Pressure and life: some biological strategies

Review

Abstract

All biological processes of life on Earth experience varying degrees of pressure. Aquatic organisms living in the deep-sea, as well as chondrocytic cells of articular cartilage are exposed to hydrostatic pressures that rise up to several hundred times that of atmospheric pressure. In the case of marine larvae that disperse through the oceanic water column, pressure changes might be responsible for stress conditions during development, limiting colonisation capabilities. In a number of biological systems, life strategies may be significantly influenced by pressure. In this review, we will focus on the consequences of pressure changes on various biological processes, and more specifically on animals living in the deep-sea. Revisiting general principles of pressure effects on biological systems, we present recent data illustrating the diversity of effects pressure may have at different levels in biological systems, with particular attention to effects on gene expression. After a review of the main pressure equipments available today for studying species living naturally at high pressure, we summarise what is known concerning pressure impact during animal development.

Keywords

Hydrostatic pressure Deep-sea organisms Hydrothermal vents Developmental processes Adaptation Stress response 

References

  1. Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102CrossRefGoogle Scholar
  2. Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453CrossRefGoogle Scholar
  3. Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta 1595:3–10Google Scholar
  4. Balny C, Mozhaev VV, Lange R (1997) Hydrostatic pressure and proteins: Basic concepts and new data. Comp Biochem Physiol 116A:299–304CrossRefGoogle Scholar
  5. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381Google Scholar
  6. Begg DA, Salmon ED, Hyatt HA (1983) The changes in structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure. J Cell Biol 97:1795–1805CrossRefGoogle Scholar
  7. Behan MK, MacDonald AG, Jones GR, Cossins AR (1992) Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish. Biochim Biophys Acta 1103:317–323CrossRefGoogle Scholar
  8. Bourns B, Franklin S, Cassimeris L, Salmon ED (1988) High hydrostatic pressure effects in vivo: changes in cell morphology, microtubules assembly, and actin organization. Cell Motil Cytoskeleton 10:380–390CrossRefGoogle Scholar
  9. Brauer RW, Bekman MY, Keyser JB, Nesbitt DL, Sidelev GN, Wright SL (1980) Adaptation to high hydrostatic pressures of abyssal gammarids from Lake Baikal in eastern Siberia. Comp Biochem Physiol 65A:109–117CrossRefGoogle Scholar
  10. Brouzes E, Farge E (2004) Interplay of mechanical deformation and patterned gene expression in developing embryos. Curr Opin Genet Dev 14:367–374CrossRefGoogle Scholar
  11. Brouzes E, Supatto W, Farge E (2004) Is mechano-sensitive expression of twist involved in mesoderm formation? Biol Cell 96:471–477CrossRefGoogle Scholar
  12. Cary CS, Shank T, Stein JL (1998) Worms bask in extreme temperatures. Nature 391:545–546CrossRefGoogle Scholar
  13. Cossins AR, MacDonald AG (1984) Homeoviscous theory under pressure. II. The molecular order of membranes from deep-sea fish. Biochim Biophys Acta 776:144–150CrossRefGoogle Scholar
  14. De Cian M-C, Andersen AC, Toullec J-Y, Biegala I, Caprais J-C, Shillito B, Lallier FH (2003) Isolated bacteriocyte cell suspensions from the hydrothermal vent tubeworm Riftia pachyptila, a potent tool for cellular physiology in a chemoautotrophic symbiosis. Mar Biol 142:141–151Google Scholar
  15. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103CrossRefGoogle Scholar
  16. Dixon DR, Dixon LRJ, Shillito B, Gwynn JP (2002) Background and induced levels of DNA damage in pacific deep-sea vent polychaetes: the case for avoidance. Cah Biol Mar 43:333–336Google Scholar
