Scholar
  31. Fernández P, Sommer I, Cram S, Rosas I, Gutiérrez M (2005) The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Sci Total Environ 348:231–243. doi: 10.1016/j.scitotenv.2004.12.065 CrossRefGoogle Scholar
  32. Figueiredo BR, Borba RP, Angélica RS (2007) Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109–118. doi: 10.1007/s10653-006-9074-9 CrossRefGoogle Scholar
  33. Foster AL, Brown GE, Tingle TN, Parks GA (1998) Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am Mineral 83:553–568. doi: 0003-004X/98/0506-0553 Google Scholar
  34. Foster AL, Brown GE, Parks GA (2003) X-Ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta 67:1937–1953. doi: 10.1016/S0016-7037(02)01301-7 CrossRefGoogle Scholar
  35. Fulladosa E, Murat JC, Martínez M, Villaescusa I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46:176–182. doi: 10.1007/s00244-003-2291-7 Google Scholar
  36. Fulladosa E, Murat JC, Villaescusa I (2005) Effect of cadmium(II), chromium(VI) and arsenic(V) on long-term growth and viability inhibition assays using Vibrio fischeri marine bacteria. Arch Environ Contam Toxicol 49:299–306. doi: 10.1007/s00244-004-0170-5 CrossRefGoogle Scholar
  37. Fulladosa E, Debord J, Villaescusa I, Bollinger JC, Murat JC (2007a) Effect of arsenic compounds on Vibrio Fischeri light emission and butyrylcholinesterase activity. Environ Chem Lett 5:115–119. doi: 10.1007/s10311-006-0088-4 CrossRefGoogle Scholar
  38. Fulladosa E, Murat JC, Bollinger JC, Villaescusa I (2007b) Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria. Sci Total Environ 377:207–213. doi: 10.1016/j.scitotenv.2006.12.044 CrossRefGoogle Scholar
  39. Gal JY (1991) Calcul des variations de pH d’un écosystème aquatique avec la photosynthèse. C R Acad Sci (Paris) Ser III 312:269–276Google Scholar
  40. Gammons CH, Grant TM, Nimick DA, Parker SR, DeGrandpré MD (2007) Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system. Sci Total Environ 384:433–451. doi: 10.1016/j.scitotenv.2007.06.029 CrossRefGoogle Scholar
  41. Garbarino JR, Bednar AJ, Rutherford DW, Beyer RS, Wershaw RL (2003) Environmental fate of Roxarsone in poultry litter I—degradation of Roxarsone during composting. Environ Sci Technol 37:1509–1514. doi: 10.1021/es026219q CrossRefGoogle Scholar
  42. Garcia-Sanchez A, Alvarez-Ayuso E (2003) Arsenic in soils and waters and its relation to geology and mining activities (Salamanca Province, Spain). J Geochem Explor 80:69–79. doi: 10.1016/S0375-6742(03)00183-3 CrossRefGoogle Scholar
  43. García-Sánchez A, Moyano A, Mayorga P (2005) High arsenic contents in groundwater of Central Spain. Environ Geol 47:847–854. doi: 10.1007/s00254-004-1216-8 CrossRefGoogle Scholar
  44. Garelick H, Dybowska A, Valsami-Jones E, Priest ND (2005) Remediation technologies for arsenic contaminated drinking waters. J Soils Sediments 5:182–190. doi: 10.1065/jss2005.06.140 CrossRefGoogle Scholar
  45. Gault AG, Polya DA, Lythgoe PR (2003) Seasonal variation of total dissolved arsenic and arsenic speciation in a polluted surface waterway. Environ Geochem Health 25:77–85. doi: 10.1023/A:1021253016154 CrossRefGoogle Scholar
  46. Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232. doi: 10.1002/elsc.200420026 CrossRefGoogle Scholar
  47. Gong Z, Lu X, Watt C, Wen B, He B, Mumford J et al (2006) Speciation analysis of arsenic in groundwater from inner Mongolia with an emphasis on acid-leachable particulate arsenic. Anal Chim Acta 555:181–187. doi: 10.1016/j.aca.2005.08.062 CrossRefGoogle Scholar
  48. Grosbois C, Horowitz A, Smith J, Elrick K (2001) Effect of mining and related activities on the sediment trace element geochemistry of Spokane River Basin, Washington, USA. Part III: downstream effects. Hydrol Process 15:855–875. doi: 10.1002/hyp.192 CrossRefGoogle Scholar
  49. Grosbois C, Courtin-Nomade A, Martin F, Bril H (2007) Transportation and evolution of trace element bearing phases in stream sediments in a mining-influenced basin (Upper Isle River, France). Appl Geochem 22:2362–2374. doi: 10.1016/j.apgeochem.2007.05.006 CrossRefGoogle Scholar
  50. Hanaoka K, Kaise T, Kai N, Kawasaki Y, Miyasita H, Kakimoto K et al (1997) Arsenobetaine-decomposing ability of marine microorganisms occuring in particles collected at depths of 1100 and 3500 meters. Appl Organomet Chem 11:265–271. doi:10.1002/(SICI)1099-0739(199704)11:4<265::AID-AOC579>3.0.CO;2-WCrossRefGoogle Scholar
  51. Hansen HR, Raab A, Jaspars M, Milne BF, Feldmann J (2004) Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem Res Toxicol 17:1086–1091. doi: 10.1021/tx049978q CrossRefGoogle Scholar
  52. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA et al (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606. doi: 10.1126/science.1076978 CrossRefGoogle Scholar
  53. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA et al (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C R Geosci 337:285–296. doi: 10.1016/j.crte.2004.10.015 CrossRefGoogle Scholar
  54. Horneman A, van Geen A, Kent DV, Mathe PE, Zheng Y, Dhar RK et al (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions Part I: evidence from sediment profiles. Geochim Cosmochim Acta 68:3459–3473. doi: 10.1016/j.gca.2004.01.026 CrossRefGoogle Scholar
  55. Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto Area, Southwest Spain. Appl Geochem 14:1015–1030. doi: 10.1016/S0883-2927(99)00008-6 CrossRefGoogle Scholar
  56. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. doi: 10.1016/S0378-4274(02)00084-X CrossRefGoogle Scholar
  57. Hughes MF, Kenyon EM, Kitchin KT (2007) Research approaches to address uncertainties in the risk assessment of arsenic in drinking water. Toxicol Appl Pharmacol 222:399–404. doi: 10.1016/j.taap.2007.01.021 CrossRefGoogle Scholar
  58. Huq SMI, Joardar JC, Parvin S, Correll R, Naidu R (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24:305–316Google Scholar
  59. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature 430:68–71. doi: 10.1038/nature02638 CrossRefGoogle Scholar
  60. Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322. doi: 10.1016/j.soilbio.2005.04.010 CrossRefGoogle Scholar
  61. Jackson BP, Seaman JC, Bertsch PM (2006) Fate of arsenic compounds in poultry litter upon land application. Chemosphere 65:2028–2034. doi: 10.1016/j.chemosphere.2006.06.065 CrossRefGoogle Scholar
  62. Kao YH, Yu CL, Chang LW, Yu HS (2003) Low concentrations of arsenic induce vascular endothelial growth factor and nitric oxide release and stimulate angiogenesis in vitro. Chem Res Toxicol 16:460–468. doi: 10.1021/tx025652a CrossRefGoogle Scholar
  63. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning—a review. J Environ Sci Health 41A:2399–2428. doi: 10.1080/10934520600873571 Google Scholar
  64. Kent DB, Fox PM (2004) The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochem Trans 5(1):1–12. doi: 10.1186/1467-4866-5-1 CrossRefGoogle Scholar
  65. Kenyon EM, Hughes MF (2001) A concise review of the toxicity and carcinogenicity of dimethylarsinic acid. Toxicology 160:227–236. doi: 10.1016/S0300-483X(00)00458-3 CrossRefGoogle Scholar
  66. Kim JJ, Kim SJ (2004) Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghae Coal Mine, Korea. Sci Total Environ 325:181–191. doi: 10.1016/j.scitotenv.2003.10.038 CrossRefGoogle Scholar
  67. Kim JY, Davis AP, Kim KW (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ Sci Technol 37:189–195. doi: 10.1021/es020799+ CrossRefGoogle Scholar
  68. Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172:249–261. doi: 10.1006/taap.2001.9157 CrossRefGoogle Scholar
  69. Kouras A, Katsoyiannis I, Voutsa D (2007) Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. J Hazard Mater 147:890–899. doi: 10.1016/j.jhazmat.2007.01.124 CrossRefGoogle Scholar
  70. Kwok RK (2007) A review and rationale for studying the cardiovascular effects of drinking water arsenic in women of reproductive age. Toxicol Appl Pharmacol 222:344–350. doi: 10.1016/j.taap.2007.02.016 CrossRefGoogle Scholar
  71. Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127. doi: 10.1021/es048701+ CrossRefGoogle Scholar
  72. Le XC, Cullen WR, Reimer KJ (1994) Human urinary arsenic excretion after one-time ingestion of seaweed, crab and shrimp. Clin Chem 40:617–624Google Scholar
  73. Le XC, Lu X, Ma M, Cullen WR, Aposhian HV, Zheng B (2000) Speciation of key arsenic metabolic intermediates in human urine. Anal Chem 72:5172–5177. doi: 10.1021/ac000527u CrossRefGoogle Scholar
  74. Lee CH, Yu CL, Liao WT, Kao YH, Chai CY, Chen GS et al (2004) Effects and interactions of low doses of arsenic and UVB on keratinocyte apoptosis. Chem Res Toxicol 17:1199–1205. doi: 10.1021/tx049938m CrossRefGoogle Scholar
  75. Leermakers M, Baeyens W, De Gieter M, Smeds B, Meert C, De Bisschop HC et al (2006) Toxic arsenic compounds in environmental samples: speciation and validation. TRAC—Trends Anal Chem 25:1–10. doi: 10.1016/j.trac.2005.06.004 Google Scholar
  76. Lenain JF, Courtin-Nomade A (2003) Visual-statistical classification of As–Fe rich products of alteration of tailings from the Enguialès tungsten mine, France. Can Mineral 41:1135–1146. doi: 10.2113/gscanmin.41.5.1135 CrossRefGoogle Scholar
  77. Li B, Sun Y, Sun X, Wang Y, Li X, Kumagai Y et al (2007) Monomethylarsonous acid induced cytotoxicity and endothelial nitric oxide synthase phosphorylation in endothelial cells. Bull Environ Contam Toxicol 78:455–458. doi: 10.1007/s00128-007-9178-7 CrossRefGoogle Scholar
  78. Lindberg AL, Goessler W, Gurzau E, Koppova K, Rudnai P, Kumar R et al (2006) Arsenic exposure in Hungary, Romania and Slovakia. J Environ Monit 8:203–208. doi: 10.1039/b513206a CrossRefGoogle Scholar
  79. Lindberg AL, Kumar R, Goessler W, Thirumaran R, Gurzau E, Koppova K et al (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086. doi: 10.1289/ehp.10026 CrossRefGoogle Scholar
  80. Lindberg AL, Ekström EC, Nermell B, Rahman M, Lönnerdal B, Persson LA et al (2008) Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res 106:110–120. doi: 10.1016/j.envres.2007.08.011 CrossRefGoogle Scholar
  81. Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL et al (2004) Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. Chem Res Toxicol 17:1733–1742. doi: 10.1021/tx049756s CrossRefGoogle Scholar
  82. Lubin JH, Beane Freeman LE, Cantor KP (2007) Inorganic arsenic in drinking water: an evolving public health concern. J Natl Cancer Inst 99:906–907. doi: 10.1093/jnci/djm012 CrossRefGoogle Scholar
  83. Ma M, Le XC (1998) Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem 44:539–550Google Scholar
  84. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi: 10.1016/S0039-9140(02)00268-0 CrossRefGoogle Scholar
  85. Mandal BK, Ogra Y, Anzai K, Suzuki KT (2004) Speciation of arsenic in biological samples. Toxicol Appl Pharmacol 198:307–318. doi: 10.1016/j.taap.2003.10.030 CrossRefGoogle Scholar
  86. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S et al (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928. doi: 10.1093/jnci/djm004 CrossRefGoogle Scholar
  87. Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312. doi: 10.1016/S0048-9697(99)00524-0 CrossRefGoogle Scholar
  88. McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–118. doi: 10.1029/2000WR900270 CrossRefGoogle Scholar
  89. McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P et al (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293. doi: 10.1016/j.apgeochem.2004.02.001 CrossRefGoogle Scholar
  90. Morin G, Lecocq D, Juillot F, Calas G, Ildefonse P, Belin S et al (2002) EXAFS evidence of sorbed arsenic(V) and pharmacosiderite in a soil overlying the Echassières geochemical anomaly, Allier, France. Bull Soc Géol Fr 73:281–291. doi: 10.2113/173.3.281 CrossRefGoogle Scholar
  91. Morin G, Juillot F, Casiot C, Bruneel O, Personné J, Elbaz-Poulichet F et al (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France—a XANES, XRD, and SEM study. Environ Sci Technol 37:1705–1712. doi: 10.1021/es025688p CrossRefGoogle Scholar
  92. Nakazono K, Watanabe N, Matsuno K, Saski J, Sato T, Inque M (1991) Does superoxide underlie the pathogenesis of hypertension. Proc Natl Acad Sci USA 88:10045–10048. doi: 10.1073/pnas.88.22.10045 CrossRefGoogle Scholar
  93. Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19:1010–1018. doi: 10.1021/tx060053f CrossRefGoogle Scholar
  94. Neal C, Davies H (2003) Water quality fluxes for eastern UK rivers entering the north sea: a summary of information from the land ocean interaction study (LOIS). Sci Total Environ 314:821–882. doi: 10.1016/S0048-9697(03)00086-X CrossRefGoogle Scholar
  95. Nesbitt HW, Muir IJ, Pratt AR (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochim Cosmochim Acta 59:1773–1786. doi: 10.1016/0016-7037(95)00081-A CrossRefGoogle Scholar
  96. Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338. doi: 10.1038/26387 CrossRefGoogle Scholar
  97. Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413. doi: 10.1016/S0883-2927(99)00086-4 CrossRefGoogle Scholar
  98. Nickson R, McArthur JM, Shrestha B, Kyaw-Myint TO, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargargh District, Pakistan. Appl Geochem 20:55–68. doi: 10.1016/j.apgeochem.2004.06.004 CrossRefGoogle Scholar
  99. Nico PS, Fendorf SE, Lowney YW, Holm SE, Ruby MV (2004) Chemical structure of arsenic and chromium in CCA-treated wood: implications of environmental weathering. Environ Sci Technol 38:5253–5260. doi: 10.1021/es0351342 CrossRefGoogle Scholar
  100. Nico PS, Ruby MV, Lowney YW, Holm SE (2006) Chemical speciation and bioaccessibility of arsenic and chromium in chromated copper arsenate-treated wood and soils. Environ Sci Technol 40:402–408. doi: 10.1021/es050950q CrossRefGoogle Scholar
  101. O’Shea B, Jankowski J, Sammut J (2007) The source of naturally occurring arsenic in a coastal sand aquifer of Eastern Australia. Sci Total Environ 379:151–166. doi: 10.1016/j.scitotenv.2006.07.040 CrossRefGoogle Scholar
  102. Ohno K, Yanase T, Matsuo Y, Kimura T, Rahman MH, Magara Y et al (2007) Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 381:68–76. doi: 10.1016/j.scitotenv.2007.03.019 CrossRefGoogle Scholar
  103. Parvez F, Chen Y, Argos M, Hussain AZMI, Momotaj H, Dhar R et al (2006) Prevalence of arsenic exposure from drinking water and awareness of its health risks in a Bangladeshi population: results from a large population-based study. Environ Health Perspect 114:355–359. doi: 10.1289/ehp.7903 CrossRefGoogle Scholar
  104. Pellizzari ED, Clayton CA (2006) Assessing the measurement precision of various arsenic forms and arsenic exposure in the national human exposure assessment survey (NHEXAS). Environ Health Perspect 114:220–227. doi: 10.1289/ehp.8104 CrossRefGoogle Scholar
  105. Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656. doi: 10.1021/tx000264z CrossRefGoogle Scholar
  106. Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW (2006) Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta 70:2480–2491. doi: 10.1016/j.gca.2006.02.019 CrossRefGoogle Scholar
  107. Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276. doi: 10.1021/tx700110m CrossRefGoogle Scholar
  108. Rahman MM, Sengupta MK, Ahamed S, Chowdhury UK, Hossain MA, Das B et al (2005) The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338:189–200. doi: 10.1016/j.scitotenv.2004.06.022 CrossRefGoogle Scholar
  109. Rahman M, Vahter M, Sohel N, Yunus M, Wahed MA, Streatfield PK et al (2006) Arsenic exposure and age- and sex-specific risk for skin lesions: a population-based case-referent study in Bangladesh. Environ Health Perspect 114:1847–1852. doi: 10.1289/ehp.9207 Google Scholar
  110. Ravenscroft P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol J 13:727–751. doi: 10.1007/s10040-003-0314-0 CrossRefGoogle Scholar
  111. Rhine ED, Garcia-Dominguez E, Phelps CD, Young LY (2005) Environmental microbes can speciate and cycle arsenic. Environ Sci Technol 39:9569–9573. doi: 10.1021/es051047t CrossRefGoogle Scholar
  112. Roberts LC, Hug SJ, Dittmar J, Voegelin A, Saha GC, Ali MA et al (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh 1. Irrigation water. Environ Sci Technol 41:5960–5966. doi: 10.1021/es070298u CrossRefGoogle Scholar
  113. Rose S, Elliott WC (2000) The effects of pH regulation upon the release of sulphate from ferric precipitates formed in acid mine drainage. Appl Geochem 15:27–34. doi: 10.1016/S0883-2927(99)00015-3 CrossRefGoogle Scholar
  114. Roussel C, Bril H, Fernandez A (1998) Hydrogeochemical survey and mobility of As and heavy metals on the site of a former gold mine (Saint-Yrieix Mining District, France). Hydrogeologie 1:3–12Google Scholar
  115. Roussel C, Bril H, Fernandez A (2000) Arsenic speciation: involvement in the evaluation of environmental impact caused by mine wastes. J Environ Qual 29:182–188CrossRefGoogle Scholar
  116. Ruiz-Navarro ML, Navarro-Alarcón M, de la Serrana HLG, Pérez-Valero V, López-Martinez MC (1998) Urine arsenic concentrations in healthy adults as indicators of environmental contamination: relation with some pathologies. Sci Total Environ 216:55–61. doi: 10.1016/S0048-9697(98)00136-3 CrossRefGoogle Scholar
  117. Rutherford DW, Bednar AJ, Garbarino JR, Needham R, Staver KW, Wershaw RL (2003) Environmental fate of Roxarsone in poultry litter. II—mobility of arsenic in soils amended with poultry litter. Environ Sci Technol 37:1515–1520. doi: 10.1021/es026222+ CrossRefGoogle Scholar
  118. Sánchez-Rodas D, Gómez-Ariza JL, Giráldez I, Velasco A, Morales E (2005) Arsenic speciation in river and estuarine waters from Southwest Spain. Sci Total Environ 345:207–217. doi: 10.1016/j.scitotenv.2004.10.029 CrossRefGoogle Scholar
  119. Shiber JG (2005) Arsenic in domestic well water and health in central Appalachia, USA. Water Air Soil Pollut 160:327–341. doi: 10.1007/s11270-005-2832-y CrossRefGoogle Scholar
  120. Slowey AJ, Johnson SB, Newville M, Brown GE (2007) Speciation and colloid transport of arsenic from mine tailings. Appl Geochem 22:1884–1898. doi: 10.1016/j.apgeochem.2007.03.053 CrossRefGoogle Scholar
  121. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–569. doi: 10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  122. Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19:169–180. doi: 10.1016/j.apgeochem.2003.09.005 CrossRefGoogle Scholar
  123. Sultan K, Dowling K (2006) Seasonal changes in arsenic concentrations and hydrogeochemistry of Canadian Creek, Ballarat (Victoria, Australia). Water Air Soil Pollut 169:355–374. doi: 10.1007/s11270-006-2813-9 CrossRefGoogle Scholar
  124. Swartz CH, Keon-Blute N, Badruzzman B, Ali A, Brabander D, Jay J et al (2004) Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data and mineralogical characterization. Geochim Cosmochim Acta 68:4539–4557. doi: 10.1016/j.gca.2004.04.020 CrossRefGoogle Scholar
  125. Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y et al (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442. doi: 10.1016/j.jbiotec.2006.07.018 CrossRefGoogle Scholar
  126. Tournassat C, Charlet L, Bosbach D, Manceau A (2002) Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ Sci Technol 36:493–500. doi: 10.1021/es0109500 CrossRefGoogle Scholar
  127. U.S. Environmental Protection Agency (2002) Drinking water regulations for arsenic and clarifications to compliance and new source contaminant monitoring. EPA-816-K-02-018, August 2002. For updated information, see http://www.epa.gov/safewater/arsenic/index.html
  128. Vahter M (2002) Mechanism of arsenic biotransformation. Toxicology 181–182:211–217. doi: 10.1016/S0300-483X(02)00285-8 CrossRefGoogle Scholar
  129. Vogel K (1928) Significance of arsenic in excretions. Am J Med Sci 176:215. doi: 10.1097/00000441-192808000-00008 CrossRefGoogle Scholar
  130. Wang S, Mulligan CN (2006) Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. J Hazard Mater B138:459–470. doi: 10.1016/j.jhazmat.2006.09.048 CrossRefGoogle Scholar
  131. Wang CH, Hsiao CK, Chen CL, Hsu LI, Chiou HY, Chen SY et al (2007a) A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicol Appl Pharmacol 222:315–326. doi: 10.1016/j.taap.2006.12.022 CrossRefGoogle Scholar
  132. Wang SL, Chang FH, Liou SH, Wang HJ, Li WF, Hsieh DPH (2007b) Inorganic arsenic exposure and its relation to metabolic syndrome in an industrial area of Taiwan. Environ Int 33:805–811. doi: 10.1016/j.envint.2007.03.004 CrossRefGoogle Scholar
  133. Wanibuchi H, Salim EI, Kinoshita A, Shen J, Wei M, Morimura K et al (2004) Understanding arsenic carcinogenicity by the use of animal models. Toxicol Appl Pharmacol 198:366–376. doi: 10.1016/j.taap.2003.10.032 CrossRefGoogle Scholar
  134. Welch AH, Stollenwerk KG (eds) (2002) Arsenic in ground water—geochemistry and occurrence. Kluwer, DordrechtGoogle Scholar
  135. WHO (2004) Guidelines for drinking-water quality, vol 1, 3rd edn. Recommendations WHO, GenevaGoogle Scholar
  136. Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A 107:97–110. doi: 10.1016/0927-7757(95)03368-8 CrossRefGoogle Scholar
  137. Yao QZ, Zhang J, Wu Y, Xiong H (2007) Hydrochemical processes controlling arsenic and selenium in the Changjiang River (Yangtse River) system. Sci Total Environ 377:93–104. doi: 10.1016/j.scitotenv.2007.01.088 CrossRefGoogle Scholar
  138. Yu HS, Liao WT, Chai CY (2006) Arsenic carcinogenesis in the skin. J Biomed Sci 13:657–666. doi: 10.1007/s11373-006-9092-8 CrossRefGoogle Scholar
  139. Yu G, Sun D, Zheng Y (2007) Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect 115:636–642. doi: 10.1289/ehp.9268 CrossRefGoogle Scholar
  140. Yunmei Y, Yongxuan Z, Williams-Jones AE, Zhenmin G, Dexian L (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444. doi: 10.1016/S0883-2927(03)00133-1 CrossRefGoogle Scholar
  141. Zhang JS, Stanforth RS, Pehkonen SO (2007) Effect of replacing a hydroxyl group with a methyl group on arsenic(V) species adsorption on goethite (α-FeOOH). J Colloid Interface Sci 306:16–21. doi: 10.1016/j.jcis.2006.10.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Laboratory of Metals and EnvironmentUniversitat de GironaGironaSpain
  2. 2.Groupement de Recherche Eau – Sol – Environnement (GRESE), Faculté des SciencesUniversité de LimogesLimogesFrance

Personalised recommendations