Hypometabolic induced state: a potential tool in biomedicine and space exploration

  • Manuela Malatesta
  • Marco Biggiogera
  • Carlo Zancanaro
Review Paper

Abstract

This paper will first review the issue of hypometabolism in mammals with a focus on the strategies these animals evolved to cope with life challenge in hostile environments (e.g., cold weather and/or shortage of food). The different types of natural hypometabolism (hibernation, torpor, winter sleep) will be briefly described as well as major adaptations in body temperature, and energy and cell metabolism. In the second part of this review the issue of inducing a hypometabolic state in mammals will be afforded with special attention paid to changes in body temperature and metabolism, regulation of gene expression and the possible role of hibernation inducing factors. Finally, an overview of the potential of inducing a hypometabolic state in the human as related to the broad field of biomedicine will be given.

Keywords

Body temperature Extreme environments Hibernation Human Mammals Metabolism Transplantation Surgery 

Notes

References

  1. Ahonen J, Salmenpera M (2004) Brain injury after adult cardiac surgery. Acta Anaesthesiol Scand 48:4–19Google Scholar
  2. Alam HB, Bowyer MW, Koustova E, Gushchin V, Anderson D, Stanton K, Kreishman P, Cryer CM, Hancock T, Rhee P (2002) Learning and memory is preserved after induced asanguineous hyperkalemic hypothermic arrest in a swine model of traumatic exsanguination. Surgery 132:278–288Google Scholar
  3. Andrews MT, Squire TL, Bowen CM, Rollins MB (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Proc Natl Acad Sci USA 95:8392–8397Google Scholar
  4. Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA, Harkany T, Holzer M, Hartig W (2003) Reversible paired helical filament-like phosphotylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981Google Scholar
  5. Ayre M, Zancanaro C, Malatesta M (2004) Morpheus-hypometabolic stasis for long-term spaceflight. J Brit Interplan Soc 57:325–339Google Scholar
  6. Baldelli B, Vecchio L, Biggiogera M, Vittoria E, Muzzonigro G, Gazzanelli G, Malatesta M (2004) Ultrastructural and immunocytochemical analyses of opioid treatment effects on PC3 prostatic cancer cells. Microsc Res Tech 64:243–249Google Scholar
  7. Baldelli B, Vecchio L, Bottone MG, Muzzonigro G, Biggiogera M, Malatesta M (2006) The effect of the enkephalin DADLE on transcription does not depend on opioid receptors. Histochem Cell Biol. In pressGoogle Scholar
  8. Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 284:R1306–R1313Google Scholar
  9. Baumber J, South FE, Ferren L, Zatznan ML (1971) A possible basis for periodic arousals during hibernation: accumulation of ketone bodies. Life Sci 10:462–467Google Scholar
  10. Benedict PE, Benedict MB, Su TP, Bolling SF (1999) Opiate drugs and delta-receptor-mediated myocardial protection. Circulation 100:357–360Google Scholar
  11. Biggiogera M, Fabene P, Zancanaro C (2006) DADLE: a cue to human hibernation? J Brit Interplan Soc 59:115–118Google Scholar
  12. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518Google Scholar
  13. Bolling K, Kronon M, Allen BS, Wang T, Ramon S, Feinberg H (1997a) Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of blood versus crystalloid cardioplegia. J Thorac Cardiovasc Surg 113:994–1003Google Scholar
  14. Bolling K, Halldorsson A, Allen BS, Rahman S, Wang T, Kronon M, Feinberg H (1997b) Prevention of the hypoxic reoxygenation injury with the use of a leukocyte-depleting filter. J Thorac Cardiovasc Surg 113:1081–1089Google Scholar
