Advertisement

Anaerobic Processes as the Core Technology for Sustainable Domestic Wastewater Treatment: Consolidated Applications, New Trends, Perspectives, and Challenges

  • Eugenio Foresti
  • Marcelo Zaiat
  • Marcus Vallero
Article

Abstract

Anaerobic digesters have been responsible for the removal of large fraction of organic matter (mineralization of waste sludge) in conventional aerobic sewage treatment plants since the early years of domestic sewage treatment (DST). Attention on the anaerobic technology for improving the sustainability of sewage treatment has been paid mainly after the energy crisis in the 1970s. The successful use of anaerobic reactors (especially up-flow anaerobic sludge blanket (UASB) reactors) for the treatment of raw domestic sewage in tropical and sub-tropical regions (where ambient temperatures are not restrictive for anaerobic digestion) opened the opportunity to substitute the aerobic processes for the anaerobic technology in removal of the influent organic matter. Despite the success, effluents from anaerobic reactors treating domestic sewage require post-treatment in order to achieve the emission standards prevailing in most countries. Initially, the composition of this effluent rich in reduced compounds has required the adoption of post-treatment (mainly aerobic) systems able to remove the undesirable constituents. Currently, however, a wealth of information obtained on biological and physical-chemical processes related to the recovery or removal of nitrogen, phosphorus and sulfur compounds creates the opportunity for new treatment systems. The design of DST plant with the anaerobic reactor as core unit coupled to the pre- and post-treatment systems in order to promote the recovery of resources and the polishing of effluent quality can improve the sustainability of treatment systems. This paper presents a broader view on the possible applications of anaerobic treatment systems not only for organic matter removal but also for resources recovery aiming at the improvement of the sustainability of DST.

Keywords

anaerobic processes domestic sewage improved anaerobic reactor design post-treatment resources recovery sustainability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiyuk, S, Amoako, J, Raskin, L, Haandel, A, Verstraete, W 2004Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment conceptWater Res.3830313042CrossRefGoogle Scholar
  2. Álvarez, JA, Zapico, CA, Gómez, M, Presas, J, Soto, M 2003Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digesterWater Sci. Technol.47223230Google Scholar
  3. Anderson, GK, Donnelly, T 1977Anaerobic digestion of high strength industrial wastewatersThe Public Health Engineer56471Google Scholar
  4. Bachmann, A, Beard, VL, McCarty, PL 1985Performance characteristics of the anaerobic baffled reactorWater Res.1999106CrossRefGoogle Scholar
  5. Banister, SS, Pretorius, WA 1998Optimization of primary sludge acidogenic fermentation for biological nutrient removalWater SA.243541Google Scholar
  6. Blanc FC, O’Shaughnessy JC & Corr SH (1983) Treatment of beef slaughtering and processing wastewaters using rotating biological contactors. In: Proceedings 38th Industrial Waste Conference (pp. 10–12). Purdue University, West Lafayette, IN, Butterworth Publishers.Google Scholar
  7. Barnard, JL 1984Design and operation of Bardenpho plants in an African country (South Africa)Water Poll. Control83443449Google Scholar
  8. Buisman, CJN, Geraats, BG, Ijspeert, P, Lettinga, G 1990Optimisation of sulphur production in a biotechnological sulphide removing reactorBiotech. Bioeng.355056CrossRefGoogle Scholar
