Treatment of Biogas Produced in Anaerobic Reactors for Domestic Wastewater: Odor Control and Energy/Resource Recovery

  • Adalberto NoyolaEmail author
  • Juan Manuel Morgan-Sagastume
  • Jorge E. López-Hernández


Anaerobic municipal wastewater treatment in developing countries has important potential applications considering their huge lack of sanitation infrastructure and their advantageous climatic conditions. At present, among the obstacles that this technology encounters, odor control and biogas utilization or disposal should be properly addressed. In fact, in most of small and medium size anaerobic municipal treatment plants, biogas is just vented, transferring pollution from water to the atmosphere, contributing to the greenhouse gas inventory. Anaerobic municipal sewage treatment should not be considered as an energy producer, unless a significant wastewater flow is treated. In these cases, more than half of the methane produced is dissolved and lost in the effluent so yield values will be between 0.08 and 0.18 N m3 CH4/kg COD removed. Diverse technologies for odor control and biogas cleaning are currently available. High pollutant concentrations may be treated with physical-chemical methods, while biological processes are used mainly for odor control to prevent negative impacts on the treatment facilities or nearby areas. In general terms, biogas treatment is accomplished by physico-chemical methods, scrubbing being extensively used for H2S and CO2 removal. However, dilution (venting) has been an extensive disposal method in some small- and medium-size anaerobic plants treating municipal wastewaters. Simple technologies, such as biofilters, should be developed in order to avoid this practice, matching with the simplicity of anaerobic wastewater treatment processes. In any case, design and specification of biogas handling system should consider safety standards. Resource recovery can be added to anaerobic sewage treatment if methane is used as electron donor for denitrification and nitrogen control purposes. This would result in a reduction of operational cost and in an additional advantage for the application of anaerobic sewage treatment. In developing countries, biogas conversion to energy may apply for the clean development mechanism (CDM) of the Kyoto Protocol. This would increase the economic feasibility of the project through the marketing of certified emission reductions (CERs).


anaerobic sewage treatment biogas biogas utilization denitrification hydrogen sulfide Kyoto protocol methane odor control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AD-NETT (2000) Anaerobic digestion of agro-industrial wastes: information networks. Technical summary on gas treatment. European Community Project FAIR-CT96-2083 (DG12-SSMI). Available at www.adnett.orgGoogle Scholar
  2. Allen ER & Phatak S (1993) Control of organosulfur compound emissions using biofiltration: methyl mercaptan. In: Proceedings of the 86th Air and Waste Management Association Annual Meeting and Exhibition. June 13–18, Denver, Colorado, USAGoogle Scholar
  3. Asai, S, Konishi, Y, Yabu, T 1990Kinetics of absorption of hydrogen sulfide into aqueous ferric sulphate solutionsAICHE J.3613311338CrossRefGoogle Scholar
  4. Bhatia, SP 1978Organosulfur emissions from industrial sourcesNriagu, J.O. eds. Sulfur in the Environment, Part IJohn Wiley & SonsCanadaGoogle Scholar
  5. Bell, K 1988Heat transmission: thermal design of heat transfer equipmentPerry, RGreen, D eds. Perry’s Chemical Engineering Handbook6McGraw HillNew York10201023Google Scholar
  6. Bielefeldt, A 2001Activated sludge and suspended growth bioreactorsKennes, CVeiga, MC eds. Bioreactors for waste gas treatmentKluwer Academic PublishersThe Netherlands215254Google Scholar
  7. Bradfer JF (2002) Safety risks related to biogas handling in a wastewater treatment plant. In: CD Proceedings of the XXVIII Interamerican Congress of Sanitary and Environmental Engineering (in Spanish). Interamerican Association of Sanitary and Environmental Engineering (AIDIS), October 27–31, Cancun, MexicoGoogle Scholar
  8. Cadenhead, P, Sublette, KL 1990Oxidation of hydrogen sulfide by ThiobacilliBiotechnol. Bioeng.2201203Google Scholar
  9. Cadena, FP, Peters, RW 1988Evaluation of chemical oxidizers for hydrogen sulphide controlJ. Water Pollut. Control Fed.6012591263Google Scholar
  10. Cardenas-Gonzalez, B, Ergas, S, Switzenbaum, M, Phillibert, N 1999Evaluation of full-scale biofilter media performanceEnviron. Prog.18205211Google Scholar
  11. Carlson DA & Leiser CP (1966) Soil beds for the control of sewage odors. J. WPCF. May: 829–840Google Scholar
  12. Chen, KY, Morris, JC 1972Kinetics of oxidation of aqueous sulphide by oxygenEnviron. Sci. Technol.6529537CrossRefGoogle Scholar
  13. Cho KS, Hirai M & Shoda M (1992) Degradation of hydrogen sulfide by Xanthomonas sp. Strain DY44 Isolated from Peat. App. Environ. Microbiol. April: 1183–1189Google Scholar
  14. Constant, M, Naveau, H, Ferrero, GL, Nyns, EJ 1989Biogas End-Use in the European CommunityElsevier Science PublisherEnglandGoogle Scholar
  15. Corbitt, RA 1990Air quality controlCorbitt, RA eds. Standard Handbook of Environmental EngineeringMcGraw HillNew York41004115Google Scholar
  16. Cork, DJ, Ma, S 1982Acid–gas bioconversion favors sulfur productionBiotechnology and Bioengineering Symp.12285290Google Scholar
  17. Costa, C, Dijkema, C, Friedrich, M, García-Encina, P, Fernández-Polanco, F, Stams, JM 2000Denitrification with methane as electron donor in oxygen-limited bioreactorsAppl. Microbiol. Biotechnol.53754762CrossRefGoogle Scholar
  18. Davies, TR 1973Isolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrificationWater Res.7575579CrossRefGoogle Scholar
  19. Eisentraeger, A, Klag, P, Vansbotter, B, Heymann, E, Dott, W 2001Denitrification of groundwater whit methane as sole hydrogen donorWater Res.3522612267CrossRefGoogle Scholar
  20. Ergas, S 2001Membrane bioreactorsKennes, CVeiga, MC eds. Bioreactors for Waste Gas TreatmentKluwer Academic PublishersDordrecht, The Netherlands163177Google Scholar
  21. Fernández Polanco F, Martínez B, Olmedo F & García del Valle J (1996) Removal of H2S using a chemical scrubber and biologica l oxidation. In: Proceedings IV Workshop and Seminar on Anaerobic Wastewater Treatment in Latin America (in Spanish), November 19–22, Bucaramanga, ColombiaGoogle Scholar
  22. Houbron, E, Torrijos, M, Capdeville, B 1999An alternative use of biogas applied at the water denitrificationWater Sci. Technol.40115122CrossRefGoogle Scholar
  23. Islas-Lima, S, Thalasso, F, Gómez-Hernández, J 2004Evidence of anoxic methane oxidation coupled to denitrificationWater Res.381316CrossRefGoogle Scholar
  24. Kennes, C, Veiga, C, Prado, O 2001Non biological treatment technologiesKennes, CVeiga, MC eds. Bioreactors for Waste Gas TreatmentKluwer Academic PublishersDordrecht, The Netherlands1746Google Scholar
  25. Lang ME & Jager RA (1992) Odor control for municipal sludge composting. BioCycle, August: 76–85Google Scholar
  26. Lettinga G, Hulshoff Pol LW, Zeeman G, Field J, van Lier JB, van Bunsen JCL, Janssen AJH & Lens P (1997) Anaerobic treatment in sustainable environmental production concepts. In: Proceedings of the 8th Conference on Anaerobic Digestion, Japan. 1:32–39Google Scholar
  27. Hugler, W, Acosta, C, Revah, S 1999Biological removal of carbon disulfide from waste air streamsEnviron. Prog. (AICHE)3173177Google Scholar
  28. Mansfield, LA, Melnyk, PE, Richardson, GC 1992Selection and full scale use of a chelated iron absorbent for odor controlWater Environ. Res.64120127Google Scholar
  29. Martínez CP & Zamorano JP (1996) Practical experience on anaerobic treatment and odor control in a yeast factory. In: Proceedings IV Workshop and Seminar on Anaerobic Wastewater Treatment in Latin America (in Spanish), November 19–22, Bucaramanga, ColombiaGoogle Scholar
  30. Mason, I 1977Methane as carbon source in biological denitrificationJ WPCF49855857Google Scholar
  31. Merck,  1996The Merck Index12Merck & Co. Inc.USAGoogle Scholar
  32. Metcalf & Eddy Inc.2003Wastewater Engineering: Treatment and Reuse4McGraw HillNew YorkGoogle Scholar
  33. Morgan-Sagastume, JM, Jiménez, B, Noyola, A 1994Anaerobic-anoxic-aerobic process with recycling and separated biomass for organic carbon and nitrogen removal from wastewaterEnviron. Technol.15233243Google Scholar
  34. Morgan-Sagastume, JM, Ergas, S, Noyola, A 2003aChanges in physical structure of a compost biofilter treating H2SJ. Air Waste Manag. Assoc.53101101021Google Scholar
  35. Morgan-Sagastume, JM, Revah, S, Noyola, A 2003bPressure drop and gas distribution in compost based biofilters: media mixing and composition effectsEnviron. Technol.24797807Google Scholar
  36. Mukhopadhyay, N, Moretti, EC 1993Current and Potential Future Industrial Practices for Reducing and Controlling Volatile Organic CompoundsCenter for Waste Reduction Technologies, American Institute of Chemical EngineersNew YorkGoogle Scholar
  37. Noyola A (2004) Anaerobic digestion applied to municipal wastewater treatment: facts and limitations of an adapted technology for Latin America. In: CD Proceedings 77th Annual Technical Exhibition and Conference WEFTEC, October 2–6, Water Environmental Federation, New Orleans, USAGoogle Scholar
  38. Noyola, A, Capdeville, B, Roques, H 1988Anaerobic treatment of domestic sewage with a rotating-stationary fixed film reactorWater Res.1215851592Google Scholar
  39. Nyns EJ & Thomas S (1998) Biogas from waste and wastewater treatment. Renewable Energies Series, Belgium Ver. 2. Lior CD CollectionGoogle Scholar
  40. Ongcharit, C, Shah, YT, Sublette, JL 1990Novel Immobilized Cell Reactor for Microbial Oxidation of H2SChem. Eng. Sci.4523832389Google Scholar
  41. Planker, TW 1998Masking and odor neutralizationRafson, HJ eds. Odor and VOC control HandbookMcGraw HillNew York818824Google Scholar
  42. Pomeroy, R 1982Biological treatment of odorous airJ. WPCF5415411545Google Scholar
  43. Qasim, RS 1999Wastewater Treatment Plants: Planning, Design and OperationTechnomic Publishing CoLancaster Pa, USAGoogle Scholar
  44. Rands, MB, Cooper, DE, Woo, CP, Fletcher, GC, Rolfe, FK 1981Compost filters for H2S removal from anaerobic digestion and rendering exhaustsJ. WPCF53185189Google Scholar
  45. Revah, S, Hinojosa, A, Morales, V 1995Air biodesulphurisation in process plants, in BioremediationOECD DocumentsParis, France569576The Tokyo’94 WorkshopGoogle Scholar
  46. Revah, S, Morgan-Sagastume, JM 2005Methods for odor and VOC controlShareefdeen, ZSingh, A eds. Biotechnology for Odor and Air Pollution ControlSpringer-VerlagHeidelberg, Germany2964Google Scholar
  47. Revah, S, Noyola, A 1996Biotechnology markets in Mexico and opportunities for university and industry collaboration (in Spanish)Galindo, E eds. Frontiers in Biotechnology and BioengineeringMexican Society of Biotechnology and BioengineeringMexico121136Google Scholar
  48. Rhee, G, Fuhs, WG 1978Wastewater denitrification with one carbon compounds as energy sourceJ WPCF5021112119Google Scholar
  49. Rudolf von Rohr, PH, Ruediger, P 2001Rotating biological contactorsKennes, CVeiga, MC eds. Bioreactors for Waste Gas TreatmentKluwer Academic PublishersDordrecht, The Netherlands201214Google Scholar
  50. Santos, SG, Varesche, MBA, Zaiat, M, Foresti, E 2004Comparison of methanol, ethanol and methane as electron donors for dentrificationEnviron. Eng. Sci.21313320Google Scholar
  51. Satoh, H, Yoshizawa, J, Kamentani, S 1988Bacteria help desulfurize gasHydrocarb. Process. Int. Ed.7676D76FGoogle Scholar
  52. Särner, E 1990Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filterWater Sci. Tech.22395404Google Scholar
  53. Smet, E, Langenhove, H 1998Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industryBiodegradation9273284CrossRefGoogle Scholar
  54. Sollo, FW, Müller, HF, Larson, TE 1976Denitrification of wastewater effluents with methaneJ. WPCF4818401842Google Scholar
  55. Sontah H & Shiratori T (1990) Method of Treating H2S Containing Gases. US Patent 4931262Google Scholar
  56. Sublette, KL, Sylvester, ND 1987Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophsBiotechnol. Bioeng.29759761Google Scholar
  57. Thalasso, AF, Vallecillo, A, García-Encina, P, Fernández-Polanco, F 1995The use methane as a sole carbon source for water denitrificationWater Res.315560Google Scholar
  58. Thomson RB (1980) Catalytic Removal of Hydrogen Sulfide from Gases. US Patent No 4189462Google Scholar
  59. Torres M, Revah S, Hinojosa A, Paez F & Morales V (1993) Process for the Elimination of Sulphur Compounds Present in a Gas Mixture, US Patent 5,236,677Google Scholar
  60. UNEP (1999) Understanding climate change: a beginners guide to the UN Framework Convention and its Kyoto Protocol. United Nations Environmental Program, Climatic Change Secretariat (35 pp), GenevaGoogle Scholar
  61. UNEP (2005) Finance for carbon solutions, CEO Briefing, United Nations Environmental Program Finance Initiative (8 pp), GenevaGoogle Scholar
  62. Groenestijn, JW, Hesselink, PG 1993Biotechniques for air pollution controlBiodegradation4283301Google Scholar
  63. Groenestijn, JW 2001aBioscrubbersKennes, CVeiga, MC eds. Bioreactors for Waste Gas TreatmentKluwer Academic PublishersDordrecht, The Netherlands133162Google Scholar
  64. Groenestijn, JW 2001bCombined advanced oxidation and biodegradationKennes, CVeiga, MC eds. Bioreactors for waste gas treatmentKluwer Academic PublishersDordrecht, The Netherlands179200Google Scholar
  65. Villaverde, S 2004Recent developments on biological nutrient removal processes for wastewater treatmentRev. Environ. Sci. Bio/Technol.3171183Google Scholar
  66. Waldrop, RE 1998CondensationRafson, HJ eds. Odor and VOC Control HandbookMcGraw HillNew York825830Google Scholar
  67. Webster, TS, Devinny, JS, Torres, EM, Barrai, SS 1996Biofiltration of odors, toxics and volatile organic compounds from publicly owned treatment worksEnviron. Prog.15141147Google Scholar
  68. WEF (1999) Wastewater Treatment. 3 Water Environment Federation, USA Manual of Practice 8Google Scholar
  69. Werner, M, Kayser, R 1991Denitrification with biogas as external carbon sourceWater Sci. Technol.23701708Google Scholar
  70. West, JR 1983Sulfur RecoveryGrayson, MEckroth, D eds. Encyclopedia of Chemical Technology Kirk Othmer 22John Wiley & SonsNew York267297Google Scholar
  71. WPCF (1987) Anaerobic Sludge Digestion. 2 Water Pollution Control Federation, USA Manual of Practice No. 16Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Adalberto Noyola
    • 1
    Email author
  • Juan Manuel Morgan-Sagastume
    • 1
  • Jorge E. López-Hernández
    • 2
  1. 1.Instituto de Ingeniería, UNAM, Circuito EscolarCiudad UniversitariaCoyoacánMéxico
  2. 2.IBTechCol. Ajusco, CoyoacánMéxico

Personalised recommendations