Advertisement

Elimination of methane generated from landfills by biofiltration: a review

  • J. Nikiema
  • R. Brzezinski
  • M. Heitz
REVIEW PAPER

Abstract

The production of biogas in landfills, its composition and the problems resulting from its generation are all reviewed. Biofiltration is a promising option for the control of emissions to atmosphere of the methane contained in biogas issued from the smaller and/or older landfills. A detailed review of the methane biofiltration literature is presented. The microorganisms, mainly the methanotrophs, involved in the methane biodegradation process, and their needs in terms of oxygen and carbon dioxide utilization, are described. Moreover, the influence of nutrients such as copper, nitrogen and phosphorus, and the process operating conditions such as temperature, pH and moisture content of the biofilter bed, are also presented. Finally, the performance of various filter beds, in terms of their elimination capacities, is presented for laboratory scale biofilters and landfill covers.

Keywords

Air treatment Landfill Biogas Methane Biofiltration Methanotroph Nutrient 

Notes

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial contribution to the project and express their gratitude to Dr. P. Lanigan for text review. One of the authors (J. Nikiema) would like to thank the NSERC for providing a scholarship for her doctoral studies (Canada Graduate Scholarships Program).

References

  1. Abichou T, Chanton J, Powelson D, Fleiger J, Escoriaza S, Yuan L, Stern J (2006a) Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag 26(11):1305–1312CrossRefGoogle Scholar
  2. Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006b) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228CrossRefGoogle Scholar
  3. Acha V, Alba J, Thalasso F (2002) The absolute requirement for carbon dioxide for aerobic methane oxidation by a methanotrophic-heterotrophic soil community of bacteria. Biotechnol Lett 24(9):675–679CrossRefGoogle Scholar
  4. Arif MAS, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soil 21(1–2):95–102CrossRefGoogle Scholar
  5. Auman AJ, Lidstrom ME (2002) Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ Microbiol 4(9):517–524CrossRefGoogle Scholar
  6. Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in Type I and Type II methanotrophs. Appl Environ Microbiol 67(9):4009–4016CrossRefGoogle Scholar
  7. Ayalon O, Avnimelech Y, Shechter M (2001) Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation. Environ Manag 27(5):697–704CrossRefGoogle Scholar
  8. Aye L, Widjaya ER (2006) Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag 26(10):1180–1191CrossRefGoogle Scholar
  9. Bajic Z, Zeiss C (2001) Methane oxidation in alternative landfill cover soils. In: Proceedings from the 24th Annual Landfill Gas Symposium, March 19–22, Dallas, Texas, USA, SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 145–151Google Scholar
  10. Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments—Occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res Atmos 99(D8):16531–16540CrossRefGoogle Scholar
  11. Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27(12):1517–1527CrossRefGoogle Scholar
  12. Berestovskaya Y, Vasil’eva LV, Chestnykh OV, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the russian arctic tundra. Microbiology 71(4):460–466CrossRefGoogle Scholar
  13. Berger J, Fornes LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25(4):369–373CrossRefGoogle Scholar
  14. Bergmann J-U, Eichmann H-L, Klein T (1998) Device for removing gases from a landfill. Rehau AG & CO, Patent number: EP 0884117 (Priority number: DE19724430), Rehau, 6 pGoogle Scholar
  15. Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65(5):1826–1833Google Scholar
  16. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation on soils and sediments. FEMS Microbiol Ecol 47:265–277CrossRefGoogle Scholar
  17. Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil—influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25(1):178–183CrossRefGoogle Scholar
  18. Boeckx P, Van Cleemput O (2000) Methane oxidation in landfill cover soils. In: Singh SN (ed) Trace gas emissions and plants. Kluwer Academic Publishers, pp 197–213.Google Scholar
  19. Bogner JE, Spokas KA, Burton EA (1997) Kinetics of methane oxidation in a landfill cover soil—Temporal variations, a whole landfill oxidation experiment, and modeling of net CH4 emissions. Environ Sci Technol 31(9):2504–2514CrossRefGoogle Scholar
  20. Börjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag Res 15(1):33–54CrossRefGoogle Scholar
  21. Börjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30:369–376CrossRefGoogle Scholar
  22. Börjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH (1998) Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol Ecol 26(3):207–217Google Scholar
  23. Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK, Bykova SA, Kolganova TV, Galchenko VF (2002) A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 71(4):425–432CrossRefGoogle Scholar
  24. Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soil 17:263–268CrossRefGoogle Scholar
  25. Brosseau J, Heitz M (1994) Trace gas compound emissions from municipal landfill sanitary sites. Atmos Environ 28(2):285–293CrossRefGoogle Scholar
  26. Cai ZC, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32(11/12):1537–1545CrossRefGoogle Scholar
  27. Cai ZC, Yan XY (1999) Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biol Biochem 31(5):715–725CrossRefGoogle Scholar
  28. Chanton J, Liptay K (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles 14(1):51–60CrossRefGoogle Scholar
  29. Chanton JP, Rutkowski CM, Mosher B (1999) Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ Sci Technol 33(21):3755–3760CrossRefGoogle Scholar
  30. Chiemchaisri W, Visvanathan C, Wu, JS (2001a) Biological activities of methane oxidation in tropical landfill cover soils. J Solid Waste Technol Manag 27(3–4):129–136Google Scholar
  31. Chiemchaisri W, Wu JS, Visvanathan C (2001b) Methanotrophic production of extracellular polysaccharide in landfill cover soils. Water Sci Technol 43(6):151–159Google Scholar
  32. Christophersen M, Kjeldsen P (2001) Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration. Waste Manag Res 19(6):579–594Google Scholar
  33. Christophersen M, Linderod L, Jensen PE, Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. J Environ Qual 29(6):1989–1997CrossRefGoogle Scholar
  34. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640Google Scholar
  35. Contec (Contec Ingenieurgesellschaft fuer Energie und Umwelttechnik) and Landkeis (Landkeis Freudenstadt Abfallwirtschaftsbetrieb) (2004) Methane oxidation filter for the treatment of landfill lean and/or waste gases from municipal waste landfills. Ger. Gebrauchsmusterschrift, Patent number: DE 202004013278, 6 pGoogle Scholar
  36. Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Geochem Cycles 5(4):319–334Google Scholar
  37. Crossman ZM, Abraham F, Evershed RP (2004) stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ Sci Technol 38(5):1359–1367CrossRefGoogle Scholar
  38. Czepiel PM, Mosher B, Crill PM, Harriss, RC (1996) Quantifying the effect of oxidation on landfill methane emissions. J Geophys Res Atmos 101(D11):16721–16729CrossRefGoogle Scholar
  39. Dammann B, Streese J, Stegmann R (1999) Microbial oxidation of methane from landfills in biofilters. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 4–9 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 517–524Google Scholar
  40. De Visscher A, Van Cleemput O (2003) Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Manage 23:581–591CrossRefGoogle Scholar
  41. De Visscher A, Thomas D, Boeckx P, Van Cleemput O (1999) Methane oxidation in simulated landfill cover soil environments. Environ Sci Technol 33(11):1854–1859CrossRefGoogle Scholar
  42. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen nov, sp nov, a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52(1):251–261Google Scholar
  43. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670CrossRefGoogle Scholar
  44. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen nov, sp nov, a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(3):955–969Google Scholar
  45. Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA (2000) General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cycles 14(4):999–1019CrossRefGoogle Scholar
  46. Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Press Crit Rev Biotechnol 25(1–2):53–72CrossRefGoogle Scholar
  47. Desideri U, Di Maria F, Leonardi D, Proietti S (2003) Sanitary landfill energetic potential analysis: a real case study. Energy Conver Manag 44:1969–1981CrossRefGoogle Scholar
  48. Dobbie KE, Smith KA (1996) Comparison of CH4 oxidation rates in woodland, arable and sand aside soils. Soil Biol Biochem 28(10–11):1357–1365CrossRefGoogle Scholar
  49. Du Plessis CA, Strauss JM, Sebapalo EMT, Riedel K-HJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82:1359–1365CrossRefGoogle Scholar
  50. Dunfield P, Knowles R (1995) Kinetics of methane oxidation by nitrate, nitrite ans ammonium in a humisol. Appl Environ Microbiol 61(8):3129–3135Google Scholar
  51. Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad, R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65(3):1009–1014Google Scholar
  52. Environnement Canada (2006) Landfill Gas.www.ec.gc.ca/nopp/lfg/en/index.cfm (Visited in August 2006)Google Scholar
  53. EPA (2005) Inventory of US greenhouse Gas emissions and sink: 1990–2003. US Environmental Protection Agency, Washington, USA. www.yosemite.epa.gov/oar/globalwarming.nsf/UniqueKeyLookup/RAMR69V4ZS/$File/05_complete_report.pdf (Visited in August 2006)Google Scholar
  54. EPA (2006) Methane: sources and emissions, Human-related sources. www.epa.gov/methane/sources.html#landfills (Visited in August 2006)Google Scholar
  55. Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL and Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71(4):2016–2025CrossRefGoogle Scholar
  56. Ewall M (1999) Primer on Landfill Gas as "Green" Energy. Report for Energy Justice network, www.penweb.org/issues/energy/green4.html (Visited in August 2006)Google Scholar
  57. Gebert J, Groengroeft A (2006a) Passive landfill gas emission—Influence of atmospheric pressure and implications for the operation of methane-oxidizing biofilters. Waste Manag 26:245–251CrossRefGoogle Scholar
  58. Gebert J, Groengroeft A (2006b) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag 26:399–407CrossRefGoogle Scholar
  59. Gebert J, Groengroeft A, Miehlich G (2001) Microbial reduction of methane and trace gas emissions in a biofilter. In: Proceedings from the 8th International Waste Management and Landfill Symposium S Margherita di Pula, Cagliari, Italy, 1–5 October 2001, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 585–593Google Scholar
  60. Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilter. Waste Manag 23:609–619CrossRefGoogle Scholar
  61. Giani L, Bredenkamp J, Eden I (2002) Temporal and spatial variability of CH4 dynamics of landfill cover soils. J Plant Nutr Soil Sci 165:205–210CrossRefGoogle Scholar
  62. Gielecki M (1997) Renewable Energy Annual 1996. Report prepared by the Energy Information Administration, US Department of Energy, Washington, DOE/ELA-0603(96), Distribution category UC-950, 180 pGoogle Scholar
  63. Goossens MA (1996) Landfill gas power plants. Renew Energy 9(1–4):1015–1018CrossRefGoogle Scholar
  64. Grossman EL, Cifuentes LA, Cozzarelli IM (2002) Anaerobic methane oxidation in a landfill-leachate plume. Environ Sci Technol 36:2436–2442CrossRefGoogle Scholar
  65. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471Google Scholar
  66. Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26:408–416CrossRefGoogle Scholar
  67. Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679CrossRefGoogle Scholar
  68. Hesselsoe M, Boysen S, Iversen N, Jorgensen L, Murrell J, McDonald I, Radajewski S, Thestrup H, Roslev P (2005) Degradation of organic pollutants by methane grown microbial consortia. Biodegradation 16(5):435–448CrossRefGoogle Scholar
  69. Hettiaratchi JPA, Stein VB (2001) Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation. In: Proceedings of the 17th International Conference on Solid Waste Technology and Management, Philadelphia, PA, Oct. 20–24, Published by the J Solid Waste Technol Manag, Silver Spring, MD, USA, pp 465–476Google Scholar
  70. Hettiaratchi JPA, Stein VB, Achari G (2000) Biofiltration: A cost-effective technique for controlling methane emissions from sub-surface sources. In: Singhal, Mehrotra (eds) 6th Environmental Issues and Management of Waste in Energy and Mineral Production, Balkema Rotterdam, Netherlands, pp 291–299Google Scholar
  71. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen nov, sp nov, a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55(5):1817–1826CrossRefGoogle Scholar
  72. Hilger H, Humer M (2003) Biotic landfill cover treatments for mitigating methane emissions. Environ Monitor Assess 84(1–2):71–84CrossRefGoogle Scholar
  73. Hilger HA, Cranford DF, Barlaz MA (2000a) Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biol Biochem 32(4):457–467CrossRefGoogle Scholar
  74. Hilger HA, Wollum AG, Barlaz MA (2000b) Landfill methane oxidation response to vegetation, fertilization, and liming. J Environ Qual 29(1):324–334CrossRefGoogle Scholar
  75. Horz H-P, Rich V, Avrahami S, Bohannan BJ M (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71(5):2642–2652CrossRefGoogle Scholar
  76. Hudgins M, Green L (2000) Innovative landfill gas and odor control using an aerobic landfill system. In: Odors and VOC Emissions 2000, Conference Proceedings, Cincinnati, OH, United States, Apr. 16–19, Published by Water Environment Federation, pp 619–641Google Scholar
  77. Hughes KL, Daneel RA, Senior E (2002) Physiological characterization of a methanol-oxidizing microbial association isolated from landfill final covering soil. South Afr J Sci 98:434–437Google Scholar
  78. Humer M, Lechner P (1999a) Methane oxidation in compost cover layers on landfills. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S Margherita di Pula, Cagliari, Italy, 4–8 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 403–410Google Scholar
  79. Humer M, Lechner P (1999b) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17(6):443–452Google Scholar
  80. Humer M, Lechner P (2001) Microbial methane oxidation for the reduction of landfill gas emissions. J Solid Waste Technol Manag 27(3–4):146–151Google Scholar
  81. Hupe K, Heyer KU, Stegmann R (1998) Hazardous sites and landfills utilize compost. Biocycle 39(6):79Google Scholar
  82. Hütsch BW (1998a) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol Fertil Soil 28:27–35CrossRefGoogle Scholar
  83. Hütsch BW (1998b) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol Fertil Soil 27:284–292CrossRefGoogle Scholar
  84. Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land use, soil pH, N fertilization. Soil Biol Biochem 26(12):1613–1622CrossRefGoogle Scholar
  85. Jäckel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33(7–8):965–971CrossRefGoogle Scholar
  86. Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86(1):113–123CrossRefGoogle Scholar
  87. Janni KA, Maier WJ, Kuehn TH, Yang CH, Bridges BB, Vesley D, Nellis MA (2001) Evaluation of Biofiltration of Air—an innovative air pollution control strategy. ASHRAE Trans 107(1):198–214Google Scholar
  88. Jones HA, Nedwell DB (1993) Methane emission and methane oxidation in landfill cover soil. FEMS Microbiol Lett 102(3–4):185–195CrossRefGoogle Scholar
  89. Jorio H, Heitz M (1999) Traitement de l’air par biofiltration. Can J Civil Eng 26:402–424CrossRefGoogle Scholar
  90. Jorio H, Payre G, Heitz M (2003) Mathematical modeling of gas-phase biofilter performance. J Chem Technol Biotechnol 78:834–846CrossRefGoogle Scholar
  91. Kallistova AY, Kevbrina MV, Nekrasova VK, Glagolev MV, Serebryanaya MI, Nozhevnikova AN (2005) Methane oxidation in landfill cover soil. Microbiology 74(5):608–614CrossRefGoogle Scholar
  92. Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp nov, a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55(6):2345–2350CrossRefGoogle Scholar
  93. Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13(5):195–198CrossRefGoogle Scholar
  94. Kettunen RH, Rintala JA (1997) The effect of low temperature (5–29°C) and adaptation on the methanogenic activity of biomass. Appl Microbiol Biotechnol 48:570–576CrossRefGoogle Scholar
  95. Kightley D, Nedwell DB, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61(2):592–601Google Scholar
  96. Kim HJ, Graham DW (2001) Effect of oxygen level on simultaneous nitrogenase and sMMO expression and activity in Methylosinus trichosporium OB3b and its sMMOC mutant, pp319: aerotolerant N2 fixation in PP319. FEMS Microbiol Lett 201(2):133–138CrossRefGoogle Scholar
  97. King GM, Schnell S (1994) Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370:282–284CrossRefGoogle Scholar
  98. King GM, Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol 64(1):253–257Google Scholar
  99. Kjeldsen P, Dalager A, Broholm K (1997) Attenuation of methane and nonmethane organic compounds in landfill gas affected soils. J Air Waste Manag Assoc 47(12):1268–1275Google Scholar
  100. Klusman RW, Dick CJ (2000) Seasonal variability in CH4 emissions from a landfill in a cool, semiarid climate. J Air Waste Manag Assoc 50(9):1632–1636Google Scholar
  101. Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58(3–4):367–395CrossRefGoogle Scholar
  102. Kravchenko IK (2002) Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242(1):157–162CrossRefGoogle Scholar
  103. Kumar S, Mondal AN, Gaikwad SA, Devotta S, Singh RN (2004) Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmos Environ 38:4921–4929CrossRefGoogle Scholar
  104. Kumaraswamy S, Ramakrishnan B, Sethunathan N (2001) Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J Environ Qual 30(6):2195–2201CrossRefGoogle Scholar
  105. Kyoto protocol (1998) Kyoto protocol to the United Nations framework convention on climate change. www.unfccc.int/resource/docs/convkp/kpeng.pdf (Visited in August 2006)Google Scholar
  106. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. Euro J Soil Biol 37(1):25–50CrossRefGoogle Scholar
  107. Lee GY, Cho YL, Yang CR, Lee DH, Won YM, Lee YJ, Park YJ (2002) Landfill structure using concept of multi-layered reactors and method for operating the same. ENV21 Co., Ltd., PCT International Application, Patent number: WO0243883, S Korea, 65 pGoogle Scholar
  108. Lidstrom ME (2001) Aerobic methylotrophic prokaryotes. In: Dworkin (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.7. Springer-Verlag, New York, Available on-line at http://link.springer-ny.com/link/service/books/10125/ (Visited in August 2006)Google Scholar
  109. Lindner AS, Semrau JD, Adriaens P (2005) Substituent effect on the oxidation of substituted biphenyl cogeners by type II methanotrop strain CSC1. Arch Microbiol 183:266–276CrossRefGoogle Scholar
  110. Ma TH, Xu C, Liao S, H McConnel, Jeong BS, Won CD (1996) In situ monitoring with the Tradescantia bioassays on the genotoxicity of gaseous emissions from a closed landfill site and an incinerator. Mut Res 359:39–52Google Scholar
  111. Mancinelli RL (1995) The regulation of methane oxidation in soil. Annu Rev Microbiol 49:581–605CrossRefGoogle Scholar
  112. March R (1994) Biofiltration for emissions abatement—Réduction des émissions par biofiltration. Euro Coatings J 7–8:528Google Scholar
  113. Maurice C, Ettala M, Lagerkvist A (1999) Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water Air Soil Pollut 113(1):203–216CrossRefGoogle Scholar
  114. McLain J (2000) Rising CO2 threatens forest methane sink. 100th General Meeting of the American Society for Microbiology, Los Angeles, California, USA, May 21–25, 2000, Published by the Journal of American Society for Microbiology, Paper N-101.Google Scholar
  115. McLain TEJ, Kepler BT, Ahmann MD (2002) Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2. Global Biogeochem Cycles 16(3):(23) 1–14Google Scholar
  116. Min H, Chen ZY, Wu WX, Chen MC (2002) Microbial aerobic oxidation of methane in paddy soil. Nutr Cycling Agroecosyst 64(1–2):79–85CrossRefGoogle Scholar
  117. Mingxing W, Jing L (2002) CH4 emission and oxidation in Chinese rice paddies. Nutrient Cycling Agroecosystems 64:43–55CrossRefGoogle Scholar
  118. Mohanty RS, Bharati K, Deepa N, Adhya KT (2000) Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol Environ Saf 47:277–284CrossRefGoogle Scholar
  119. Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture responses. Waste Manag 26(4):381–388CrossRefGoogle Scholar
  120. Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renew Energy 30:2111–2127CrossRefGoogle Scholar
  121. Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129(11):3481–3486Google Scholar
  122. Nguyen PHL, Kuruparan P, Visvanathan C (2006) Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresource Technol 98(2):380–387Google Scholar
  123. Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Comeau J F, Vigneux J, Heitz M (2004a) Atténuation de l’effet de serre par biofiltration du méthane émis par les lieux d’enfouissement sanitaire. 7\(2^{i\grave{e}me}\) Congrès de l’Association Canadienne Française pour l’Avancement des Sciences (ACFAS), Université du Québec à Montréal, Canada, May 10–14Google Scholar
  124. Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2004b) Biogas, a real problem: Biofiltration, a promising solution. In: Proceedings of the USC-CSC-TRG Conference on Biofiltration, October 20–22, Los Angeles, California, Published by The Reynolds Group, Tustin, California, USA, pp 73–80Google Scholar
  125. Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113(2–3):111–117CrossRefGoogle Scholar
  126. Novikov VV, Stepanov AL (2002) Coupling of microbial processes of methane and ammonium oxidation in soils. Microbiology 71(2):234–237CrossRefGoogle Scholar
  127. Nozhevnikova AN, Lifshitz AB, Lebedev VS, Zavarzin GA (1993) Emission of methane into the atmosphere from landfills in the former USSR. Chemosphere 26(1–4):401–417CrossRefGoogle Scholar
  128. Nozhevnikova AN, Nekrasova VK, Kevbrina MV, Kotsyurbenko OR (2001) Production and oxidation of methane at low temperature by the microbial population of municipal sludge checks situated in north-east Europe. Water Sci Technol 44(4):89–95Google Scholar
  129. Oakley CJ, Murrell JC (1988) nifH genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57CrossRefGoogle Scholar
  130. Ottengraf SPP (1986) Exhaust gas purification. In: Rehm HJ, Reed G (eds) Biotechnology, a comprehensive treatise, vol 8. VCH Verlagsgesellschaft, Weinheim, Germany, pp 426–452Google Scholar
  131. Ozkaya B, Demir A, Bilgili MS (2006) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modelling Softw (in press)Google Scholar
  132. Park S, Brown KW, Thomas JC (2002) The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag Res 20(5):434–444CrossRefGoogle Scholar
  133. Park SY, Brown KW, Thomas JC (2004) The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design. Water Air Soil Pollut 155(1–4):63–85CrossRefGoogle Scholar
  134. Perera LAK, Achari G, Hettiaratchi JPA (2002) Determination of source strength of landfill gas: a numerical modeling approach. J Environ Eng ASCE 128(5):461–471CrossRefGoogle Scholar
  135. Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  136. Popov V (2005) A new landfill system for cheaper landfill gas purification. Renew Energy 30(7):1021–1029CrossRefGoogle Scholar
  137. Raghoebarsing AR, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921CrossRefGoogle Scholar
  138. Reay DS, Nedwell DB (2004) Methane oxidation in temperate soils: effects of inorganic N. Soil Biol Biochem 36:2059–2065CrossRefGoogle Scholar
  139. Reginster J (1999) Problématique de la décharge de Mont-Saint-Guibert: État de la situation et risques pour la population. Report of the “Société Publique d’Aide à la Qualité de l’Environnement de la Région wallonne”, Published by Association des Habitants de Louvain-la-Neuve, Louvain-la-Neuve, Belgique, 160 pGoogle Scholar
  140. Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346CrossRefGoogle Scholar
  141. Scheutz C, Winther K, Kjeldsen P (2000) Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron. Environ Sci Technol 34(12):2557–2563CrossRefGoogle Scholar
  142. Segers R (1998) Methane production and methane consumption-a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51CrossRefGoogle Scholar
  143. Sitaula BK, Hansen S, Sitaula JIB, Bakken LR (2000) Methane oxidation potentials and fluxes in agricultural soil: effects of fertilization and soil compaction. Biogeochemistry 48(3):323–339CrossRefGoogle Scholar
  144. Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl Microbiol Biotechnol 39(3):400–404CrossRefGoogle Scholar
  145. Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graff C, Golvan YM-L, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?. Waste Manag 26(5):516–525CrossRefGoogle Scholar
  146. Stein VB, Hettiaratchi JPA (2001) Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ Technol 22(1):101–111CrossRefGoogle Scholar
  147. Stein VB, Hettiaratchi JPA, Achari G (2001) A numerical model for biological oxidation and migration of methane in soils. ASCE Prac Period Hazard Toxic Radioactive Waste Manag 5(4):225–234CrossRefGoogle Scholar
  148. Straka F, Crha J, Musilova M, Kuncarova M (1999) LFG-Biofilters on old landfills. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S Margherita di Pula, Cagliari, Italy, 4–9 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 507–516Google Scholar
  149. Stralis-Pavese N, Bodrossy L, Reichenauer TG, Weilharter A, Sessitsch A (2006) 16S rRNA based T-RFLP analysis of methane oxidizing bacteria—Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl Soil Ecol 31:251–266CrossRefGoogle Scholar
  150. Streese J, Stegmann (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Manag 23:573–580Google Scholar
  151. Streese J, Dammann B, Stegmann R (2001) Reduction of methane and trace gas emissions from former landfills in biofilters. In: Proceedings of the 8th International Waste Management and Landfill Symposium S Margherita di Pula, Cagliari, Italy, 1–5 October 2001, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 575–584Google Scholar
  152. Tagaris E, Sotiropoulou R-EP, Pilinis C, Halvadakis CP (2003) A methodology to estimate odors around landfill sites: the use of methane as an odor index and its utility in landfill sitting. J Air Waste Manag Assoc 53(5):629–634Google Scholar
  153. Toutant C (1994) L’atmosphère terrestre, ses ennemis et leur contrôle. In: Éditions Odile Germain, Québec, Canada, p 250Google Scholar
  154. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131CrossRefGoogle Scholar
  155. Tsai WT (2006) Bioenergy from landfill gas (LFG) in Taiwan. Renew Sustainable Energy Rev 11(2):331–344CrossRefGoogle Scholar
  156. Tsubota J, Eshinimaev BTs, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen nov, sp nov, a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884CrossRefGoogle Scholar
  157. USDE (United States Department of Energy) (2005) US climate change technology program—technology options for the near and long term. Report, published by USDE, August 2005, 210 pGoogle Scholar
  158. Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81:271–282CrossRefGoogle Scholar
  159. Van Stempvoort D, Maathuis H, Jaworski E, Mayer B, Rich K (2005) Oxidation of fugitive methane in ground water linked to bacterial sulphate reduction. Ground Water 43(2):187–199CrossRefGoogle Scholar
  160. Visvanathan C, Pokhrel D, Cheimchaisri W, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17(4):313–323Google Scholar
  161. Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178(4):239–249Google Scholar
  162. Wang Z-P, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol Biochem 35:427–433CrossRefGoogle Scholar
  163. Warmer Bulletin (2000) Landfill. Information Sheet, Published by Residua, Skipton, North Yorkshire, United Kingdon, 4 pGoogle Scholar
  164. Whalen SC, Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28(10):1271–1281CrossRefGoogle Scholar
  165. Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411Google Scholar
  166. Whitman WB, Bowen TL, Boone DR (1999) The methanogenic bacteria. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.0. Springer-Verlag, New York, Available on-line at http://link.springer-ny.com/link/service/books/10125/ (Visited in August 2006)Google Scholar
  167. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61(2):205–218Google Scholar
  168. Wilshusen JH, Hettiaratchi JPA, Stein VB (2004) Long-term behavior of passively aerated compost, methanotrophic biofilter columns. Waste Manage 24(7):643–653CrossRefGoogle Scholar
  169. Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I, type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65(11):4887–4897Google Scholar
  170. Yongzhi W, Hu W (2002) Research and application of biogas decontamination system. Report prepared by the Mianzhu Rural Energy Bureau and the Mianzhu Environmental Protection Bureau, Sichuan, China, Copyright for the Ecological Sanitation Research, StockholmGoogle Scholar
  171. Zamorano M, Pérez Pérez JI, Pavés IA, Ridao AR (2006) Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew Sustainable Energy Rev (In press)Google Scholar
  172. Zani S, Mellon MT, Collier JL, Zehr JP (2000) Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66:3119–3124CrossRefGoogle Scholar
  173. ZWA-Zero Waste America (2006) Landfills: Hazardous to the environment. www.zerowasteamerica.org/Landfills.htm (Visited in August 2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Chemical EngineeringUniversité de SherbrookeSherbrookeCanada
  2. 2.Faculty of Sciences, Department of BiologyUniversité de SherbrookeSherbrookeCanada

Personalised recommendations