  15. Bolling SF, Benedict MB, Tramontini NL, Kilgore KS, Harlow HH, Su TP, Oeltgen PR (1998) Hibernation triggers and myocardial protection. Circulation 98:220–223Google Scholar
  16. Boswell T, Richardson RD, Schwartz MW, D’Alessio DA, Woods SC, Sipols AJ, Baskin DG, Kenagy GJ (1993) NPY and galanin in a hibernator: hypothalamic gene expression and effects on feeding. Brain Res Bull 32:379–384Google Scholar
  17. Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204:3171–3181Google Scholar
  18. Bronnikov GE, Vinogradova SO, Chernyak BV (1990) Regulation of ATP hydrolysis in liver mitochondria from ground squirrel. FEBS 266:8386Google Scholar
  19. Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262Google Scholar
  20. Burks TF (1991) Opioid and opioid receptors in thermoregulation. In: Thermoregulation:pathology, pharmacology, biosynthesis and analysis. Pergamon Press, NY, pp 489–508Google Scholar
  21. Carey HV, Frank CL, Seifert JP (2000) Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine. J Comp Physiol 170B:551–559Google Scholar
  22. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181Google Scholar
  23. Chen Z, Chen H, Rhee P, Koustova E, Ayuste EC, Honma K, Nadel A, Alam HB (2005) Induction of profound hypothermia modulates the immune/inflammatory response in a swine model of lethal hemorrhage. Resuscitation 66:209–216Google Scholar
  24. Chien SF, Oeltgen PR, Diana JN, Salley RK, Su TP (1994) Extension of tissuesurvival time in multiorgan block preparation using a delta opioid DADLE. J Thorac Cardiovasc Surg 107:964–967Google Scholar
  25. Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, Chesnut RM, Schwartz M (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344:556–563Google Scholar
  26. Collins DL (2003) Psychological issues relevant to astronaut selection for long-duration space flight: a review of the literature. Hum Perf Extrem Environ Spring 7:43–67Google Scholar
  27. Cooper KE (2002) Molecular biology of thermoregulation – some historical perspectives on thermoregulation. J Appl Physiol 92:1717–1724Google Scholar
  28. Cui Y, Lee TF, Wang LCH (1996) State-dependent changes of brain endogenous opioids in mammalian hibernation. Brain Res Bull 40:129–133Google Scholar
  29. D’Alecy LG, Lundy EF, Kluger MJ, Harker CT, LeMay DR, Shlafer M (1990) Beta-hydroxybutyrate and response to hypoxia in the ground squirrel, Spermophilus tridecimlineatus. Comp Biochem Physiol 96B:189–193Google Scholar
  30. Daan S, Bernes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousal from hibernation. Neurosci Lett 128:265–268Google Scholar
  31. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826Google Scholar
  32. Di Carli MF, Prcevski P, Singh TP, Janisse J, Ager J, Muzik O, Vander Heide R (2000) Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med 41:1227–1234Google Scholar
  33. Donahue SW, McGee ME, Harvey KB, Vaughan MR, Robbins CT (2005) Hibernating bears as a model for preventing disuse osteoporosis. J Biomech doi:10.1016/j.jbiomech.2005.03.030Google Scholar
  34. Drew KL, Rice ME, Kuhn TB, Smith MA (2001) Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic Biol Med 31:563–573Google Scholar
  35. Eddy SF, Storey KB (2003) Differential expression of Akt, PPARgamma, and PGC-1 during hibernation in bats. Biochem Cell Biol 81:269–274Google Scholar
  36. Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208Google Scholar
  37. French AR (1988) The patterns of mammalian hibernation. Am Sci 76:569–575Google Scholar
  38. Galster W, Morrison PR (1975) Gluconeogenesis in arctic squirrels between periods of hibernation. Am J Physiol 228:325–330Google Scholar
  39. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274Google Scholar
  40. Geiser F, McAllan BM, Kenagy GJ (1994) The degree of dietary fatty acid unsaturation affects torpor patterns and lipid composition of a hibernator. J Comp Physiol 164:299–305Google Scholar
  41. Gertsberger R (1999) Nitric oxide and body temperature control. News Physiol Sci 14:30–36Google Scholar
  42. Giesbrecht GG, Goheen MS, Johnston CE, Kenny GP, Bristow GK, Hayward JS (1997) Inhibition of shivering increases core temperature afterdrop and attenuates rewarming in hypothermic humans. J Appl Physiol 83:1630–1634Google Scholar
  43. Giacometti S, Scherini E, Bernocchi G (1989) Seasonal changes in the nucleoli of Purkinje cells of the hedgehog cerebellum. Brain Res 488:365–368Google Scholar
  44. Heldmaier G, Steinlechner S, Ruf T, Wiesinger H, Klingenspor M (1989) Photoperiod and thermoregulation in vertebrates: body temperature rhythms and thermogenic acclimation. J Biol Rhytms 4:251–265Google Scholar
  45. Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey KB (1999) Metabolic adjustements during daily torpor in the Djungarian hamster. Am J Physiol 276:E896–E906Google Scholar
  46. Heller HC (1979) Hibernation: neural aspects. Annu Rev Physiol 41:305–321Google Scholar
  47. Himms-Hagen J (1986) Brown adipose tissue and cold acclimatation. In: Trayhurn P, Nicholls DG (eds) Brown adipose tissue. Edward Arnold, London, pp 214–268Google Scholar
  48. Hittel DS, Storey KB (2002) The translation state of differentially expressed mRNAs in the hibernating 13-lined ground squirrel (Spermophilus tridecemlineatus). Arch Biochem Biophys 401:244–254Google Scholar
  49. Hochachka PW, Buck L, Doll C, Laand S (1996) Unifying theory of hypoxia tolerance: defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498Google Scholar
  50. Hong J, Sigg DC, Coles JA Jr, Oeltgen PR, Harlow HJ, Soule CL, Iaizzo PA (2005) Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle. Muscle Nerve 32:200–207Google Scholar
  51. Horwitz BA, Hamilton JS, Kott KS (1985) GDP binding to hamster brown fat mitochondria is reduced during hibernation. Am J Physiol 249:R689–R693Google Scholar
  52. Hu H, Miyauchi S, Bridges CC, Smith SB, Ganapathy V (2003) Identification of a novel Na+-and Cl-coupled transport system for endogenous opioid peptides in retinal pigment epithelium and induction of the transport system by HIV-1 Tat. Biochem J 375:17–22Google Scholar
  53. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–56. Erratum in: N Engl J Med 2002 346:1756Google Scholar
  54. Johansson BW (1996) The hibernator heart – nature’s model of resistance to ventricular fibrillation. Cardiov Res 31:826–832Google Scholar
  55. Kabine M, Clemencet MC, Bride J, El Kebbaj M-S, Latruffe N, Cherkaoui-Malki M (2003) Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis). Biochimie 85:707–714Google Scholar
  56. Kampa M, Bakogeorgou E, Hatzoglou A, Damianaki A, Martin P-M, Castanas E (1997) Opioid alkaloids and casomorphin peptides decrease the proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a partial interaction with opioid receptors. Eur J Pharmacol 335:255–265Google Scholar
  57. Knight JE, Narus EN, Martin SL, Jacobson A, Barnes BM, Boyer BB (2000) mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol Cell Biol 20:6374–6379Google Scholar
  58. Kolaeva SG, Kramarova LI, Ilyasova EN, Ilyasova FE (1980) The kinetics and metabolism of the cells of hibernating animals during hibernation. Int Rev Cytol 66:148–169Google Scholar
  59. Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T (2006) Circannual control of hibernation by HP complex in the brain. Cell 125:161–172Google Scholar
  60. Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–109Google Scholar
  61. Kunos G, Mosqueda-Garcia R, Mastrianni JA (1988) Endophinergic neurons in the brainstem and the control of blood pressure and heart rate. In: Illes P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 460–470Google Scholar
  62. Lee RE Jr, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu Rev Physiol 60:55–72Google Scholar
  63. Lee TF, Westly J, Wang LCH (2000) Effects of hetastarch and mannitol on prolonging survival in stable hypothermia in rats. Am J Physiol Reg Integr Comp Physiol 278:R1040–R1047Google Scholar
  64. Lindell SL, Klahn SL, Piazza TM, Mangino MJ, Torrealba JR Southard JH, Carey HV (2005) Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am J Physiol Gastrointest Liver Physiol 288:G473–G480Google Scholar
  65. Liu XT, Li QS, Lin QF, Sun RY (2001) Uncoupling protein 1 mRNA, mitochondrial GTP-binding, and T4 5′-deiodinase of brown adipose tissue in euthermic Daurian ground squirrel during cold exposure. Comp Biochem Physiol A Mol Integr Physiol 128:827–835Google Scholar
  66. Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and topor in mammals and birds. Accademic Press, New YorkGoogle Scholar
  67. MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429Google Scholar
  68. Malan A, Mioskowski E, Calgari C (1988) Time-course of blood acid-base state during arousal from hibernation in the European hamster. J Comp Physiol 158B:495–500Google Scholar
  69. Malatesta M, Zancanaro C, Martin TE, Chan EKL, Amalric F, Lührmann R, Vogel P, Fakan S (1994a) Is the coiled body involved in nucleolar functions? Exp Cell Res 211:415–419Google Scholar
  70. Malatesta M, Zancanaro C, Martin TE, Chan EKL, Amalric F, Lührmann R, Vogel P, Fakan S (1994b) Cytochemical and immunocytochemical characterization of nuclear bodies during hibernation. Eur J Cell Biol 65:82–93Google Scholar
  71. Malatesta M, Zancanaro C, Tamburini M, Martin TE, Fu X-D, Vogel P, Fakan S (1995) Novel nuclear ribonucleoprotein structural components in the dormouse adrenal cortex during hibernation. Chromosoma 104:121–128Google Scholar
  72. Malatesta M, Zancanaro C, Marcheggiani F, Cardinali A, Rocchi MBL, Capizzi D, Vogel P, Fakan S, Gazzanelli G (1998) Ultrastructural, morphometrical and immunocytochemical analyses of the exocrine pancreas in a hibernating dormouse. Cell Tissue Res 292:531–541Google Scholar
  73. Malatesta M, Cardinali A, Battistelli S, Zancanaro C, Martin TE, Fakan S, Gazzanelli G (1999) Nuclear bodies are usual constituents in tissues of hibernating dormice. Anat Rec 254:389–395Google Scholar
  74. Malatesta M, Gazzanelli G, Marcheggiani F, Zancanaro C, Rocchi MBL (2001) Ultrastructural characterisation of periinsular pancreatic acinar cells in the hibernating dormouse Muscardinus avellanarius. It J Zool 68:101–106Google Scholar
  75. Malatesta M, Zancanaro C, Baldelli B, Gazzanelli G (2002) Quantitative ultrastructural changes of hepatocyte constituents in euthermic, hibernating and arousing dormice (Muscardinus avellanarius). Tissue Cell 34:397–405Google Scholar
  76. Malatesta M, Baldelli B, Rossi L, Serafini S, Gazzanelli G (2003) Fine distribution of clock protein in hepatocytes of hibernating dormice. Eur J Histochem 47:233–240Google Scholar
  77. Martin SL, Maniero GD, Carey C, Hand SC (1999) Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Physiol Biochem Zool 72:255–264Google Scholar
  78. Mayfield KP, D’Alecy LG (1994) Delta 1 opioid receptor dependence of acute hypoxic adaptation. J Pharmacol Exp Ther 268:74–77Google Scholar
  79. Mostafa N, Everett DC, Chou SC, Kong PA, Florant GL, Coleman RA (1993) Seasonal changes in critical enzymes of lipogenesis and triacylglycerol syntesis in the marmot (Marmota flaviventris). Comp Physiol 163:463–469Google Scholar
  80. Mrosovsky N, Fisher KC (1970) Sliding set points for body weight in ground squirrels during the hibernation season. Can J Zool 48:241–247Google Scholar
  81. Nizielski SE, Levine AS, Morley GE, Hall KA, Gosnell BA (1986) Seasonal variation in opioid modulation of feeding in the 13-lined ground squirrel. Physiol Behav 37: 5–9Google Scholar
  82. Nozari A, Safar P, Wu X, Stezoski WS, Henchir J, Kochanek P, Klain M, Radovsky A, Tisherman SA (2004) Suspended animation can allow survival without brain damage after traumatic exsanguination cardiac arrest of 60 minutes in dogs. J Trauma 57:1266–1275CrossRefGoogle Scholar
  83. Nurnberger F (1995) The neuroendocrine system in hibernating mammals: present knowledge and open questions. Cell Tissue Res 281:391–412Google Scholar
  84. O’Hara BF, Watson FL, Srere HK, Kumar H, Wiler SW, Welch SK, Bitting L, Heller HC, Kilduff TS (1999) Gene expression in the brain across the hibernation cycle. Neuroscience 19:3781–3790Google Scholar
  85. Oganov VS (2004) Modern analysis of bone loss mechanisms in microgravity. J Gravit Physiol 11:P143–146Google Scholar
  86. Oeltgen PR, Nuchols PA, Nilekani WA, Spurrier WA, Su TP (1988) Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer active ground squirrels. Life Sci 43:1565–1574Google Scholar
  87. Oeltgen PR, Horton ND, Bolling SF, Su TP (1996) Extended lung preservation with the use of hibernation trigger factors. Ann Thorac Surg 61:1488–1493Google Scholar
  88. Ohtsuki T, Jaffe H, Brenner M, Azzam R, Frerichs KU, Hallenbeck JM (1998) Stimulation of tyrosine phosphporylation of a brain protein by hibernation. Cereb Blood Flow Metab 18:1040–1045Google Scholar
  89. Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am J Physiol Regul Integr Comp Physiol 278:R689–R704Google Scholar
  90. Pakotin PL, Pakotina ID, Belusov AB (1993) The study of brain slices from hibernating mammals in vitro and some approaches to the analysis of hibernation problems in vivo. Progr Neurobiol 40:123–161Google Scholar
  91. Palinkas LA (2001) Psychosocial issues in long-term space flight: overview. Gravit Space Biol Bull 14:25–33Google Scholar
  92. Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL (2001) Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab 281:E1151–E1158Google Scholar
  93. Postnikova GB, Tselikova SV, Kolaeva SG, Solomonov NG (1999) Myoglobin content in skeletal muscles of hibernating ground squirrels rises in autumn and winter. Comp Biochem Physiol A Mol Integr Physiol 124:35–37Google Scholar
  94. Prendergast BJ, Freeman DA, Zucker I, Nelson RJ (2002) Periodic arousal from hibernation is necessary for initation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol 282:R1054–R1062Google Scholar
  95. Rousseau K, Archa Z, Loudon AS (2003) Leptin and seasonal mammals. Neuroendocrinol 15:409–414CrossRefGoogle Scholar
  96. Srere HK, Wang LCH, Martin SL (1992) Central role for differential gene expression in mammalian hibernation. Proc Natl Acad Sci USA 89:7119–7123Google Scholar
  97. Srere HK, Belke D, Wang LC, Martin SL (1995) α2-Macroglobulin gene expression during hibernation in ground squirrel (Citellus tridecemlineatus). Am J Physiol 268:R1507–R1512Google Scholar
  98. Stephens TW, Caro JF (1998) To be lean or not to be lean: is leptin the answer? Exp Clin Endocrinol Diabetes 106:1–15CrossRefGoogle Scholar
  99. Storey KB (2004) Cold ischemic organ preservation: lessons from natural systems. J Invest Med 52:315–322Google Scholar
  100. Strijkstra AM, Daan S (1997) Ambient temperature during torpor affects NREM sleep EEG during arousal episodes in hibernating European ground squirrels. Neurosci Lett 221:177–180Google Scholar
  101. Su TP (2000) Delta opioid peptide[D-Ala(2),D-Leu(5)]enkephalin promotes cell survival. J Biomed Sci 7:195–199Google Scholar
  102. Tamburini M, Malatesta M, Zancanaro C, Martin TE, Fu XD, Vogel P, Fakan S (1996) Dense granular bodies: a novel nucleoplasmic structure in hibernating dormice. Histochem Cell Biol 106:581–586Google Scholar
  103. Tinker DB, Harlow HJ, Beck TD (1998) Protein use and muscle-fiber changes in free-ranging, hibernating black bears. Physiol Zool 71:414–424CrossRefGoogle Scholar
  104. Tsao LI, Su TP (2001) Hibernation-induction peptide and cell death: [D-Ala2,D-Leu5]enkephalin blocks Bax-related apoptotic processes. Eur J Pharmacol 428:149–151Google Scholar
  105. van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18 degrees C during mammalian hibernation. Am J Physiol Regul Integr Comp Physiol 281:R1374–R1379Google Scholar
  106. van Breukelen F, Carey V (2002) Ubiquitin conjugate dynamics in the gut and liver of hibernating ground squirrels. J Comp Physiol 172B:269–273Google Scholar
  107. van Breukelen F, Martin SL (2002a) Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92:2640–2647Google Scholar
  108. van Breukelen F, Martin SL (2002b) Reversible depression of transcription during hibernation. J Comp Physiol 172B:R1374–R1379Google Scholar
  109. Vecchio L, Soldani C, Bottone MG, Malatesta M, Martin TE, Rothblum LI, Pellicciari C Biggiogera M (2006) DADLE induces a reversible hibernation-like state in HeLa cells. Histochem Cell Biol 125:193–201Google Scholar
  110. Vybiral S, Jansky L ((1997) Hibernation triggers and cryogens: do they play a role in hibernation? Comp Biochem Physiol A Physiol 118:1125–1133Google Scholar
  111. Wang LCH (1993) Is endogenous oipoid involved in hibernation? In: Cynthia C et al. (eds) Life in the cold: Ecological, physiological, and molecular mechanisms. Westview Press, Colorado, pp 297–304Google Scholar
  112. Wang SQ, Lakatta EG, Cheng H, Zhou ZQ (2002) Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 205:2957–2962Google Scholar
  113. Wu G, Zhang F, Salley RK, Diana JN, Su TP, Chien S (1996) delta Opioid extends hypothermic preservation time of the lung. J Thorac Cardiovasc Surg 111:259–267Google Scholar
  114. Yeadon M, Kitchen I (1989) Opioids and respiration. Progr Neurobiol 33:1–16Google Scholar
  115. Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S (1999) The kidney during hibernation and arousal from hibernation A natural model of organ preservation during cold ischaemia and reperfusion. Nephrol Dial Transpl 14:1982–1990Google Scholar
  116. Zancanaro C, Malatesta M, Vogel P, Fakan S (1997) Ultrastructure of the adrenal cortex of hibernating, arousing and euthermic dormouse, Muscardinus avellanarius. Anat Rec 249:359–364Google Scholar
  117. Zancanaro C, Malatesta M, Vogel P, Osculati F, Fakan S (1993) Ultrastructural and morphometrical analyses of the brown adipocyte nucleus in a hibernating dormouse. Biol Cell 79:55–61Google Scholar
  118. Zatzman ML (1984) Renal and cardiovascular effect of hibernation. Cryobiology 21:593–614Google Scholar
  119. Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Manuela Malatesta
    • 1
  • Marco Biggiogera
    • 2
  • Carlo Zancanaro
    • 3
  1. 1.Istituto di Istologia e Analisi di LaboratorioUniversità di UrbinoUrbinoItaly
  2. 2.Dipartimento di Biologia AnimaleUniversità di PaviaPaviaItaly
  3. 3.Anatomy & Histology Section, Dipartimento di Scienze Morfologico-BiomedicheUniversità di VeronaVeronaItaly

Personalised recommendations