Modern geochemical and molecular tools for monitoring in-situ biodegradation of MTBE and TBA

  • Tomasz KuderEmail author
  • Paul Philp
View Paper


Methyl tert-butyl ether (MTBE) is a major gasoline oxygenate worldwide and a widespread groundwater contaminant. Natural attenuation of MTBE is of practical interest as a cost effective and non-invasive approach to remediation of contaminated sites. The effectiveness of MTBE attenuation can be difficult to demonstrate without verification of the occurrence of in-situ biodegradation. The aim of this paper is to discuss the recent progress in assessing in-situ biodegradation. In particular, compound-specific isotope analysis (CSIA), molecular techniques based on nucleic acids analysis and in-situ application of stable isotope labels will be discussed. Additionally, attenuation of tert-butyl alcohol (TBA) is of particular interest, as this compound tends to occur alongside MTBE introduced from the gasoline or produced by (mainly anaerobic) biodegradation of MTBE.


Methyl tert-butyl ether (MTBE) Tert-butyl alcohol (TBA) Natural attenuation Biodegradation Groundwater Stable isotope analysis Stable isotope tracers CSIA Molecular tools Bio-Sep 


  1. Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ Sci Technol 40:1588–1596CrossRefGoogle Scholar
  2. Amerson I, Johnson RL (2003) Natural gradient tracer test to evaluate natural attenuation of MTBE under anaerobic conditions. Ground Water Monitor Remed 23:54–61CrossRefGoogle Scholar
  3. Bianchin M, Smith L, Barker JF, Beckie R (2006) Anaerobic degradation of naphthalene in a fluvial aquifer: a radiotracer study. J Contam Hydrol 84:178–196CrossRefGoogle Scholar
  4. Biggerstaff JP, Le Puil M, Weidow BL, Leblanc-Gridley J, Jennings E, Busch-Harris J, Sublette KL, White DC, Alberte RS (2007) A novel and in situ technique for the quantitative detection of MTBE and benzene degrading bacteria in contaminated matrices. J Microbiol Methods 68:437–441CrossRefGoogle Scholar
  5. Black L, Fine D (2001) High levels of monoaromatic compounds limit the use of solid-phase microextraction of methyl tert-butyl ether and tert-butyl alcohol. Environ Sci Technol 35:3190–3192CrossRefGoogle Scholar
  6. Bradley PM, Landmeyer JE, Chapelle FH (2002) TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions. Environ Sci Technol 36:4087–4090CrossRefGoogle Scholar
  7. Busch-Harris JL, Sublette KL, Jennings E, Roberts KP, Davis G, Ogles D, White DC, Peacock A, Holmes WE, Yang X, Kolhatkar A, Mackay D, Kaiser P (2006) Demonstrating anaerobic biodegradation of MTBE and TBA in situ using Bio-Sep Bio-Traps and 13C-stable isotope probing, in Abstracts of the 13th International Petroleum Environmental Conference, October 2006, San Antonio, TX, pp 8–9Google Scholar
  8. Cataldo RM (2004) Remediation of releases containing MTBE at gasoline station Sites – ENSR International’s experience. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Kluwer Academic Publishers, pp 395–406Google Scholar
  9. Chang YJ, Long PE, Geyer R, Peacock AD, Resch CT, Sublette K, Pfiffner S, Smithgall A, Anderson RT, Vrionis HA, Stephen JR, Dayvault R, Ortiz-Bernad I, Lovley DR, White DC (2005) Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI). Environ Sci Technol 39:9039–9048CrossRefGoogle Scholar
  10. Day MJ, Gulliver T (2004) Natural attenuation of tert-butyl alcohol. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook, Kluwer Academic Publishers, pp 541–560Google Scholar
  11. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916CrossRefGoogle Scholar
  12. EPA OSWER Directive 9200.4-17P (1999) Use of monitored natural attenuation at superfund, RCRA Corrective Action, and Underground Storage Tank SitesGoogle Scholar
  13. Ferreira NL, Malandain C, Fayolle-Guichard F (2006) Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72:252–262CrossRefGoogle Scholar
  14. Finneran KT, Lovley DR (2001) Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ Sci Technol 35:1785–1790CrossRefGoogle Scholar
  15. Finneran KT, Lovley DR (2004) Anaerobic in situ bioremediation. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Kluwer Academic Publishers, pp 265–277Google Scholar
  16. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kaestner M, Richnow HH (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252CrossRefGoogle Scholar
  17. Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Sublette KL, Kaestner M (2005) In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ Sci Technol 39:4983–4989CrossRefGoogle Scholar
  18. Gray JR, Lacrampe-Couloume G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Lollar BS (2002) Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether. Environ Sci Technol 36:1931–1938CrossRefGoogle Scholar
  19. Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792Google Scholar
  20. Hristova K, Gebreyesus B, Mackay D, Scow KM (2003) Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl Environ Microbiol 69:2616–2623CrossRefGoogle Scholar
  21. Hristova KR, Lutenegger CM, Scow KM (2001) Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol 67:5154–5160CrossRefGoogle Scholar
  22. Hunkeler D, Butler BJ, Aravena R, Barker JF (2001) Monitoring biodegradation of methyl tert-butyl ether (MTBE) using compound-specific carbon isotope analysis. Environ Sci Technol 35:676–681CrossRefGoogle Scholar
  23. Johnson R, Pankow J, Bender D, Price C, Zogorski J (2000) MTBE – to what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217ACrossRefGoogle Scholar
  24. Kane SR, Beller HR, Legler TC, Koester CJ, Pinkart HC, Halden RU, Happel AM (2001) Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites. Appl Environ Microbiol 67:5824–5829CrossRefGoogle Scholar
  25. Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945CrossRefGoogle Scholar
  26. Kleikemper J, Pombo S, Schroth MH, Sigler WV, Pesaro M, Zeyer J (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 71:149–158CrossRefGoogle Scholar
  27. Kolhatkar R, Kuder T, Philp P, Allen J, Wilson JT (2002) Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site. Environ Sci Technol 36:5139–5146CrossRefGoogle Scholar
  28. Kolhatkar R, Wilson J, Dunlap LE (2000) Evaluating natural biodegradation of MTBE at multiple UST sites. In: Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Conference, Nov. 14–17, 2000, Anaheim, CA, pp 32–49Google Scholar
  29. Kopinke F, Georgi A, Richnow HH (2005a) Comment on “New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE”. Environ Sci Technol 39:8541–8542CrossRefGoogle Scholar
  30. Kopinke F, Georgi A, Voskamp M, Richnow HH (2005b) Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ Sci Technol 39:6052–6062CrossRefGoogle Scholar
  31. Kreuzer-Martin HW (2007) Stable isotope probing: linking functional activity to specific members of microbial communities. Soil Sci Soc Am J 71:611–619CrossRefGoogle Scholar
  32. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220CrossRefGoogle Scholar
  33. Lahvis MA, Baehr AL, Baker RJ (2004) Evaluation of volatilization as a natural attenuation pathway for MTBE. Ground Water 42:258–267CrossRefGoogle Scholar
  34. Lesser LE, Johnson PC (2005) Spatial variations in MTBE-biodegradation activity near a biobarrier in Port Hueneme, California. IAHS Publication 297:358–366Google Scholar
  35. Lesser LE, Spinnler G, Johnson PC, Aravena R (2005) Assessment of stable carbon isotopes as a tool for assessing MTBE biodegradation at a field site. IAHS Publ 297:290–295Google Scholar
  36. Mackay D, de Sieyes N, Einarson M, Feris K, Pappas A, Wood I, Jacobson L, Justice L Noske M, Wilson J, Adair C, Scow K (2007) Impact of ethanol on the natural attenuation of MTBE in a normally sulfate-reducing aquifer. Environ Sci Technol 41:2015–2021CrossRefGoogle Scholar
  37. McGregor D (2006) Methyl tertiary-butyl ether: studies for potential human health hazards. Crit Rev Toxicol 36:319–358CrossRefGoogle Scholar
  38. Mormile MR, Liu S, Suflita JM (1994) Anaerobic biodegradation of gasoline oxygenates: extrapolation of information to multiple sites and redox conditions. Environ Sci Technol 28:1727–32CrossRefGoogle Scholar
  39. Moyer EE (2004) Introduction. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Kluwer Academic Publishers, pp 3–10Google Scholar
  40. Moyer EE, Kostecki PT (2004) MTBE remediation handbook. Kluwer Academic PublishersGoogle Scholar
  41. Nakatsu CH, Hristova K, Hanada S, Meng XY, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the betaproteobacteria. Int J Syst Evol Microbiol 56:983–989CrossRefGoogle Scholar
  42. NRC – National Research Council (2000) Natural attenuation for groundwater remediation. National Academy Press, Washington DCGoogle Scholar
  43. O’Sullivan G, Boshoff G, Downey A, Kalin RM (2004) Carbon isotope effect during the abiotic oxidation of methyl-tert-butyl ether (MTBE). In: Proceedings of the 7th International In Situ and On-Site Bioremediation Symposium, June 2–5, 2003, Orlando, FL, pp 1566–1573Google Scholar
  44. Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the Ffield and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622CrossRefGoogle Scholar
  45. Pruden A, Sedran MA, Suidan MT, Venosa AD (2005) Anaerobic biodegradation of methyl tert-butyl ether under iron-reducing conditions in batch and continuous-flow cultures. Water Environ Res 77:297–303CrossRefGoogle Scholar
  46. Reid JB, Reisinger HJ, Bartholomae PG, Gray JC, Hullman AS (1999) A comparative assessment of the long-term behavior of MTBE and benzene plumes in Florida, USA. In: Proceedings of the 5th International In Situ and On-Site Bioremediation Symposium, Apr. 19–22, 1999, San Diego, CA, pp 97–102Google Scholar
  47. Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65:101–120CrossRefGoogle Scholar
  48. Rosell M, Barceló D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Variations in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41:2036–2043CrossRefGoogle Scholar
  49. Schirmer M, Barker JF (1998) A study of long-term MTBE attenuation in the borden aquifer, Ontario, Canada. Ground Water Monitor Remed 18:113–122CrossRefGoogle Scholar
  50. Schmidt TC, Schirmer M, Weiss H, Haderlein SB (2004a) Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface. J Contam Hydrol 70:173–203CrossRefGoogle Scholar
  51. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004b) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  52. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opin Biotechnol 16:246–253CrossRefGoogle Scholar
  53. Sherwood Lollar B, Slater GF, Sleep B, Witt M, Klecka GM, Harkness M, Spivack J (2001) Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, dover air force base. Environ Sci Technol 35:261–269CrossRefGoogle Scholar
  54. Shih T, Rong Y, Harmon T, Suffet M (2004) Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources. Environ Sci Technol 38:42–8CrossRefGoogle Scholar
  55. Smallwood BJ, Philp RP, Burgoyne TW, Allen JD (2001) The use of stable isotopes to differentiate specific source markers for MTBE. Environ Forensics 2:215–221CrossRefGoogle Scholar
  56. Smith AE, Hristova K, Wood I, Mackay DM, Lory E, Lorenzana D, Scow KM (2005) Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Environ Health Perspect 113:317–322CrossRefGoogle Scholar
  57. Smith CA, O’Reilly KT, Hyman MR (2003) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804CrossRefGoogle Scholar
  58. Somsamak P, Cowan RM, Haggblom MM (2001) Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiol Ecol 37:259–264CrossRefGoogle Scholar
  59. Somsamak P, Richnow HH, Haeggblom MM (2005) Carbon isotopic fractionation during anaerobic biotransformation of methyl tert-butyl ether and tert-amyl methyl ether. Environ Sci Technol 39:103–109CrossRefGoogle Scholar
  60. Somsamak P, Richnow HH, Haggblom MM (2006) Carbon isotope fractionation during anaerobic degradation of methyl tert-butyl ether under sulfate-reducing and methanogenic conditions. Appl Environ Microbiol 72:1157–1163CrossRefGoogle Scholar
  61. Squillace PJ, Zogorski JS, Wilber WG, Price CV (1996) A preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993–1994. Environ Sci Technol 30:1721–30CrossRefGoogle Scholar
  62. Steffan RJ, Mcclay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222Google Scholar
  63. Stelzer N, Buening C, Pfeifer F, Dohrmann AB, Tebbe CC, Nijenhuis I, Kaestner M, Richnow HH (2006) In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Org Geochem 37:1394–1410CrossRefGoogle Scholar
  64. Stocking AJ, Deeb RA, Flores AE, Stringfellow W, Talley J, Brownell R, Kavanaugh MC (2001) Bioremediation of MTBE: a review from a practical perspective. Biodegradation 11:187–201CrossRefGoogle Scholar
  65. Sublette K, Peacock A, White D, Davis G, Ogles D, Cook D, Kolhatkar R, Beckman D, Yang X (2006) Monitoring subsurface microbial ecology in a sulfate-amended, gasoline-contaminated aquifer. Ground Water Monitor Remed 26:70–78CrossRefGoogle Scholar
  66. Tornatore PM, White GM, Baker JM, Peacock AD, Scow KM (2004) Development of a full-scale biological remedy to protect nearby municipal production wells from MTBE impacts in the northern Los Angeles Basin. In: Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation, Conference, Aug. 16–18, 2004, Baltimore, MD, pp 66–67Google Scholar
  67. Van Breukelen BM (2007a) Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh Equation. Environ Sci Technol 41:4980–4985CrossRefGoogle Scholar
  68. Van Breukelen BM (2007b) Extending the Rayleigh Equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ Sci Technol 41:4004–4010CrossRefGoogle Scholar
  69. Wang Y, Huang Y (2003) Hydrogen isotopic fractionation of petroleum hydrocarbons during vaporization: implications for assessing artificial and natural remediation of petroleum contamination. Appl Geochem 18:1641–1651CrossRefGoogle Scholar
  70. Wilson JT, Kolhatkar R (2002) Role of natural attenuation in life cycle of MTBE plumes. J Environ Eng (Reston, VA, United States) 128:876–882Google Scholar
  71. Wilson JT (2004) Fate and transport of MTBE and other gasoline components. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Kluwer Academic Publishers, pp 19–61Google Scholar
  72. Wilson JT, Adair C, Kaiser PM a Kolhatkar R (2005a) Anaerobic biodegradation of MTBE at a gasoline spill site. Ground Water Monitor Remed 25:103–115CrossRefGoogle Scholar
  73. Wilson JT, Kaiser PM, Adair C (2005b) Monitored natural attenuation of MTBE as a risk management option at leaking underground storage tank sites. EPA 600-R-04-179, US EPA, CincinnatiGoogle Scholar
  74. Wilson JT, Kolhatkar R, Kuder T, Philp P, Daugherty SJ (2005c) Stable isotope analysis of MTBE to evaluate the source of TBA in ground water. Ground Water Monitor Remed 25:108–116CrossRefGoogle Scholar
  75. Wilson RD, Thornton SF, Mackay DM (2004) Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 15:359–69CrossRefGoogle Scholar
  76. Yeh CK, Novak JT (1994) Anaerobic biodegradation of gasoline oxygenates in soils. Water Environ Res 66:744–52Google Scholar
  77. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39:1018–1029CrossRefGoogle Scholar
  78. Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 75:5575–5583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Geology and GeophysicsUniversity of OklahomaNormanUSA

Personalised recommendations