Advertisement

Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ

  • Volodymyr Ivanov
  • Jian Chu
Review Paper

Abstract

Microbial Geotechnology is a new branch of geotechnical engineering that deals with the applications of microbiological methods to geological materials used in engineering. The aim of these applications is to improve the mechanical properties of soil so that it will be more suitable for construction or environmental purposes. Two notable applications, bioclogging and biocementation, have been explored. Bioclogging is the production of pore-filling materials through microbial means so that the porosity and hydraulic conductivity of soil can be reduced. Biocementation is the generation of particle-binding materials through microbial processes in situ so that the shear strength of soil can be increased. The most suitable microorganisms for soil bioclogging or biocementation are facultative anaerobic and microaerophilic bacteria, although anaerobic fermenting bacteria, anaerobic respiring bacteria, and obligate aerobic bacteria may also be suitable to be used in geotechnical engineering. The majority of the studies on Microbial Geotechnology at present are at the laboratory stage. Due to the complexity, the applications of Microbial Geotechnology would require an integration of microbiology, ecology, geochemistry, and geotechnical engineering knowledge.

Keywords

Bacteria Biocementation Bioclogging Geotechnical engineering 

References

  1. Atmaca S, Elci S, Gul K (1996) Comparison of slime production under aerobic and anaerobic conditions. Cytobios 88:149–152Google Scholar
  2. Bachmeier K, Williams AE, Warmington J, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93:171–181CrossRefGoogle Scholar
  3. Baveye P, Vandevivere P, Hoyle BL, DeLeo PC, de Lozada DS (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Environ Sci Technol 28:123–191CrossRefGoogle Scholar
  4. Beccari M, Ramadori R (1996) Filamentous activated sludge bulking. In: Horan N (ed) Environmental waste management: a European perspective. John Wiley & Sons, New York, pp 87–114Google Scholar
  5. Bergey’s Manual of Systematic Bacteriology (2001) The Archaea and the deeply branching and phototrophic bacteria, 2nd edn, vol 1. Springer-Verlag, New YorkGoogle Scholar
  6. Bergey’s Manual of Systematic Bacteriology (2005) The proteobacteria, 2nd edn, vol 2. Springer-Verlag, New YorkGoogle Scholar
  7. Bonala MVS, Reddi LN (1998) Physicochemical and biological mechanisms of soil clogging: an overview. ASCE Geotech Spec Publ 78:43–68Google Scholar
  8. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142CrossRefGoogle Scholar
  9. Buffle J, van Leeuwen HP (Ser eds) (2002) Interactions between soil particles and microorganisms. In: Huand M, Bollag JM, Senesi N (Vol eds) IUPAC series on analytical and physical chemistry of environmental systems, vol 8. John Wiley & Sons, Chichester, UKGoogle Scholar
  10. Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126:9–23CrossRefGoogle Scholar
  11. DeJong JT, Fritzges MB, Nusstein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 32:1381–1392CrossRefGoogle Scholar
  12. Dniker SW, Rhoton FE, Torrent J, Smeck NE, Lal R (2003) Iron (hydr)oxide crystallinity effects on soil aggregation. Soil Sci Soc Am J 67:606–611CrossRefGoogle Scholar
  13. Dupin HJ, McCarty PL (2000) Impact of colony morphologies and disinfection on biological clogging in porous media. Environ Sci Technol 34:1513–1520CrossRefGoogle Scholar
  14. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) (2006) The prokaryotes: a handbook on the biology of bacteria, vol 3: Archaea. Bacteria: Firmicutes, Actinomycetes, 3rd edn. Springer-Verlag, New YorkGoogle Scholar
  15. Etemadi O, Petrisor IG, Kim D, Wan MW, Yen TF (2003) Stabilization of metals in subsurface by biopolymers: laboratory drainage flow studies. Soil Sediment Contam 12:647–661CrossRefGoogle Scholar
  16. Ferris FG, Stehmeier LG (1992) Bacteriogenic mineral plugging, United States Patent 5143155Google Scholar
  17. Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. Can J Petrol Technol 35:56–61Google Scholar
  18. Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7:287–294CrossRefGoogle Scholar
  19. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305–318Google Scholar
  20. Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13CrossRefGoogle Scholar
  21. Gioia F, Ciriello PP (2006) The containment of oil spills in porous media using xanthan/aluminium solutions, gelled by gaseous CO2 or by AlCl3 solutions. J Hazard Mater 138:500–506CrossRefGoogle Scholar
  22. Hajra MG, Reddi LN, Marchin GL, Mutyala J (2000) Biological clogging in porous media. In: Zimme TF (ed) Environ Geotech ASCE geotechnical special publication 105, New York, pp 151–165Google Scholar
  23. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7CrossRefGoogle Scholar
  24. Harada T (1983) Special bacterial polysaccharides and polysaccharases. Biochem Soc Symp 48:97–116Google Scholar
  25. Indraratna B, Chu J (Eds) (2005) Ground improvement – case histories. Elsevier, Oxford, UKGoogle Scholar
  26. Ivanov V (2006) Structure of aerobically grown microbial granules. In: Tay JH, Tay STL, Liu Y, Show KY, Ivanov V (eds) Biogranulation technologies for wastewater treatment. Elsevier, Amsterdam, pp 115–134CrossRefGoogle Scholar
  27. Ivanov V, Tay STL (2006a) Seeds for aerobic microbial granules. In: Tay JH, Tay STL, Liu Y, Show KY, Ivanov V (eds) Biogranulation technologies for wastewater treatment. Elsevier, Amsterdam, pp 213–244CrossRefGoogle Scholar
  28. Ivanov V, Tay STL (2006b) Microorganisms of aerobic microbial granules. In: Tay JH, Tay STL, Liu Y, Show KY, Ivanov V (eds) Biogranulation technologies for wastewater treatment. Elsevier, Amsterdam, pp 135–162CrossRefGoogle Scholar
  29. Ivanov V, Wang JY, Stabnikova O, Krasinko V, Stabnikov V, Tay STL, Tay JH (2004) Iron-mediated removal of ammonia from strong nitrogenous wastewater of food processing. Water Sci Technol 49:421–431Google Scholar
  30. Ivanov V, Stabnikov V, Zhuang WQ, Tay ST L, Tay JH (2005) Phosphate removal from return liquor of municipal wastewater treatment plant using iron-reducing bacteria. J Appl Microbiol 98:1152–1161CrossRefGoogle Scholar
  31. Ivanov V, Stabnikova O, Sihanonth P, Menasveta P (2006a) Aggregation of ammonia-oxidizing bacteria in microbial biofilm on oyster shell surface. World J Microbiol Biotechnol 22:807–812CrossRefGoogle Scholar
  32. Ivanov V, Wang XH, Tay STL, Tay JH (2006b) Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl Microbiol Biotechnol 70:374–381CrossRefGoogle Scholar
  33. James GA, Warwood BK, Hiebert R., Cunningham AB (2000) Microbial barriers to the spread of pollution. In: Bioremediation. Kluwer Academic, Amsterdam, pp 1–14Google Scholar
  34. Jones AL, Brown JM, Mishra V, Perry JD, Steigerwalt AG, Goodfellow M (2004) Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. Int J Syst Evol Microbiol 54:407–411CrossRefGoogle Scholar
  35. Johnson-Green PC, Crowder AA (1991) Iron oxide deposition on axenic and non-axenic roots of rice seedlings (Oryza sativa L.). J Plant Nutr 14:375–386CrossRefGoogle Scholar
  36. Karol RH (2003) Chemical grouting and soil stabilization, 3rd edn. M. Dekker, New YorkGoogle Scholar
  37. Kenyon WJ, Esch SW, Buller CS (2005) The curdlan-type exopolysaccharide produced by cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation. Antonie Van Leeuwenhoek 87:143–148CrossRefGoogle Scholar
  38. Kucharski ES, Winchester W, Leeming WA, Cord-Ruwisch R, Muir C, Banjup WA, Whiffin VS, Al-Thawadi S, Mutlaq J (2005) Microbial biocementation. Patent Application WO/2006/066326; International Application No.PCT/AU2005/001927Google Scholar
  39. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286CrossRefGoogle Scholar
  40. McConkey BG, Reimer CD, Nicholaichuk W (1990) Sealing earthen hydraulic structures with enhanced gleization and sodium carbonate: 2. Application for lining an irrigation canal. C Agr Eng 163–170Google Scholar
  41. Mataix-Solera J, Guerrero C, Hernández MT, García-Orenes F, Mataix-Beneyto J, Gómez I, Escalante B (2005) Improving soil physical properties related to hydrological behaviour by inducing microbiological changes after organic amendments. Geophys Res Abs 7, 00341Google Scholar
  42. Meadows A, Meadows PS, Wood DM, Murray JMH (1994) Microbiological effects on slope stability: an experimental analysis. Sedimentology 41:423–435CrossRefGoogle Scholar
  43. Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131:1222–1233CrossRefGoogle Scholar
  44. Momemi D, Kamel R, Martin R, Yen TF (1999) Potential use of biopolymer grouts for liquefaction mitigation. In: Leeson A, Alleman BC (eds) Phytoremediation and innovation strategies for specialized remedial applications. Batelle Press, Columbus, pp 175–180Google Scholar
  45. Mozley PS, Davis JM (2005) Internal structure and mode of growth of elongate calcite concretions: evidence for small-scale, microbially induced, chemical heterogeneity in groundwater. Geol Soc Am Bull 117:1400–1412CrossRefGoogle Scholar
  46. Mulder EG, Deinema MH (1992) The sheathed bacteria. In: Balows A (ed) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag, New York, pp 2613–2624Google Scholar
  47. Murphy EM, Ginn TR (2000) Modeling microbial processes in porous media. Hydrogeol J 8:142–158CrossRefGoogle Scholar
  48. Portilho M, Matioli G, Zanin GM, de Moraes FF, Scamparini AR (2006) Production of insoluble exopolysaccharide Agrobacterium sp. (ATCC 31749 and IFO 13140). Appl Biochem Biotechnol 129–132:864–869CrossRefGoogle Scholar