  17. Elo MA, Karjalainen HM, Sironen RK, Valmu L, Redpath NT, Browne GJ, Kalkkinen N, Helminen HJ, Lammi MJ (2005) High hydrostatic pressure inhibits the biosynthesis of eukaryotic elongation factor-2. J Cell Biochem 94:497–507CrossRefGoogle Scholar
  18. Elo MA, Sironen RK, Kaarniranta K, Auriola S, Helminen HJ, Lammi MJ (2000) Differential regulation of stress proteins by high hydrostatic pressure, heat shock, and unbalanced calcium homeostasis in chondrocytic cells. J Cell Biochem 79:610–619CrossRefGoogle Scholar
  19. Erijman L, Clegg RM (1998) Reversible stalling of transcription elongation complexes by high pressure. Biophys J 75:453–462Google Scholar
  20. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377CrossRefGoogle Scholar
  21. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  22. Fernandes PMB, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160CrossRefGoogle Scholar
  23. Gaill F (1993) Aspects of life development at deep-sea hydrothermal vents. FASEB J 7:558–565Google Scholar
  24. Gaill F, Zbinden M, Pradillon F (2000) Adaptations of hydrothermal vent organisms to their environment. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) Proceedings of 18th Int. Congr. Zoology: The new panorama of animal evolution. Pensoft Publishers, Sofia Moscow, Athènes, Grèce, pp 491–495Google Scholar
  25. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824CrossRefGoogle Scholar
  26. Girguis PR, Lee RW, Desaulniers NT, Childress JJ, Pospesel M, Felbeck H, Zal F (2000) Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl Env Microbiol 66(7):2783–2790CrossRefGoogle Scholar
  27. Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton elimination by the worm. J Exp Biol 200:883–893Google Scholar
  28. Gross M, Jaenicke R (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630CrossRefGoogle Scholar
  29. Hall AC, Pickles DM, MacDonald AG (1993) Aspects of eukaryotic cells. In: Effects of high pressure on biological systems. Springer-Verlag, Berlin, Germany, pp 29–85Google Scholar
  30. Harper AA, MacDonald AG, Wardle CS, Pennec J-P (1987) The pressure tolerance of deep-sea fish axons: results of Challenger cruise 6B/85. Comp Biochem Physiol 88A:647–653CrossRefGoogle Scholar
  31. Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83:2879–2883CrossRefGoogle Scholar
  32. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177CrossRefGoogle Scholar
  33. Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Annu Rev Microbiol 38:487–514CrossRefGoogle Scholar
  34. Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ (1986) In situ measurements of chemical distributions in a deep-sea hydrothermla vent field. Science 231:1139–1141CrossRefGoogle Scholar
  35. Johnson KS, Childress JJ, Beehler CL (1988) Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep Sea Res 35:1711–1721CrossRefGoogle Scholar
  36. Jortikka M, Parkkinen JJ, Inkinen RI, Kärner J, Järveläinen HT, Nelimarkka LO, Tammi MI, Lammi MJ (2000) Regulation of proteoglican synthesis in chondrocytes by hydrostatic pressure involves targets dependent and independent of dynamic microtubules. Arch Biochem Biophys 374:172–180CrossRefGoogle Scholar
  37. Kaarniranta K, Elo MA, Lammi MJ, Goldring MB, Eriksson J, Sistonen L, Helminen HJ (1998) Hsp 70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci USA 95:2319–2324CrossRefGoogle Scholar
  38. Kaarniranta K, Holmberg CI, Helminen HJ, Eriksson JE, Sistonen L, Lammi MJ (2000) Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressurization and elevated temperature. FEBS Lett 475:283–286CrossRefGoogle Scholar
  39. Kawata Y, Fujii Z, Sakumura T, Kitano M, Suzuki N, Matsuzaki M (1998) High pressure promote the proliferation of rat cultured mesanglial cells in vitro. Biochim Biophys Acta 1401:195–202CrossRefGoogle Scholar
  40. Kochevar RE, Childress JJ, Fisher CR, Minnich L (1992) The methane mussel: roles of symbiont and host in the metabolic utilisation of methane. Mar Biol 112: 389–401CrossRefGoogle Scholar
  41. Koyama S, Kobayashi H, Inoue A, Miwa T, Aizawa M (2005) Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures. Extremophiles 9:449–460CrossRefGoogle Scholar
  42. Koyama S, Miwa T, Horii M, Ishikawa Y, Horikoshi K, Aizawa M (2002) Pressure-stat aquarium system designed for capturing and maintaining deep-sea organisms. Deep Sea Res I: Oceanogr Res Papers 49:2095–2102CrossRefGoogle Scholar
  43. Lammi MJ, Inkinen R, Parkkinen JJ, Häkkinen T, Jortikka M, Nelimarkka LO, Järveläinen HT, Tammi MI (1994) Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochemistry J 304:723–730Google Scholar
  44. Le Bris N, Zbinden M, Gaill F (2005) Processes controlling the physico-chemical micro-environments associated with Pompeii worms. Deep Sea Res I 52:1071–1083CrossRefGoogle Scholar
  45. MacDonald AG, Gilchrist I (1978) Further studies on the pressure tolerance of deep sea crustacea with observations using a new high pressure trap. Mar Biol 45:9–21CrossRefGoogle Scholar
  46. MacDonald AG, Gilchrist I (1980) Effects of hydrolic decompression and compression on deep sea amphipods. Comp Biochem Physiol 67A: 149–153CrossRefGoogle Scholar
  47. MacDonald AG, Gilchrist I (1982) The pressure tolerance of deep sea amphipods collected at their ambient high pressure. Comp Biochem Physiol 71A:349–352CrossRefGoogle Scholar
  48. MacDonald AG (1997) Hydrostatic pressure as an environmental factor in life processes. Comp Biochem Physiol 116A:291–297CrossRefGoogle Scholar
  49. Marsh AG, Mullineaux LS, Young CM, Manahan DT (2001) Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411:77–80CrossRefGoogle Scholar
  50. Marsland D, Landau JV (1954) The mechanisms of cytokinesis: temperature-pressure studies on the cortical gel system in various marine eggs. J Exp Zool 125:507–539CrossRefGoogle Scholar
  51. Marsland DA (1970) Pressure-temperature studies on the mechanisms of cell division. In: Zimmerman AM (ed) High pressure effects on cellular processes. Academic Press, New York, pp 260–312Google Scholar
  52. Martinez A-S, Toullec J-Y, Shillito B, Charmantier-Daures M, Charmantier G (2001) Hydromineral regulation in the hydrothermal vent crab Bythograea thermydron. Biol Bull 201:167–174CrossRefGoogle Scholar
  53. Mozhaev VV, Heremans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins: Structure, Function, and Genetics 24:81–91CrossRefGoogle Scholar
  54. Muir H (1995) The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17:1039–1048CrossRefGoogle Scholar
  55. Mullineaux LS, France SC (1995) Dispersal mechanisms of deep-sea hydrothermal vent fauna. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. Geological Monograph 91. American Geophysical Union, Washington, DC, pp 408–424Google Scholar
  56. Mullineaux LS, Mills SW, Sweetman AK, Beaudreau AH, Metaxas A, Hunt HL (2005) Vertical, lateral and temporal structure in larval distribution at hydrothermal vents. Mar Ecol Prog Ser 293:1–16Google Scholar
  57. Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993a) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465CrossRefGoogle Scholar
  58. Parkkinen JJ, Lammi MJ, Inkinen R, Jortikka M, Tammi M, Virtanen I, Helminen HJ (1995) Influence of short-term hydrostatic pressure on organization of stress fibers in cultured chondrocytes. J Orthopedic Res 13:495–502CrossRefGoogle Scholar
  59. Parkkinen JJ, Lammi MJ, Pelttari A, Helminen HJ, Tammi M, Virtanen I (1993b) Altered Golgi apparatus in hydrostatically loaded articular cartilage chondrocytes. Ann Rheum Dis 52:192–198CrossRefGoogle Scholar
  60. Pond D, Dixon D, Sargent J (1997) Wax-ester reserves facilitate dispersal of hydrothermal vent shrimps. Mar Ecol Prog Ser 146:289–290Google Scholar
  61. Pradillon F, Le Bris N, Shillito B, Young CM, Gaill F (2005) Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana. J Exp Biol 208:1551–1561CrossRefGoogle Scholar
  62. Pradillon F, Shillito B, Chervin J-C, Hamel G, Gaill F (2004) Pressure vessels for in vitro studies of deep-sea fauna. High Pres Res 24:237–246CrossRefGoogle Scholar
  63. Pradillon F, Shillito B, Young CM, Gaill F (2001) Developmental arrest in vent worm embryos. Nature 413:698–699CrossRefGoogle Scholar
  64. Quetin LB, Childress JJ (1980) Observations on the swimming activity of two bathypelagic mysid species maintained at high hydrostatic pressures. Deep-Sea Res 27A:383–391CrossRefGoogle Scholar
  65. Ravaux J, Gaill F, Le Bris N, Sarradin P-M, Shillito B (2003) Heat-shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. J Exp Biol 206(pt 14):2345–2354CrossRefGoogle Scholar
  66. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101Google Scholar
  67. Salmon ED (1975a) Pressure-induced depolymerization of brain microtubules in vitro. Science 189:884–886CrossRefGoogle Scholar
  68. Salmon ED (1975b) Pressure-induced depolymerization of spindle microtubules. J Cell Biol 65:603–614CrossRefGoogle Scholar
  69. Sébert P, Simon B, Péqueux A (1997) Effects of hydrostatic pressure on energy metabolism and osmoregulation in crab and fish. Comp Biochem Physiol 116A:281–290CrossRefGoogle Scholar
  70. Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12:492–497CrossRefGoogle Scholar
  71. Shillito B, Jollivet D, Sarradin P-M, Rodier P, Lallier FH, Desbruyères D, Gaill F (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls. Mar Ecol Prog Ser 216:141–149Google Scholar
  72. Shillito B, Le Bris N, Gaill F, Rees J-F, Zal F (2004) First access to live Alvinellas. High Pres Res 24:169–172CrossRefGoogle Scholar
  73. Shillito B, Le Bris N, Hourdez S, Ravaux J, Cottin D, Caprais J-C, Jollivet D, Gaill F (2006) Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. J Exp Biol 209:945–955CrossRefGoogle Scholar
  74. Siebenaller JF, Garrett DJ (2002) The effects of the deep-sea environment on transmembrane signaling. Comp Biochem Physiol Part B 131:675–694CrossRefGoogle Scholar
  75. Silva JL, Foguel D, Da Poian AT, Prevelige PE (1996) The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol 6:166–175CrossRefGoogle Scholar
  76. Sironen RK, Karjalainen HM, Elo MA, Kaarniranta K, Torronen K, Takigawa M, Helminen HJ, Lammi MJ (2002) cDNA array reveals mechanosensitive genes in chondrocytic cells under hydrostatic pressure. Biochim Biophys Acta (BBA) – Mol Cell Res 1591:45–54CrossRefGoogle Scholar
  77. Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Caler DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthopedic Res 14:53–60CrossRefGoogle Scholar
  78. Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577CrossRefGoogle Scholar
  79. Stephanou A, Conroy S, Isenberg DA, Maione D, Poli V, Ciliberto G, Latchman DS (1998) Elevation of IL-6 in transgenic mice results in increased levels of the 90 kDa heat shock protein (hsp90) and the production of anti-hsp90 antibodies. J Autoimmun 11:249–253CrossRefGoogle Scholar
  80. Supatto W, Debarre D, Moulia B, Brouzes E, Martin J-L, Farge E, Beaurepaire E (2005) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 102:1047–1052CrossRefGoogle Scholar
  81. Swezey RR, Somero GN (1985) Pressure effects on actin self-assembly: interspecific differences in the equilibrium and kinetics of the G to F transformation. Biochemistry 24:852–860CrossRefGoogle Scholar
  82. Symington AL, Zimmerman S, Stein J, Stein G, Zimmerman AM (1991) Hydrostatic pressure influences histone mRNA. J Cell Sci 98:123–129Google Scholar
  83. Takahashi K, Kubo T, Arai Y, Kitajima I, Takigawa M, Imanishi J, Hirasawa Y (1998) Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor alpha mRNAs in a chondrocyte-like cell line. Ann Rheum Dis 57:231–236CrossRefGoogle Scholar
  84. Toullec J-Y, Vinh J, Le Caer J-P, Shillito B, Soyez D (2002) Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean : the crab Bythograea thermydron. Peptides 23:31–42CrossRefGoogle Scholar
  85. Treude T, Janßen F, Queisser W, Witte U (2002) Metabolism and decompression tolerance of scavenging lysianassoid deep-sea amphipods. Deep Sea Res Part I: Oceanogr Res Papers 49:1281–1289CrossRefGoogle Scholar
  86. Tyler PA (1995) Conditions for the existence of life at the deep-sea floor: an update. Oceanogr Mar Biol Annu Rev 33:221–244Google Scholar
  87. Tyler PA, Dixon DR (2000) Temperature/pressure tolerance of the first larval stage of Mirocaris fortunata from Lucky Strike hydrothermal vent field. J Mar Biol Ass UK 80:739–740CrossRefGoogle Scholar
  88. Tyler PA, Young CM (1998) Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echinoidea): prerequisites for deep-sea invasion and speciation. Deep-Sea Res II 45:253–277CrossRefGoogle Scholar
  89. Tyler PA, Young CM, Clarke A (2000) Temperature and pressure tolerance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri (Echinodermata: Echinoidea): potential for deep-sea invasion from high latitudes. Mar Ecol Prog Ser 192:173–180Google Scholar
  90. Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908CrossRefGoogle Scholar
  91. Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300:273–307CrossRefGoogle Scholar
  92. Wann KT, MacDonald AG (1980) The effects of pressure on excitable cells. Comp Biochem Physiol 66:1–12CrossRefGoogle Scholar
  93. Wilson RR, Smith KL (1985) Live capture, maintenance and partial decompression of a deep-sea grenadier fish (Coryphaenoides acrolepis) in a hyperbaric trap-aquarium. Deep Sea Res 32:1571–1582CrossRefGoogle Scholar
  94. Yayanos AA (1978) Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters. Science 200:1056–1059CrossRefGoogle Scholar
  95. Yayanos AA (1981) Reversible inactivation of deep-sea amphipods (Paralicella capresca) by a decompression from 601 bars to atmospheric pressure. Comp Biochem Physiol 69:563–565CrossRefGoogle Scholar
  96. Yayanos AA, Dietz AS (1983) Death of a hadal deep-sea bacterium after decompression. Science 220:497–498CrossRefGoogle Scholar
  97. Young CM, Cameron JL (1989) Development rate as a function of depth in the bathyal echinoid Linopneustes longispinus. In: Ryland JS, Tyler PA (eds) Reproduction, genetics and distributions of marine organisms. Olsen, Fredensborg, Denmark, pp 225–231Google Scholar
  98. Young CM, Tyler PA (1993) Embryos of the deep-sea echinoid Echinus affinis require high pressure for development. Limnol Oceanogr 38:178–181CrossRefGoogle Scholar
  99. Young CM, Tyler PA, Fenaux L (1997) Potential for deep sea invasion by Mediterranean shallow water echinoids: pressure and temperature as stage-specific dispersal barriers. Mar Ecol Prog Ser 154:197–209Google Scholar
  100. Young CM, Tyler PA, Gage JD (1996) Vertical distribution correlates with pressure tolerances of early embryos in the deep-sea asteroid Plutonaster bifrons. J Mar Biol Ass UK 76:749–757CrossRefGoogle Scholar
  101. Zimmerman AM (1971) High-pressure studies in cell biology. Int Revue Cytol 30:1Google Scholar
  102. Zimmerman AM, Marsland D (1964) Cell division: effects of pressure on the mitotic mechanisms of marine eggs (Arbacia punctulata). Exp Cell Res 35:293–302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.CNRS UMR 7138 Systématique, Adaptation et EvolutionUniversité Pierre et Marie CurieParis cedex 05France

Personalised recommendations