The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review

  • Burak DemirelEmail author
  • Paul Scherer
Review Paper


Among different conversion processes for biomass, biological anaerobic digestion is one of the most economic ways to produce biogas from various biomass substrates. In addition to hydrolysis of polymeric substances, the activity and performance of the methanogenic bacteria is of paramount importance during methanogenesis. The aim of this paper is primarily to review the recent literature about the occurrence of both acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of particulate biomass to methane (not wastewater treatment), while this review does not cover the activity of the acetate oxidizing bacteria. Both acetotrophic and hydrogenotrophic methanogens are essential for the last step of methanogenesis, but the reports about their roles during this phase of the process are very limited. Despite, some conclusions can still be drawn. At low concentrations of acetate, normally filamentous Methanosaeta species dominate, e.g., often observed in sewage sludge. Apparently, high concentrations of toxic ionic agents, like ammonia, hydrogen sulfide (H2S) and volatile fatty acids (VFA), inhibit preferably Methanosaetaceae and especially allow the growth of Methanosarcina species consisting of irregular cell clumps, e.g., in cattle manure. Thermophilic conditions can favour rod like or coccoid hydrogenotrophic methanogens. Thermophilic Methanosarcina species were also observed, but not thermophilic Methanosaetae. Other environmental factors could favour hydrogentrophic bacteria, e.g., short or low retention times in a biomass reactor. However, no general rules regarding process parameters could be derivated at the moment, which favours hydrogenotrophic methanogens. Presumably, it depends only on the hydrogen concentration, which is generally not mentioned in the literature.


Acetotrophic Anaerobic Biogas Biomass Energy Hydrogenotrophic Methane Methanogens Renewable 



The authors would like to express their gratitude to Lukas Neumann, Olaf Schmidt, Karsten Lehmann and Monika Unbehauen for their help.


  1. Alvarez R, Villca S, Liden G (2006) Biogas production from llama and cow manure at high altitude. Biomass Bioenergy 30(1):66–75Google Scholar
  2. Ahring BK (1995) Methanogenesis in thermophilic biogas reactors. Antoine van Leeuwenhoek 67:91–102Google Scholar
  3. Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35(10):246–2452Google Scholar
  4. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microb Biotechnol 38(4):560–564Google Scholar
  5. Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52(1–2):189–194Google Scholar
  6. Angelidaki I, Heinfelt A, Ellegaard L (2006) Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants. Water Sci Technol 54:237–244Google Scholar
  7. Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during start-up of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654Google Scholar
  8. Ariesyady HD, Ito T, Okabe S (2007a) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568Google Scholar
  9. Ariesyady HD, Ito T, Yoshiguchi K, Okabe S (2007b) Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl Microbiol Biotechnol 75(3):673–683Google Scholar
  10. Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy 30(13–14):1393–1397Google Scholar
  11. Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482Google Scholar
  12. Bertin L, Colao MC, Ruzzi M, Fava F (2004) Performances and microbial features of a granular activated carbon packed-bed biofilm reactor capable of an efficient anaerobic digestion of olive mill wastewaters. FEMS Microbiol Ecol 48(3):413–423Google Scholar
  13. Blotevogel KH, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphic and thermophilic methanogen. Arch Microbiol 142:211–217Google Scholar
  14. Bohn I, Björnsson L, Mattiasson B (2005) Energy balance for pilot scale anaerobic digestion of crop residues at 13–30°C. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th International symposium of anaerobic digestion of solid waste\`dAugust–September 2005. Kopenhagen, Denmark, pp 644–648Google Scholar
  15. Boone DR, Whitman WB, Rouviere P (1993a) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis ecology, physiology, biochemistry & genetics. Chapman & Hall, New York, pp 35–80Google Scholar
  16. Boone DR, Chynoweth DP, Mah RA, Smith PH, Wilkie AC (1993b) Ecology and microbiology of biogasification. Biomass Bioenergy 5(3–4):191–202Google Scholar
  17. Bouallagui H, Cheikh RB, Marouani L, Hamdi M (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Biores Technol 86(1):85–89Google Scholar
  18. Bouallagui H, Torrijos M, Godon JJ, Moletta R, Cheikh RB, Touhami Y, Delgenes JP, Hamdi M (2004) Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes. Biotechnol Lett 26:857–862Google Scholar
  19. Brown K (2004) Producing renewable hydrogen from biomass. BioCycle 45(1):54–55Google Scholar
  20. Carpentier J, Platteau W, Vanwallaghem J, Steenhoudt D, Verstraete W (2005) Anaerobic digestion of solid slaughterhouse waste: potential of renewable energy for Belgium. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 649–655Google Scholar
  21. Chachkiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ (2004) 16S rDNA characterization of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Biores Technol 93(3):227–232Google Scholar
  22. Chanakya HN, Venkatsubramaniyam R, Modak J (1997) Fermentation and methanogenic characteristics of leafy biomass feedstocks in a solid phase biogas fermenter. Biores Technol 62(3):71–78Google Scholar
  23. Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003a) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotechnol Lett 25(18):1563–1569Google Scholar
  24. Chen AC, Imachi H, Sekiguchi Y, Okashi A, Harada H (2003b) Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 29(9):719–724Google Scholar
  25. Chynoweth DP (1996) Environmental impact of biomethanogenesis. Environ Monitoring Assessment 42:3–18Google Scholar
  26. Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renewable Energy 22:1–8Google Scholar
  27. Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microb Biotechnol 52:741–755Google Scholar
  28. Clarens M, Moletta R (1990) Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1. Appl Microb Biotechnol 33:239–244Google Scholar
  29. Clarens M, Bernet N, Delgenes JP, Moletta R (1998) Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol Ecol 25:271–276Google Scholar
  30. Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Biores Technol 98(14):2641–2651Google Scholar
  31. Delbes C, Moletta R, Godon JJ (2001) Bacterial and archaeal 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 35:19–26Google Scholar
  32. Demirel B, Scherer P (2008) Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy (in press)Google Scholar
  33. Derikx PJ, de Jong GA, Op den Camp HJ, von der Drift C, van Griensven LJ, Vogels GD (1989) Isolation and characterization of thermophilic methanogenic bacteria from mushroom compost. FEMS Microbiol Lett 62:251–258Google Scholar
  34. Dubach AC, Bachofen R (1985) Methanogens: a short taxonomic review. Experentia 41:441–446Google Scholar
  35. Dolfing J (1988) Acetogenesis In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, pp 418–468Google Scholar
  36. El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Biores Technol 95(2):191–201Google Scholar
  37. Enright AM, Collins G, O’Flaherty V (2007) Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15°C) wastewater treatment bioreactors. Syst Appl Microbiol 30(6):471–482Google Scholar
  38. Fan KS, Kan N, Lay J (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Biores Technol 97(1):84–89 Google Scholar
  39. Fang HHP (2000) Microbial distribution in UASB granules and its resulting effects. Water Sci Technol 42(12):201–208Google Scholar
  40. Fernandez N, Montalvo S, Fernandez-Polanco F, Guerrero L, Cortes I, Borja R, Sanchez E, Travieso L (2007a) Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochem 42:721–728Google Scholar
  41. Fernandez N, Diaz EE, Amils R, Sanz JL (2007b) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol (in press)Google Scholar
  42. Ferry JG (1992) Methane from acetate. J Bacteriol 174:5489–5495Google Scholar
  43. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes, Bergey’s manual® of systematic bacteriology, 2nd Edn. Springer, New York Berlin HeidelbergGoogle Scholar
  44. Gavala HN, Skiadas IV, Ahring BK (2006) Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31(9):1164–1175Google Scholar
  45. Ghosh S, Henry MP, Sajjad A, Mensinger MC, Arora JL (2000) Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol 41(3):101–110Google Scholar
  46. Gijzen HJ, Bernal E, Ferrer H (2000) Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Water Res 34(9):2447–2454Google Scholar
  47. Goel B, Pant DC, Kishore VVN (2001) Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation. Biores Technol 80(2):153–156Google Scholar
  48. Gong ML, Ren NQ, Xing DF (2005) Start-up of bio-hydrogen production reactor seeded with sewage sludge and its microbial community analysis. Water Sci Technol 52(1–2):115–121Google Scholar
  49. Gonzalez-Gil G, Lens PNL, Van Aelst A, Van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microbiol 67(8):3683–3692Google Scholar
  50. Griffin ME, McMahon KD, Mackie RI, Raskin L (2000) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355Google Scholar
  51. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1–2):83–114Google Scholar
  52. Guyot JP, Gutierrez G, Rojas MG (1993) Anaerobic microbial counts of different potential anaerobic inocula. Appl Microb Biotechnol 40(1):139–142Google Scholar
  53. Hai-Lou X, Jing-Yuan W, Joo-Hwa T (2002) A hybrid anaerobic solid-liquid bioreactor for food waste digestion. Biotechnol Lett 24:757–761Google Scholar
  54. Hansen KH, Ahring BK, Raskin L (1999) Quantification of syntrophic fatty acid-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 65(11):4767–4774Google Scholar
  55. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27(11–12):1339–1347Google Scholar
  56. Hedrick DB, White T, Guckert JB, Jewell WJ, White DC (1992) Microbial biomass and community structure of a phase-separated methanogenic reactor determined by lipid analysis. J Ind Microbiol Biotechnol 9(3–4):193–199Google Scholar
  57. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72(2):1623–1630Google Scholar
  58. Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177Google Scholar
  59. Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66(8):3608–3615Google Scholar
  60. Jackel U, Thummes K, Kampfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184Google Scholar
  61. Jarvis A, Nordberg A, Mathisen B, Svensson BH (1995) Stimulation of conversion rates and bacterial activity in a silage-fed two-phase biogas process by initiating liquid recirculation. Antoine van Leeuwenhoek 68(4):317–327Google Scholar
  62. Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344Google Scholar
  63. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338Google Scholar
  64. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141Google Scholar
  65. Karpenstein-Machan M (2001) Sustainable cultivation concepts for domestic energy production from biomass. C Rev Plant Sci 20(1):1–14Google Scholar
  66. Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K (2005) Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100(5):524–530Google Scholar
  67. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, USAGoogle Scholar
  68. Klocke M, Mähnert P, Mundt K, Souidi K, Linke B (2007) Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 30:139–151Google Scholar
  69. Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29(15):1607–1616Google Scholar
  70. Koster IW, Koomen E (1988) Ammonia inhibition of the maximum growth rate (μm) of hydrogenotrophic methanogens at various pH-levels and temperatures. Appl Microb Biotechnol 28:500–505Google Scholar
  71. Labat M, Garcia JL (1986) Study on the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Appl Microb Biotechnol 25:163–168CrossRefGoogle Scholar
  72. Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Conserv Manage 43(1):63–75 Google Scholar
  73. Lay JJ, Tsai CJ, Huang CC, Chang JJ, Chou CH, Fan KS, Chang JI, Hsu PC (2005) Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol 52(1–2):123–129Google Scholar
  74. Leybo AI, Netrusov AI, Conrad R (2006) Effect of hydrogen concentration on the community structure of hydrogenotrophic methanogens studied by T-RELP analysis of 16S rRNA gene amplicons. Microbiology 75(6):683–688Google Scholar
  75. Li YY, Noike T, Mizuno O, Funaishi K (2005) A new two-phase process for waterless methane fermentation treating the organic fraction of MSW. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th International symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 545–550Google Scholar
  76. Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896Google Scholar
  77. Lundbäck KMO, Klasson KT, Clausen EC, Gaddy JL (1990) Kinetics of growth and hydrogen uptake by Methanobacterium Formicicum. Biotechnol Lett 12(11):857–860Google Scholar
  78. Mah RA, Smith MR (1981) The methanogenic bacteria. In: Star M, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin Heidelberg New York, USA, pp 948–977Google Scholar
  79. McHugh S, Carton Collins G, O’Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37°C. FEMS Microbiol Ecol 48:369–378Google Scholar
  80. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (Ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415Google Scholar
  81. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83(1):37–46Google Scholar
  82. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-2: microbial population dynamics. Water Res 35(7):1817–1827Google Scholar
  83. McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87(7):823–834Google Scholar
  84. Mladenovska Z, Ahring BK (2000) Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures. FEMS Microbiol Ecol 31(3):225–230Google Scholar
  85. Mladenovska Z, Dabrowski S, Ahring BK (2003) Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis. Water Sci Technol 48(6):271–278Google Scholar
  86. Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2005) Thermal treatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 218–225Google Scholar
  87. Moller HB, Sommer SG, Ahring B (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(5):485–495Google Scholar
  88. Montero B, Garcia-Morales JL, Sales D, Solera R (2008) Evolution of microorganisms in thermophilic-dry anaerobic digestion. Biores Technol (in press)Google Scholar
  89. Neves L, Oliveira R, Alves MM (2004) Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Proc Biochem 39:2019–2024Google Scholar
  90. Nielsen HB, Mladenovska Z, Westermann P, Ahring BK (2004) Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestion with one-stage thermophilic (55°C) digestion of cattle manure. Biotechnol Bioeng 86(3):291–300 Google Scholar