  49. Ragusa SR, de Zoysa DS, Rengasamy P (1994) The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil. Irrigation Sci 15:159–166Google Scholar
  50. Ralph DE, Stevenson JM (1995) The role of bacteria in well clogging. Water Res 29:365–369CrossRefGoogle Scholar
  51. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mat J 98:3–9Google Scholar
  52. Ravenscroft N, Walker SG, Dutton GG, Smit J (1991) Identification, isolation, and structural studies of extracellular polysaccharides produced by Caulobacter crescentus. J Bacteriol 173:5677–5684Google Scholar
  53. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992CrossRefGoogle Scholar
  54. Rodgers M, Mulqueen J, Healy MG (2004) Surface clogging in an intermittent stratified sand filter. Soil Sci Soc Am J 68:1827–1832CrossRefGoogle Scholar
  55. Ross CW, Mew G, Childs CW (1989) Deep cementation in late quaternary sands near Westport, New Zealand. Aust J Soil Res 27:275–288CrossRefGoogle Scholar
  56. Ross N, Villemur R, Deschenes L, Samson R (2001) Clogging of limestone fracture by stimulating groundwater microbes. Water Res 35:2029–2037CrossRefGoogle Scholar
  57. Seki K, Miyazaki T, Nakano M (1998) Effects of microorganisms on hydraulic conductivity decrease in infiltration. Eur J Soil Sci 49:231–236CrossRefGoogle Scholar
  58. Seki K, Kamiya J, Miyazaki T (2005) Temperature dependence of hydraulic conductivity decrease due to biological clogging under ponded infiltration. Trans Jap Soc Irrigation Drain Reclam Eng 237:13–19Google Scholar
  59. Seviour R, Blackall L (Eds) (2007) The microbiology of activated sludge, 2nd edn. IWA PublishingGoogle Scholar
  60. Sharp RR, Cunningham AB, Komlos J, Billmayer J (1999) Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Water Sci Technol 39:195–201CrossRefGoogle Scholar
  61. Stabnikov VP, Ivanov VN (2006) The effect of iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Appl Biochem Microbiol 42:284–288CrossRefGoogle Scholar
  62. Stehr G, Zorner S, Bottcher B, Koops HP (1995) Exopolymers: an ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microb Ecol 30:15–126CrossRefGoogle Scholar
  63. Stewart TL, Fogler HS (2001) Biomass plug development and propagation in porous media. Biotechnol Bioeng 72:353–363CrossRefGoogle Scholar
  64. Stocks-Fischer S, Galinat JK, Bang S.S (1999). Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571CrossRefGoogle Scholar
  65. Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge University Press, CambridgeGoogle Scholar
  66. Thompson BG, Thomas JR (1984) Method of enhancing oil recovery by use of exopolymer producing microorganisms, United States Patent 4460043Google Scholar
  67. Thompson BG, Thomas JR (1985) Method of enhancing oil recovery by use of exopolymer-producing micro-organisms, United States Patent 4561500Google Scholar
  68. Tsang PH, Li G, Brun YV, Freund LB, Tang JX (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci USA 103:11435–11436CrossRefGoogle Scholar
  69. Vandevivere P, Baveye P (1992) Relationship between transport of bacteria and their clogging efficiency in sand columns. Appl Environ Microbiol 58:2523–2530Google Scholar
  70. Veenbergen V, Lambert JWM, VanderHoek EE, VanTol AF, Weersma SI (2005) Underground space use, analysis of the past and lessons for the future. In: Proceedings ITA-AITES World Tunnel Congress, 7–12 May 2005, IstanbulGoogle Scholar
  71. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764CrossRefGoogle Scholar
  72. Weiss JV, Emerson D, Megonigal JP (2005) Rhizosphere iron (III) deposition and reduction in a Juncus effusus L.-dominated wetland. Soil Sci Soc Am J 69:1861–1870CrossRefGoogle Scholar
  73. Wingender J, Neu TR, Flemming HC (eds) (1999) Microbial extracellular polymeric substances: characterization, structure and function. Springer-Verlag Berlin and Heidelberg GmbH & CoGoogle Scholar
  74. Wu JG, Stahl P, Zhang R (1997) Experimental study on the reduction of soil hydraulic conductivity by enhanced biomass growth. Soil Sci 162:741–748CrossRefGoogle Scholar
  75. Yamanaka T, Miyasaka H, Aso I, Tanigawa M, Shoji K (2002) Involvement of sulfur- and iron-transforming bacteria in heaving of house foundations. Geomicrobiol J 19:519–528CrossRefGoogle Scholar
  76. Yang IC, Li Y, Park JK, Yen TF (1993) Subsurface application of slime—forming bacteria in soil matrices. In: Proceedings of the 2nd international symposium in situ and on site bioreclamation, April 1993, San Diego, CA, Lewis Publishers, Boca Raton, FLGoogle Scholar
  77. Yen TF, Yang ICY, Karimi S, Martin GR (1996) Biopolymers for geotechnical applications. In: Chenchayya TB (ed) North American water and environment congress & destructive water. ASCE, New York, pp 1602–1607Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Block N1, School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations