Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

  • Terry C. HazenEmail author
  • Henry H. Tabak


Bioremediation of metals and radionuclides has had many field tests, demonstrations, and full-scale implementations in recent years. Field research in this area has occurred for many different metals and radionuclides using a wide array of strategies. These strategies can be generally characterized in six major categories: biotransformation, bioaccumulation/bisorption, biodegradation of chelators, volatilization, treatment trains, and natural attenuation. For all field applications there are a number of critical biogeochemical issues that most be addressed for the successful field application. Monitoring and characterization parameters that are enabling to bioremediation of metals and radionuclides are presented here. For each of the strategies a case study is presented to demonstrate a field application that uses this strategy.


heavy metal radionuclide field test bioremediation biotransformation biodegradation natural attenuation treatment train bioaccumulation biosorption volatilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, RT, Vrionis, HA, Ortiz-Bernad, I, Resch, CT, Long, PE, Dayvault, R, Karp, K, Marutzky, S, Metzler, D.R, Peacock, A, White, DC, Lowe, M, Lovley, DR 2003Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquiferAppl. Environ. Microbiol.6958845891CrossRefGoogle Scholar
  2. Barnes LJ, Scheeren PJM & Buisman CJN (1994) Microbial Removal of Heavy Metals and Sulfate from Contaminated Groundwaters. Emerging Technology for Bioremediation of Metals, pp. 38–49.Google Scholar
  3. Basta, NT, Gradwohl, R, Snethen, KL, Schroder, JL 2001Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphateJ. Environ. Qual.3012221230CrossRefGoogle Scholar
  4. Bohuslavek, J, Payne, JW, Liu, Y, Bolton, H, Xun, LY 2001Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1Appl. Environ. Microbiol.67688695CrossRefGoogle Scholar
  5. Brierley, CL 1982Microbiological MiningScientific American2474453CrossRefGoogle Scholar
  6. Brierley, CL 1990Bioremediation of metal-contaminated surface and groundwatersGeomicrobiol J8201223Google Scholar
  7. Brown, S, Chaney, R, Hallfrisch, J, Ryan, JA, Berti, WR 2004In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmiumJ. Environ. Qual.33522531CrossRefGoogle Scholar
  8. Brown, S, Sprenger, M, Maxemchuk, A, Compton, H 2005Ecosystem function in alluvial tailings after biosolids and lime additionJ. Environ. Qual.34139148Google Scholar
  9. Brown, SL, Chaney, R, Halfrisch, J, Xue, Q 2003aEffect of Biosolids Processing on Lead Bioavailability in an Urban SoilJ. Environ. Qual.32100108CrossRefGoogle Scholar
  10. Brown, SL, Henry, CL, Chaney, R, Compton, H, DeVolder, PS 2003bUsing municipal biosolids in combination with other residuals to restore metal-contaminated mining areasPlant and Soil249203215CrossRefGoogle Scholar
  11. Cela, S, Sumner, ME 2002Critical concentrations of copper, nickel, lead, and cadmium in soils based on nitrificationCommun. Soil Plant Anal.331930Google Scholar
  12. Chaney RL, Brown SL, Stuchynski TI, Daniels WL, Henry CL, Li Y-M, Siebelec G, Malik M, Angle JS, Ryan JA & Compton H (1999) Progress in remediation of soils contaminated by mining and smelting of lead, zinc and cadmium using tailor-made biosolids mixtures and composts. In: Innovative Clean-up Approaches: Investments in TEchnoogy Development, Results & Outlook for the Future.Google Scholar
  13. Chang, FH, Broadbent, FE 1982Influence of trace metals on some soil nitrogen transformationsJ. Environ. Qual.1114Google Scholar
  14. Conder, JA, Lanno, RP, Basta, NT 2001Assessment of metal availability in smelter soil using earthworms and chemical extractionsJ. Environ. Qual3012311237CrossRefGoogle Scholar
  15. Souza, M.P, Amini, A, Dojka, MA, Pickering, IJ, Dawson, SC, Pace, NR, Terry, N 2001Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pondAppl. Environ. Microbiol.6737853794Google Scholar
  16. Finneran, KT, Anderson, RT, Nevin, KP, Lovley, DR 2002Potential for Bioremediation of uranium-contaminated aquifers with microbial U(VI) reductionSoil Sediment. Contam.11339357Google Scholar
  17. Frankenberger, WT, Arshad, M 2001Bioremediation of selenium-contaminated sediments and waterBiofactors14241254Google Scholar
  18. Frankenberger, WT, Karlson, U 1994Soil-management factors affecting volatilization of selenium from dewatered sedimentsGeomicrobiol. J.12265278Google Scholar
  19. Frankenberger, WT, Karlson, U 1995Volatilization of selenium from a dewatered seleniferous sediment – a field-studyJ. Indust. Microbiol.14226232Google Scholar
  20. Geebelen, W, Vvander Lelie, D, Mench, M, Carleer, R, Chijsters, H, Vangronsveld, J 2003Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soilsPlant and Soil249217228CrossRefGoogle Scholar
  21. Gorby, YA, Caccavo, F, Bolton, H 1998Microbial reduction of cobalt(III)EDTA(-) in the presence and absence of manganese(IV) oxideEnviron. Sci. Technol.32244250CrossRefGoogle Scholar
  22. Green, FB, Lundquist, TJ, Quinn, NWT, Zarate, MA, Zubieta, I.X, Oswald, W.J 2003Selenium and nitrate removal from agricultural drainage using the AIWPS (R) technologyWater Scie. Technol.48299305Google Scholar
  23. Hazen, TC 1997BioremediationHaldeman, PAaD eds. Microbiology of the Terrestrial SubsurfaceCRC PressBoca Raton, FL247266Google Scholar
  24. Holmes, DE, Finneran, KT, O’Neil, RA, Lovley, DR 2002Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sedimentsAppl. Environ. Microbiol.6823002306CrossRefGoogle Scholar
  25. Kelly, JJ, Tate, RL 1998Use of BiOLOG for the analysis of microbial communities from zinc-contaminated soilsJ. Environ. Qual.27600608Google Scholar
  26. Li, Y, Chaney, R, Siebielec, G, Kershner, BA 2000Response of four turfgrass cultivars to limestone and biosolids compost amendment of a zinc and cadmium contaminated soil at Palmerton, PAJ. Environ. Qual.2914401447CrossRefGoogle Scholar
  27. Loffler, FE, Sun, Q, Li, J, Tiedje, JM 200016S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas and Dehalococcoides SpeciesAppl. Environ. Microbiol.6613693445CrossRefGoogle Scholar
  28. Lovley, DR, Phillips, EJP 1992Reduction of uranium by Desulfovibrio desulfuricansAppl. Environ. Microbiol.58850856Google Scholar
  29. Lovley, DR, Widman, PK, Woodward, JC, Phillips, EJP 1993Reduction of uranium by cytochrome c3 of Desulfovibrio vulgarisAppl. Environ. Microbiol.5935723576Google Scholar
  30. McCullough J, Hazen TC, Benson SM, Metting FB & Palmisano AC (1999) Bioremediation of metals and radionuclides.What it is and how it works (pp. 58). LBNL-42595, Lawrence Berkeley National, Berkeley, CaliforniaGoogle Scholar
  31. McGrath SP (2002) Critical Metals. Society of Environmental Toxicology and ChemistryGoogle Scholar
  32. McLaughlin, M, Zarcinas, BA, Stevens, DP, Cook, N 2000Soil testing for heavy metalsCommun. Soil Sci. Plant Anal.3116611700CrossRefGoogle Scholar
  33. Meers, E, Ruttens, A, Hopgood, MJ, Samson, D, Tack, FMG 2005Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metalsChemosphere5810111022CrossRefGoogle Scholar
  34. NABIR (2004) Bioremediation of metals and radionuclides.What it is and how it works, 2nd ED. (ed. T. C. Hazen), pp. 74. LBNL-42595 2nd Ed., Lawrence Berkeley National Laboratory, Berkeley, CaliforniaGoogle Scholar
  35. National_Research_Council (2003) Bioavailability of contaminants in soils and sediments. National Academy of SciencesGoogle Scholar
  36. Plaza, G, Ulfig, K, Hazen, TC, Brigmon, RL 2001Use of molecular techniques in bioremediationActa Microbiol. Pol.5020518Google Scholar
  37. Ram, RJ, VerBerkmoes, NC, Thelen, MP, Tyson, GW, Baker, BJ, Blake Ii, RC, Shah, M, Hettich, RL, Banfield, JF 2005Community Proteomics of a Natural Microbial BiofilmScience30819151920CrossRefGoogle Scholar
  38. Ruby, MV, Davis, A, Schoof, R, Eberle, S, Sellstone, CM 1996Estimation of lead and arsenic bioavailability using a physiologically-based extraction testEnviron. Sci. Technol.30422430CrossRefGoogle Scholar
  39. Ryan, JA, Scheckel, KG, Berti, WR, Brown, SL, Casteel, SW, Chaney, RL, Hallfrisch, J, Doolan, M, Grevatt, P, Maddaloni, M, Mosby, D 2004Reducing children’s risk from lead in soilEnviron. Sci. Technol.3818A24ACrossRefGoogle Scholar
  40. Sauve S (2002) Speciation of metals in soil. Society of Environmental Toxicology and ChemistryGoogle Scholar
  41. Seidel, H, Loser, C, Zehnsdorf, A, Hoffmann, P, Schmerold, R 2004Bioremediation process for sediments contaminated by heavy metals: Feasibility study on a pilot scaleEnviron. Sci. Technol.3815821588CrossRefGoogle Scholar
  42. Shaw, L.J, Beaton, Y, Glover, L.A, Killham, K, Meharg, A.A 2000Interactions between soil, toxicant, and a lux-marked bacterium during solid phase-contact toxicity testingEnviron. Toxicol. Chem.1912471252CrossRefGoogle Scholar
  43. Sopper W. (1993) Municipal Sudge Use in Land Restoration. LewisGoogle Scholar
  44. Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT & Sumner ME (1996) Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of AmericaGoogle Scholar
  45. Tabak, HH, Lens, P, Hullebusch, E, Dejonghe, W 2005Developments in bioremediation of soils and sediments polluted with metals and radionuclides - 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transportReviews in Environmental Science & Bio/Technology4115156Google Scholar
  46. Tichy, R, Rulkens, W.H, Grotenhuis, J.T.C, Nydl, V, Cuypers, C, Fajtl, J 1998Bioleaching of metals from soils or sedimentsWater Sci. Technol.37119127CrossRefGoogle Scholar
  47. Tokunaga, T.K, Wan, J.M, Firestone, M.K, Hazen, T.C, Olson, K.R, Herman, D.J, Sutton, S.R, Lanzirotti, A 2003aIn situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendmentJ. Environ. Qual.3216411649CrossRefGoogle Scholar
  48. Tokunaga, T.K, Wan, J.M, Firestone, M.K, Hazen, T.C, Schwartz, E, Sutton, S.R, Newville, M 2001aChromium diffusion and reduction in soil aggregatesEnviron. Sci. Technol.3531693174CrossRefGoogle Scholar
  49. Tokunaga, T.K, Wan, J.M, Firestone, M.K, Hazen, T.C, Schwartz, E, Sutton, S.R, Newville, M 2001bChromium diffusion and reduction in soil aggregatesEnviron. Sci. Technol.3531693174CrossRefGoogle Scholar
  50. Tokunaga, T.K, Wan, J.M, Hazen, T.C, Schwartz, E, Firestone, M.K, Sutton, S.R, Newville, M, Olson, K.R, Lanzirotti, A, Rao, W 2003bDistribution of chromium contamination and microbial activity in soil aggregatesJ. Environ. Qual.32541549CrossRefGoogle Scholar
  51. Tyson, GW, Chapman, J, Hugenholtz, P, Allen, EE, Ram, RJ, Richardson, PM, Solovyev, VV, Rubin, E.M, Rokhsar, D.S, Banfield, J.F 2004Community structure and metabolism through reconstruction of microbial genomes from the environmentNature4283743CrossRefGoogle Scholar
  52. Canstein, H, Li, Y, Leonhauser, J, Haase, E, Felske, A, Deckwer, WD, Wagner-Dobler, I 2002Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation systemAppl. Environ. Microbiol.6819381946Google Scholar
  53. Canstein, H, Li, Y, Timmis, KN, Deckwer, W-D, Wagner-Dobler, I 1999Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida StrainAppl. Environ. Microbiol.6552793445Google Scholar
  54. Canstein, H, Li, Y, Wagner-Dobler, I 2001Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbationBiotechnol. Bioeng.74212219Google Scholar
  55. Vulkan, R, Zhao, FJ, Barbosa-Jefferson, V, Preston, S, Paton, G.I, Tipping, E, McGrath, SP 2000Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soilsEnviron. Sci. Technol.3451155121CrossRefGoogle Scholar
  56. Wagner-Döbler, I, Canstein, H, Li, Y, Timmis, KN, Deckwer, W-D 2000aRemoval of mercury from chemical wastewater by microorganisms in technical scaleEnviron. Sci. Technol.3446284634Google Scholar
  57. Wagner-Döbler, I, Canstein, H, Li, Y, Timmis, KN, Deckwer, W-D 2000bRemoval of mercury from chemical wastewater by microorganisms in technical scaleEnviron. Sci. Technol.3446284634Google Scholar
  58. Wagner-Döbler, I, Lunsdorf, H, Lubbehusen, T, vonCanstein, HF, Li, Y 2000cStructure and species composition of mercury-reducing biofilmsAppl. Environ. Microbiol.6645594563Google Scholar
  59. Weijma, J, Hoop, K, Bosma, W, Dijkman, H 2002Biological conversion of anglesite (PbSO4) and lead waste from spent car batteries to galena (PbS)Biotechnol. Prog.18770775CrossRefGoogle Scholar
  60. Zhang, H, Zhao, F-J, Sun, B, Davison, W, McGrath, SP 2001A new method to measure effective soil solution concentration predicts copper availability to plantsEnviron. Sci. Technol.3526022607CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryVirtual Institute for Microbial Stress and SurvivalBerkeleyUSA
  2. 2.National Risk Management Research LaboratoryUS EPA, ORDCincinnatiUSA

Personalised recommendations