Advertisement

A proposed classification of environmental adaptation: the example of high altitude

  • Jean-Paul RichaletEmail author
Review Paper

Abstract

Extreme environments are defined as the opposite of usual environments where the evoked physiological responses are unperceivable, repeatable and adjusted to the constraint. Adaptation strategies to a given environment show three levels: cultural or technological, where a buffer space is built to protect the organism from the hostile milieu, physiological, where temporary adaptive mechanisms are developed, and genetic, where full adaptation is possible with normal life and reproduction. The cost of adaptation increases from the genetic level (minimal cost) to the technological level. These concepts are illustrated by the example of adaptation to altitude hypoxia. The technological level is given by the use of oxygen bottles by high altitude climbers. The physiological level involves various physiological and biological systems (increase in heart rate, ventilation, erythropoiesis, expression of hypoxia-inducible factors, etc.). The genetic level has been reached by some animal species such as Yaks, Llamas, Pikas but has not yet been demonstrated in humans. Diseases developed during exposure to acute or chronic hypoxia may be considered as “adaptive crises” that mimic the transition to a lower energy level of adaptation.

Keywords

Extreme environment Adaptation Hypoxia  Altitude Physiology Genetics 

References

  1. Anand IS, Harris E, Ferrari R, Pears P, Harris P (1986) Pulmonary haemodynamics of the yak, cattle and cross breeds at high altitude. Thorax 41:696–700Google Scholar
  2. Bärtsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110CrossRefGoogle Scholar
  3. Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci USA 99:17215–17218CrossRefGoogle Scholar
  4. Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bartsch P, Haefeli WE (2005) Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med 172:763–767CrossRefGoogle Scholar
  5. Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216CrossRefGoogle Scholar
  6. Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T (1998) Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol 274:H1792–H1799Google Scholar
  7. Lahiri S, Cherniak NS (2001) Cellular and molecular mechanisms of O2 sensing with special reference to the carotid body. In: Hornbein TF, Schoene RN (eds) High altitude. An exploration of human adaptation. Marcel Dekker Inc., New York, Basel, pp 101–130Google Scholar
  8. Leon-Velarde F, Mejia O, Palacios JA, Monge C (1997) Changes in whole blood oxygen affinity and eggshell permeability in high altitude chickens translocated to sea level. Comp Biochem Physiol B Biochem Mol Biol 118:53–57CrossRefGoogle Scholar
  9. Leon-Velarde F, Richalet JP, Chavez JC, Kacimi R, Rivera-Chira M, Palacios JA, Clark D (1998) Inter and intra-species-related differences in the regulation of the cardiac autonomic system. Comp Biochem Physiol B Biochem Mol Biol 119:819–823, 441CrossRefGoogle Scholar
  10. Llanos AJ, Riquelme RA, Sanhueza EM, Hanson MA, Blanco CE, Parer JT, Herrera EA, Pulgar VM, Reyes RV, Cabello G, Giussani DA (2003) The fetal llama versus the fetal sheep: different strategies to withstand hypoxia. High Alt Med Biol 4:193–202CrossRefGoogle Scholar
  11. Mejia O, Leon-Velarde F, Monge C (1994) The effect of inositol hexaphosphate in the high-affinity hemoglobin of the Andean chicken (Gallus gallus). Comp Biochem Physiol B Biochem Mol Biol 109:437–441CrossRefGoogle Scholar
  12. Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71:1135–1172Google Scholar
  13. Monge CC, Arregui A, Leon-Velarde F (1992) Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 13(Suppl 1):S79–S81Google Scholar
  14. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729CrossRefGoogle Scholar
  15. Niermeyer S, Zamudio S, Moore LG (2001) The people. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Marcel Dekker, New-York, Basel, pp 43–100Google Scholar
  16. Richalet JP, Herry JP (2006) Médecine de l’alpinisme et des sports de montagne, 4th edn. Masson, ParisGoogle Scholar
  17. Richalet JP (1995) High-altitude pulmonary oedema. Still a place for controversy? Thorax 50:923–929Google Scholar
  18. Richalet JP, Hornych A, Rathat C, Aumont J, Larmignat P, Remy P (1991) Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physiol 85:205–215CrossRefGoogle Scholar
  19. Richalet JP, Kacimi R, Antezana AM (1992) The control of chronotropic function in hypobaric hypoxia. Int J Sports Med 13:S22–S24CrossRefGoogle Scholar
  20. Richalet JP (1997) Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol A Physiol 118:9–14CrossRefGoogle Scholar
  21. Ruffié J (1982) Traité du vivant. Fayard, ParisGoogle Scholar
  22. Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU (2005) Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest 128:1611–1619CrossRefGoogle Scholar
  23. Swallow DM (2003) Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 37:197–219CrossRefGoogle Scholar
  24. Ward MP, Milledge JS, West JB (2000) High altitude medicine and physiology, 3rd edn. Arnold, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Laboratoire: « Réponses cellulaires et fonctionnelles à l’hypoxie » EA 2363, UFR Santé Médecine Biologie HumaineUniversité Paris 13Bobigny CedexFrance

Personalised recommendations