  9. Callado, NH, Foresti, E 2001Removal of organic carbon, nitrogen and phosphorus in sequential batch reactors integrating the aerobic/anaerobic processesWater Sci. Technol.44263270Google Scholar
  10. Castilho, A, Cecchi, F, Mata-Alvarez, J 1997A combined anaerobic-aerobic system to treat domestic sewage in coastal areasWater Res.3130573063Google Scholar
  11. Cavalcanti, PFF 2003Integrated application of the UASB reactor and ponds for domestic sewage treatment in tropical regionsSub-department of Environmental Technology, Wageningen UniversityWageningen, The NetherlandsPhD ThesisGoogle Scholar
  12. Chernicharo, CAL, Nascimento, MCP 2001Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatmentWater Sci. Technol.44221228Google Scholar
  13. Comeau, Y, Hall, K, Hanncock, R, Oldhan, W 1986Biochemical model for enhancing biological phosphorus removalWater Res.2015111521CrossRefGoogle Scholar
  14. Cooper, PF 2001Historical aspects of wastewater treatmentLens, PZeeman, GLettinga, G eds. Descentralised Sanitation and Reuse: Concepts, Systems and ImplementationIWA PublishingLondon, UK1138Google Scholar
  15. Costa, C, Dijkema, C, Friedrich, M, García-Encina, P, Fdz-Polanco, F, Stams, AJM 2000Denitrification with methane as electron donor in oxygen-limited bioreactorsAppl. Microb. Biotechnol.53754762Google Scholar
  16. Smul, A, Verstraete, W 1999The phenomenology and the mathematical modeling of the silicone-supported chemical oxidation of aqueous sulfide to elemental sulfur by ferric sulphateJ. Chem. Technol. Biotechnol.74456466Google Scholar
  17. Sousa, JT, Haaandel, AC, Guimaraes, AA 2001Post-treatment of anaerobic effluents in constructed wetland systemsWater Sci. Technol.44213219Google Scholar
  18. Elmitwalli, TA, Oahn, KLT, Zeeman, G, Lettinga, G 2002Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperatureWater Res.3622252232CrossRefGoogle Scholar
  19. Fdz-Polanco, F, Fdz-Polanco, M, Fernandez, N, Urueña, MA, Garcia, PA, Villaverde, S 2001New process for simultaneous removal of nitrogen and sulphur under anaerobic conditionsWater Res.3511111114CrossRefGoogle Scholar
  20. Ferreiro, N, Soto, M 2003Anaerobic hydrolysis of primary sludge: Influence of sludge concentration and temperatureWater Sci. Technol.47239246Google Scholar
  21. Foresti, E 2002Anaerobic treatment of domestic sewage: established technologies and perspectivesWater Sci. Technol.45181186Google Scholar
  22. Gonçalves, RF, Araújo, VL, Chernicharo, CAL 1998Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatmentWater Sci. Technol.38189195Google Scholar
  23. Hellinga, C, Schellen, AAJC, Mulder, JW, Loosdrecht, MCM, Heijnen, JJ 1998SHARON process: an innovative method for nitrogen removal from ammonium-rich waste waterWater Sci. Technol.37135142CrossRefGoogle Scholar
  24. Hulshoff Pol, LW, Lens, PNL, Stams, AJM, Lettinga, G 1998Anaerobic treatment of sulphate-rich wastewatersBiodegradation9213224Google Scholar
  25. Islas-Lima, S, Thalasso, F, Gómez-Hernandez,  2004Evidence of anoxic methane oxidation coupled to denitrificationWater Res.381316CrossRefGoogle Scholar
  26. Jawed, M, Tare, V 2000Post-mortem examination and analysis of anaerobic filtersBiores. Technol.727584Google Scholar
  27. Johnson, DB, Hallberg, KB 2005Acid mine drainage options: a reviewSci. Total Environ.338314Google Scholar
  28. Jonsson, K, Johansson, P, Christensson, M, Lee, N, Lie, E, Welander, T 1996Operational factors affecting phosphorus removal at the treatment plant in Helsingborg, SwedenWater Sci. Technol.346774Google Scholar
  29. Kalogo, Y, Verstraete, W 2000Technical feasibility of the treatment of domestic wastewater by a CEPS-UASB systemEnviron. Technol.215565Google Scholar
  30. Kalogo, Y, Verstraete, W 2001Potentials of anaerobic treatment of domestic sewage under temperate climate conditionsLens, PZeeman, GLettinga, G eds. Descentralised Sanitation and Reuse: Concepts, Systems and ImplementationIWA PublishingLondon, UK181204Google Scholar
  31. Kaseva, ME 2004Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater – a tropical case studyWater Res.38681687CrossRefGoogle Scholar
  32. Kato, MT 1994Anaerobic treatment of low strength soluble wastewaters. PhD ThesisAgricultural UniversityWageningen, The NetherlandsGoogle Scholar
  33. Khin, T, Annachhatre,  2004Novel microbial removal processesBiotechnol. Adv.22519532CrossRefGoogle Scholar
  34. Kobayashi, HA, Stenstron, MK, Mah, RA 1983Treatment of low strength wastewater using the anaerobic filterWater Res.17903909CrossRefGoogle Scholar
  35. Kuba, T, Loosdrecht, MCM, Heijnen, JJ 1996Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge systemWater Res.3017021710CrossRefGoogle Scholar
  36. Lens, PNL, Omil, F, Lema, JM, Hulshoff Pol, LW 2000Biological removal of organic sulfate-rich wastewatersLens, PNLHulshoff Pol, LW eds. Environmental Technologies to Treat Sulfur Pollution: Principles and EngineeringIWA publishingLondon, UK153173Google Scholar
  37. Lettinga, G, Velasen, AFM, Hobma, SW, Zeeuw, W, Klapwijk,  1980Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, specially for anaerobic treatmentBiotechnol. Bioeng.22699734CrossRefGoogle Scholar
  38. Lettinga, G, Roersma, R, Grin, P, Zeew, W, Hulshof Pol, LL, Velsen, L, Hobma, S, Zeeman, G,  et al. 1982Anaerobic treatment of low strength waste watersHughes, EStafford, DAWheatley, BIBaader, WLettinga, GNyns, EJVerstraete, WWentworth, RL eds. Anaerobic Digestion 1981Elsevier Biomedical Press BVAmsterdam271291Google Scholar
  39. Lettinga G, Hulshoff Pol LW, Zeeman G, Field J, van Lier JB, van Bunsen JCL, Janssen AJH & Lens P (1997) Anaerobic treatment in sustainable environmental production concepts. In: Proceedings of the 8th Conference on Anaerobic Digestion, Vol. 1, pp. 32–39.Google Scholar
  40. Lettinga, G 2001Potential of anaerobic pre-treatment (AnWT) of domestic sewage under tropical conditionsLens, PZeeman, GLettinga, G eds. Descentralised Sanitation and Reuse: Concepts, Systems and ImplementationIWA PublishingLondon, UK205216Google Scholar
  41. Mahmoud, N, Zeeman, G, Gijzen, H, Lettinga, G 2003Solids removal in upflow anaerobic reactors, a reviewBiores. Technol.9019Google Scholar
  42. Mbuligue, SE 2004Comparative effectiveness of engineered wetland system in the treatment of anaerobically pre-treated domestic wastewaterEcol. Eng.24269284Google Scholar
  43. Mulder, A, Graaf, AA, Robertson, LA, Kuenen, JG 1995Anaerobic Ammonium oxidation discovered in a denitrifying fluidized bed reactorFEMS Microbiol. Ecol.16177183Google Scholar
  44. McCarty, PL,  et al. 1982One hundred years of anaerobic treatmentHughes, EStafford, DAWheatley, BIBaader, WLettinga, GNyns, EJVerstraete, WWentworth, RL eds. Anaerobic Digestion 1981Elsevier Biomedical Press BVAmsterdam322Google Scholar
  45. Metcalf, , Eddy,  2002Wastewater Engineering: Treatment and Reuse4McGraw-HillNew YorkGoogle Scholar
  46. Münch, EV, Lant, P, Keller, J 1996Simultaneous nitrification and denitrification in bench-scale sequencing batch reactorsWater Res.30277284CrossRefGoogle Scholar
  47. Nozhevnikova, AN, Rebac, S, Kotsyrurbenko, OR, Parshina, SN, Holliger, C, Lettinga, G 2000Anaerobic production and degradation of volatile fatty acids in low temperature environmentsWater Sci. Technol.413946Google Scholar
  48. Oprime, MEAG, Garcia, O, Cardoso, AA 2001Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidansProc. Biochem.37111114CrossRefGoogle Scholar