  91. Nishio N, Nakashimada Y (2004) High rate production of hydrogen/methane from various substrates and wastes. Adv Biochem Eng Biotechnol 90:63–87Google Scholar
  92. Oh SE, Iyer P, Bruns M, Logan B (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87(1):119–127Google Scholar
  93. Ohtsubo S, Demizu K, Kohno S, Miura I, Ogawa T, Fukuda H (1992) Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl Environ Microbiol 58:703–705Google Scholar
  94. Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen production potential of materials characteristics of the organic fraction of municipal solid wastes. Water Sci Technol 41(3):25–32Google Scholar
  95. Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic reactors. FEMS Microbiol Rev 15:119–136Google Scholar
  96. Oude Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM (1998) Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 9:169–177Google Scholar
  97. Parawira W, Murto M, Read JS, Mattiasson B (2005) Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Proc Biochem 40(9):2945–2952Google Scholar
  98. Parawira W, Read JS, Mattiasson B, Bjornsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50Google Scholar
  99. Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41:134–144Google Scholar
  100. Paulo PL, Jiang B, Roest K, Van Lier JB, Lettinga G (2002) Start-up of a thermophilic methanol-fed UASB reactor: change in sludge characteristics. Water Sci Technol 45(10):145–150Google Scholar
  101. Paulo PL, Villa G, Van Lier JB, Lettinga G (2003) The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence. J Biosci Bioeng 96(3):213–218Google Scholar
  102. Petersen SP, Ahring BK (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Ecol 86:149–158Google Scholar
  103. Raizada N, Sonakya V, Dalhoff R, Hausner M, Wilderer PA (2003) Population dynamics of rumen microbes using modern techniques in rumen enhanced solid incubation. Water Sci Technol 48:113–119Google Scholar
  104. Rao MS, Singh SP, Singh AK, Sodha MS (2000) Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Appl Energ 66(1):75–87Google Scholar
  105. Raskin L, Zheng D, Griffin ME, Stroot PG, Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antoine van Leeuwenhoek 68(4):297–308Google Scholar
  106. Rastogi G, Ranade D, Yeole TY, Patole MS, Shouche YS (2007) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcr A) genes. Biores Technol (in press) Google Scholar
  107. Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32Google Scholar
  108. Roest K, Altinbas M, Paulo PL, Heilig HGHJ, Akkermans ADL, Smidt H, de Vos WM, Stams AJM (2005) Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb Ecol 50(3):440–446Google Scholar
  109. Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Proc Biochem 42:119–133Google Scholar
  110. Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y (2007) Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biotechnol 75(4):941–952Google Scholar
  111. Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Biores Technol 97(1):69–76Google Scholar
  112. Schauer NL, Ferry FG (1980) Metabolism of formate in Methanobacterium formicicum. J Bacteriol 142:800–807Google Scholar
  113. Scherer PA, Vollmer GR, Fakhouri T, Martensen S (2000) Development of a methanogenic process to degrade exhaustively the organic fraction of municipal ‘grey waste’ under thermophilic and hyperthermophilic conditions. Water Sci Technol 41:83–91Google Scholar
  114. Scherer PA, Dobler S, Rohardt S, Loock R, Buttner B, Noldeke P, Brettschuh A (2003) Continuous biogas production from fodder beet silage as sole substrate. Water Sci Technol 48(4):229–233Google Scholar
  115. Scherer PA, Lehmann K (2004) Application of an automatic Fuzzy-logic controller to digest anaerobically fodder beet silage at a HRT of 6.5 days and with an OLR of 14 kg VS/(m3.d). In: Guiot S (ed) Proceedings of the 10th world congress of anaerobic digestion, September 2004. Montreal, Canada, pp 72–78Google Scholar
  116. Scherer PA, Klocke M, Unbehauen M (2005) Anaerobic digestion of beet silage by non-acetoclastic methanogenesis. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium on anaerobic digestion of solid waste, August–September 2005. Copenhagen, Denmark, pp 106–111Google Scholar
  117. Schink B (1994) Diversity, ecology, and isolation of acetogenic bacteria. In: Drake HL (eds) Acetogenesis. Chapman & Hall, New York London, pp 387–415Google Scholar
  118. Schmidt JE, Ahring BK (1999) Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl Environ Microbiol 65(3):1050–1054Google Scholar
  119. Schmidt JE, Mladenovska Z, Lange M, Ahring BK (2000) Acetate conversion in anaerobic biogas reactors: traditional and molecular tools for studying this important group of anaerobic microorganisms. Biodegradation 11:359–364Google Scholar
  120. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261Google Scholar
  121. Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch Microbiol 132:285–288Google Scholar
  122. Shigematsu T, Tang Y, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052Google Scholar
  123. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microb Biotechnol 72(2):401–415 Google Scholar
  124. Shin HS, Han SK, Song YC, Lee CY (2001) Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res 35(14):3441–3447Google Scholar
  125. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29(13):1355–1363Google Scholar
  126. Shizas I, Bagley DM (2005) Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci Technol 52(1–2):139–144Google Scholar
  127. Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso-and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123Google Scholar
  128. Sipma J, Meulepas RJW, Parshina SN, Stams AJM, Lettinga G, Lens PNL (2004) Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl Microb Biotechnol 64(3):421–428Google Scholar
  129. Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879Google Scholar
  130. Stabnikova O, Liu XY, Wang JY, Ivanov V (2006) Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Microb Biotechnol 73(3):696–702Google Scholar
  131. Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-1: digester performance. Water Res 35(7):1804–1816Google Scholar
  132. Svensson LM, Christensson K, Björnsson L (2005) Biogas production from crop residues on a farm-scale level: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 636–643Google Scholar
  133. Svensson LM, Björnsson L, Mattiasson B (2007) Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Biores Technol 98:46–52Google Scholar
  134. Syutsubo K, Sinthurat N, Ohashi A, Harada H (2001) Population dynamics of anaerobic microbial consortia in thermophilic granular sludge in response to feed composition change. Water Sci Technol 43(1):59–66Google Scholar
  135. Tada C, Tsukahara K, Sawayama S (2005) Illumination enhances methane production from thermophilic anaerobic digestion. Appl Microb Biotechnol 30:1–6Google Scholar
  136. Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99(2):150–164Google Scholar
  137. Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI55. Syst Appl Microbiol 6:66–71Google Scholar
  138. Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Biores Technol 96(17):1907–1913Google Scholar
  139. Van Lier JB (1996) Limitations of thermophilic anaerobic wastewater treatment and the consequence for process design. Antoine van Leeuwenhoek 69:1–14Google Scholar
  140. Vavilin VA, Lokshina LY, Rytov SV, Kotsyurbenko OR, Nozhevnikova AN (1998) Modelling low-temperature methane production from cattle manure by an acclimated microbial community. Biores Technol 63:159–171Google Scholar
  141. Vogels GD, Keltjens JT, Van Der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (Ed) Biology of anaerobic microorganisms. John Wiley&Sons, New York, pp 707–770Google Scholar
  142. Whitman WB, Boone DR, Koga Y, Keswani J (2001) Taxonomy of methanogenic Archaea. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, pp 211–294Google Scholar
  143. Wilkie AC, Smith PH, Bordeaux FM (2004) An economical bioreactor for evaluating biogas potential of particulate biomass. Biores Technol 92(1):103–109Google Scholar
  144. Yang ST, Okos MR (1987) Kinetic study and mathematical modelling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol Bioeng 30(5):661–667Google Scholar
  145. Yang Y, Tsukahara K, Sawayama S (2007) Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion. Mat Sci Eng C 27:767–772Google Scholar
  146. Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52(1–2):85–91Google Scholar
  147. Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008Google Scholar
  148. Zinder SH, Cardwell SC, Anguish T, Lee M, Koch M (1984) Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp as an important aceticlastic methanogen. Appl Environ Microbiol 47:796–807Google Scholar
  149. Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic co-culture. Arch Microbiol 54:263–272 Google Scholar
  150. Zinder SH, Sowers KR, Ferry JG (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bact 35:522–523CrossRefGoogle Scholar
  151. Zinder SH (1994) Syntrophic acetate oxidation and “Reversible Acetogenesis”. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York London, pp 387–415Google Scholar
  152. Zhang R, El-Mashad HM, Hartmann K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Biores Technol 98:929–935Google Scholar
  153. Zheng D, Raskin L (2000) Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb Ecol 39(3):246–262Google Scholar
  154. Zhu J, Hu J, Gu X (1997) The bacterial numeration and an observation of a new syntrophic association for granular sludge. Water Sci Technol 36(6–7):133–140Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Lifetec Process Engineering, Faculty of Life SciencesHamburg University of Applied Sciences (HAW Hamburg)HamburgGermany

Personalised recommendations