  49. Passig FH, Villela LH & Ferreira OP (2000) Piracimirim sewage treatment plant – Conception utilizing anaerobic process followed by aerobic process – Evaluation of operational conditions and compatibility of the processes. In: Foresti et al. (Eds) Proceedings of the IV Latin-American Workshop and Seminar on Anaerobic Digestion, Vol. 1, pp. 53–59.Google Scholar
  50. Passig FH & Campos JR (2004) Hybrid anaerobic reactor for domestic sewage treatment. In: Proceedings of the 2nd IWA Leading-Edge Conference on Water and Wastewater Treatment Technologies, Vol. 1, pp. 229–233.Google Scholar
  51. Penetra, RG, Reali, MAP, Foresti, E, Campos, JR 1999Post-treatment of effluents from anaerobic reactor treating domestic sewage by dissolved-air flotationWater Sci. Technol.40137143CrossRefGoogle Scholar
  52. Picanço, AP, Vallero, MVG, Gianotti, EP, Zaiat, M, Blundi, CE 2001Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactorWater Sci. Technol.44197204Google Scholar
  53. Pynaert, K, Wiffels, S, Sprengers, R, Boeckx, P, Cleemput, O, Verstraete, W 2002Oxygen-limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium-rich wastewaterWater Sci. Technol.45357363Google Scholar
  54. Reali, MAP, Penetra, RG, Carvalho, ME 2001Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewageWater Sci. Technol.44205212Google Scholar
  55. Rebac, S, Lier, J, Lens, P, Stams, AJM, Dekkers, F, Swinkels, KTHM, Lettinga, G 1999Psychrophilic anaerobic treatment of low strength wastewatersWater Sci. Technol.39203210CrossRefGoogle Scholar
  56. Santos, SG, Varesche, MBA, Zaiat, M, Foresti, E 2004Comparison of methanol, ethanol and methane as electron donors for denitrificationEnviron. Eng. Sci.21313320Google Scholar
  57. Schmidt, I, Sliekers, O, Schmidt, M, Bock, E, Fuerst, J, Kuenen, JG, Jetten, MSM, Strous, M 2003New concepts of microbial treatment processes for the nitrogen removal in wastewaterFEMS Microbiol. Rev.27481492CrossRefGoogle Scholar
  58. Seyfried, CF, Bode, H, Saake, MM 1984Anaerobic treatment of pectin wastes: experiences with full scale and semi-technical plantWater Sci. Technol.16343356Google Scholar
  59. Sousa, JT, Foresti, E 1996Domestic sewage treatment in an up-flow anaerobic blanket – sequencing batch reactor systemWater Sci. Technol.337384Google Scholar
  60. Speece, RE 1988A survey of anaerobic sludge digesters and diagnostic activity assaysWater Res.22365372CrossRefGoogle Scholar
  61. Stefess, GC, Torremans, RAM, Schrijver, R, Robertson, LA, Kuenen, JG 1996Quantitative measurement of sulphur formation by steady-state and transient-state continuous cultures of autotrophic Thiobacillus speciesAppl. Microbiol. Biotechnol.45169175CrossRefGoogle Scholar
  62. Surampalli, RY, Tyagi, RD, Scheible, OK, Heidman, JA 1997Nitrification, denitrification and phosphorus removal in sequential batch reactorsBiores. Technol.61151157Google Scholar
  63. Switzenbaun, MS, Jewell, WJ 1980Anaerobic attached-film expanded-bed reactor treatmentJ. Wat. Pollut. Control Fed.5219531965Google Scholar
  64. Tait, SJ, Friedman, AA 1980Anaerobic rotating contactor for carbonaceous wastewatersJ. Wat. Pollut. Control Fed.5222572269Google Scholar
  65. Tawfik, A, Klapwijk, B, el-Gohary, F, Lettinga, G 2002Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactorWater Res.36147155CrossRefGoogle Scholar
  66. Tawfik, A, Zeeman, G, Klapwijk, B, Sanders, W, El-Gohary, F, Lettinga, G 2003Treatment of domestic sewage in a combined UASB/RBC system. Process optimization for irrigation purposesWater Sci. Technol.48131138Google Scholar
  67. Tawfik, A, Klapwijk, B, Buuren, J, El- Gohary, F, Lettinga, G 2004Physico-chemical factors affecting the E. coli removal in a rotating biological contactor (RBC) treating UASB effluentWater Res.3810811088CrossRefGoogle Scholar
  68. Thalasso, S, Vallecillo, A, Garcia-Encina, P, FDZ-Polanco, F 1997The use of methane as the sole carbon source for wastewater denitrificationWater Res.315560CrossRefGoogle Scholar
  69. Torres, P, Foresti, E 2001Domestic sewage treatment in a pilot system composed of UASB and SBR reactorsWater Sci. Technol.44247253Google Scholar
  70. Ueno, Y, Fuji, M 2001Three years experience of operating and selling recovered struvite from full-scale plantEnviron. Technol.2213731381Google Scholar
  71. Vallero, MVG, Sipma, J, Annachhatre, A, Lens, PNL, Hulshoff Pol, LW 2003Biotechnological treatment of sulfur-containing wastewatersFingerman, MNagabhushanam, R eds. Recent Advances in Marine Biotechnology, Vol. 8: BioremediationScience PublishersEnfield, NH, USA233268Google Scholar
  72. Handel, AC, Lettinga, G 1994Anaerobic sewage treatment. A practical guide for regions with a hot climateJohn Willey & Sons Ltd.Chichester, UKGoogle Scholar
  73. Vieira, SMM,  et al. 1988Anaerobic treatment of domestic sewage in Brasil – Research results and full-scale experienceVieira,  eds. Proceedings of the 5th International Symposium on Anaerobic DigestionPergamon PressNew York185196Google Scholar
  74. Vieira, LGT, Fazolo, A, Zaiat, M, Foresti, E 2003Integrated horizontal-flow anaerobic and radial-flow aerobic reactors for the removal of organic matter and nitrogen from domestic sewageEnviron. Technol.245158Google Scholar
  75. Sperling, M 1996Comparison among the most frequently used systems for wastewater treatment in developing countriesWater Sci. Technol.335972Google Scholar
  76. Sperling, M, Freire, VH, Chernicharo, CAL 2001Performance evaluation of a UASB-activated sludge system treating municipal wastewatersWater Sci. Technol.43323328Google Scholar
  77. Watanabe, Y, Okabe, S, Hirata, K, Masuda, S 1995Simultaneous removal of organic materials and nitrogen by micro-aerobic biofilmsWater Sci. Technol.31195203CrossRefGoogle Scholar
  78. Wentzel, MC, Ekama, GA 1997Principles in the modelling of biological wastewater treatment plantsCloete, TEMuyima, NYO eds. Microbial Community Analysis: The Key to the Design of Biological Wastewater Treatment SystemsIWA PublishingCambridge, UK7382IWA Scientific and Technical Report no. 5Google Scholar
  79. Wiegant, WM 2001Experience and potential of anaerobic treatment in tropical regionsWater Sci. Technol.44107113Google Scholar
  80. Young, JC, McCarty, PL 1969The anaerobic filter for waste treatmentJ. Wat. Pollut. Control Fed.41160173Google Scholar
  81. Zaiat, M, Vieira, LGT, Foresti, E 1996Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludgeBiotechnol. Bioeng.53220225Google Scholar
  82. Zaiat, M, Passig, FH, Foresti, E 2000Treatment of domestic sewage in horizontal-flow biomass reactorEnviron. Technol.2111391145Google Scholar
  83. Zeeman, G, Sanders, WTM, Wang, KY, Lettinga, G 1997Anaerobic treatment of complex wastewater and waste activated sludge – Application of an upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended CODWater Sci. Technol.35121128CrossRefGoogle Scholar
  84. Zeeman, G, Sanders, W 2001Potentials of anaerobic digestion of complex waste(water)Water Sci. Technol.44115122Google Scholar
  85. Zeng, RJ, Zhiguo, Yuan, Keller, J 2004Improved understanding of the interactions and complexities of biological and nitrogen phosphorus removal processesRev. Environ. Sci. Bio/Technol.3265272Google Scholar
  86. Zhao, HW, Mavinic, DS, Oldham, WK, Koch, FA 1999Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewageWater Res.33961970CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Eugenio Foresti
    • 1
  • Marcelo Zaiat
    • 1
  • Marcus Vallero
    • 1
  1. 1.Departamento de Hidráulica e Saneamento, Escola de Engenharia de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations