Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds

  • J.A FieldEmail author
  • R Sierra-Alvarez


The biodegradability of chlorinated methanes, chlorinated ethanes, chlorinated ethenes, chlorofluorocarbons (CFCs), chlorinated acetic acids, chlorinated propanoids and chlorinated butadienes was evaluated based on literature data. Evidence for the biodegradation of compounds in all of the compound categories evaluated has been reported. A broad range of chlorinated aliphatic structures are susceptible to biodegradation under a variety of physiological and redox conditions. Microbial biodegradation of a wide variety of chlorinated aliphatic compounds was shown to occur under five physiological conditions. However, any given physiological condition could only act upon a subset of the chlorinated compounds. Firstly, chlorinated compounds are used as an electron donor and carbon source under aerobic conditions. Secondly, chlorinated compounds are cometabolized under aerobic conditions while the microorganisms are growing (or otherwise already have grown) on another primary substrate. Thirdly, chlorinated compounds are also degraded under anaerobic conditions in which they are utilized as an electron donor and carbon source. Fourthly, chlorinated compounds can serve as an electron acceptor to support respiration of anaerobic microorganisms utilizing simple electron donating substrates. Lastly chlorinated compounds are subject to anaerobic cometabolism becoming biotransformed while the microorganisms grow on other primary substrate or electron acceptor. The literature survey demonstrates that, in many cases, chlorinated compounds are completely mineralised to benign end products. Additionally, biodegradation can occur rapidly. Growth rates exceeding 1 d-1 were observed for many compounds. Most compound categories include chlorinated structures that are used to support microbial growth. Growth can be due to the use of the chlorinated compound as an electron donor or alternatively to the use of the chlorinated compound as an electron acceptor (halorespiration). Biodegradation linked to growth is important, since under such conditions, rates of degradation will increase as the microbial population (biocatalyst) increases. Combinations of redox conditions are favorable for the biodegradation of highly chlorinated structures that are recalcitrant to degradation under aerobic conditions. However, under anaerobic conditions, highly chlorinated structures are partially dehalogenated to lower chlorinated counterparts. The lower chlorinated compounds are subsequently more readily mineralized under aerobic conditions.


biodegradation chloroacetic acids chlorobutadienes chloroethanes chloroethenes CFC chlorofluorocarbons chlorinated aliphatic compounds chloromethanes chloropropanes chloropropenes epichlorohydrin halorespiration microbial dechlorination PCE TCE 





benzene–toluene–ethyl benzene–xylene




chloroacetic acid








chlorofluorocarbons (seeTable 15 for CFC-nomenculture )


inorganic chloride




carbon monoxide








completely stirred tank reactor


carbon tetrachloride


unspecified mixture of cis- and trans-dichloroethene




dichloroacetic acid










dense non-aqueous phase liquid


dry weight




electron acceptor


electron donor


epichlorohydrin or 3-chloro-1,2-epoxypropane












methane monooxygenases








membrane-bound methane monooxygenases


permeable reactive barrier


soluble methane monooxygenases


transformation capacity




trichloroacetic acid














trifluoroacetic acid


toluene/ortho-xylene monoxygenase


upflow anaerobic sludge bed reactor


vinyl chloride


volatile suspended solids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Cohen, L, McCarty, PL 1991Product toxicity and cometabolic competitive-inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cellsAppl. Environ. Microbiol.5710311037Google Scholar
  2. Alvarez-Cohen, L, Speitel, GE,Jr 2001Kinetics of aerobic cometabolism of chlorinated solventsBiodegradation12105126Google Scholar
  3. Abrahamsson, K, Ekdahl, A, Collen, J, Pedersen, M 1995Marine algae–A source of trichloroethylene and perchloroethyleneLimnol. Oceanogr.4013211326Google Scholar
  4. Alvarez-Cohen, L, McCarty, PL, Boulygina, E, Hanson, RS, Brusseau, GA, Tsien, HC 1992Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroformAppl. Environ. Microbiol.5818861893Google Scholar
  5. Adamson, DT, McDade, JM, Hughes, JB 2003Inoculation of DNAPL source zone to initiate reductive dechlorination of PCEEnviron. Sci. Technol.3725252533Google Scholar
  6. Arciero, D, Vanelli, T, Logan, M, Hooper, AB 1989Degradation of trichloroethylene by the ammonia oxidizing bacterium Nitrosomonas europaeaBiochem. Biophys. Res. Commun.159640643Google Scholar
  7. Arp, DJ, Yeager, CM, Hyman, MR 2001Molecular and cellular fundamentals of aerobic cometabolism of trichloroethyleneBiodegradation1281103Google Scholar
  8. Arvin, E 1991Biodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactorWater Res.25873882Google Scholar
  9. Assaf-Anid, N, Lin, KY 2002Carbon tetrachloride reduction by Fe2+, S2−, and FeS with vitamin B-12 as organic amendmentJ. Environ. Eng.-ASCE1289499Google Scholar
  10. Aulenta, F, Majone, M, Beccari, M, Perna, L, Tandoi, V 2003Enrichment from activated sludges of aerobic mixed cultures capable to degrade vinyl chloride (VC) as the sole carbon sourceAnn. Chim.93337346Google Scholar
  11. Aziz, CE, Georgiou, G, Speitel, GE 1999Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M trichosporium OB3b PP358.Biotechnol. Bioeng.65100107Google Scholar
  12. Bader, R, Leisinger, T 1994Isolation and characterization of the Methylophilus sp strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase.J. Bacteriol.17634663473Google Scholar
  13. Baeseman, JL, Novak, PJ 2001Effects of various environmental conditions on the transformation of chlorinated solvents by Methanosarcina thermophila cell exudatesBiotechnol. Bioeng.75634641Google Scholar
  14. Bagley, DM, Gossett, JM 1990Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate reducing enrichment culturesAppl. Environ. Microbiol.5625112516Google Scholar
  15. Bagley, DM, Gossett, JM 1995Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227Appl. Environ. Microbiol.6131953201Google Scholar
  16. Bartnicki, EW, Castro, CE 1994Biodehalogenation–Rapid oxidative-metabolism of monohalomethanes and polyhalomethanes by Methylosinus trichosporium Ob-3bEnviron. Toxicol. Chem.13241245Google Scholar
  17. Bauer, MR, Yavitt, JB 1996Processes and mechanisms controlling consumption of CFC-11 and CFC-12 by peat from a conifer-swamp and black spruce-tamarack bog in New York StateChemosphere32759768Google Scholar
  18. Becker, JG, Freedman, DL 1994Use of cyanocobalamin to enhance anaerobic biodegradation of chloroformEnviron. Sci. Technol.2819421949Google Scholar
  19. Belay, N, Daniels, L 1987Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteriaAppl. Environ. Microbiol.5316041610Google Scholar
  20. Berends, AG, de Rooij, CG, Shin-ya, S, Thompson, RS 1999Biodegradation and ecotoxicity of HFCs and HCFCsArch. Environ. Contam. Toxicol.36146151Google Scholar
  21. Berg, M, Muller, SR, Muhlemann, J, Wiedmer, A, Schwarzenbach, RP 2000Concentrations and mass fluxes of chloroacetic acids and trifluoroacetic acid in rain and natural waters in SwitzerlandEnviron. Sci. Technol.3426752683Google Scholar
  22. Birner, G, Werner, M, Rosner, E, Mehler, C, Dekant, W 1998Biotransformation, excretion, and nephrotoxicity of the hexachlorobutadiene metabolite (E)-N-acetyl-S-(1,2,3,4,4- pentachlorobutadienyl)-l-cysteine sulfoxideChem. Res. Toxicol.11750757Google Scholar
  23. Bjerg, PL, Rugge, K, Cortsen, J, Nielsen, PH, Christensen, TH 1999Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted landfill leachate plume: In situ microcosm and laboratory batch experimentsGround Water3713121Google Scholar
  24. Booker, RS, Pavlostathis, SG 2000Microbial reductive dechlorination of hexachloro-1,3-butadiene in a methanogenic enrichment cultureWater Res.3444374445Google Scholar
  25. Bosma, TNP, Cottaar, FHM, Posthumus, MA, Teunis, CJ, Vanveldhulzen, A, Schraa, G, Zehnder, AJB 1994Comparison of reductive dechlorination of hexachloro-1,3- butadiene in Rhine sediment and model systems with hydroxocobalaminEnviron. Sci. Technol.2811241128Google Scholar
  26. Bosma, T, Damborsky, J, Stucki, G, Janssen, DB 2002Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase geneAppl. Environ. Microbiol.6835823587Google Scholar
  27. Bosma, T, Kruizinga, E, de Bruin, EJ, Poelarends, GJ, Janssen, DB 1999Utilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp strain m15-3.Appl. Environ. Microbiol.6545754581Google Scholar
  28. Boucquey, JB, Renard, P, Amerlynck, P, Modesto, FP, Agathos, SN, Naveau, H, Nyns, EJ 1995High-rate continuous biodegradation of concentrated chlorinated aliphatics by a durable enrichment of methanogenic origin under carrier-dependent conditionsBiotechnol. Bioeng.47298307Google Scholar
  29. Bourg, ACM, Mouvet, C, Lerner, DN 1992A review of the attenuation of trichloroethylene in soils and aquifersQ. J. Eng. Geol.25359370Google Scholar
  30. Bouwer, EJ, McCarty, PL 1983Transformations of 1-carbon and 2-carbon halogenated aliphatic organic-compounds under methanogenic conditionsAppl. Environ. Microbiol.4512861294Google Scholar
  31. Bradley, PM 2000Microbial degradation of chloroethenes in groundwater systemsHydrogeol. J.8104111Google Scholar
  32. Bradley, PM 2003History and ecology of chloroethene biodegradation: A reviewBioremediation J.781109Google Scholar
  33. Bradley, PM, Chapelle, FH 1996Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sedimentsEnviron. Sci. Technol.3020842086Google Scholar
  34. Bradley, PM, Chapelle, FH 1997Kinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditionsEnviron. Sci. Technol.3126922696Google Scholar
  35. Bradley, PM, Chapelle, FH 2000Acetogenic microbial degradation of vinyl chlorideEnviron. Sci. Technol.3427612763Google Scholar
  36. Bradley, PM, Chapelle, FH, Lovley, DR 1998aHumic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroetheneAppl. Environ. Microbiol.6431023105Google Scholar
  37. Bradley, PM, Landmeyer, JE, Dinicola, RS 1998bAnaerobic oxidation of [1,2-C14]-dichloroethene under Mn(IV)- reducing conditionsAppl. Environ. Microbiol.6415601562Google Scholar
  38. Brausstromeyer, SA, Hermann, R, Cook, AM, Leisinger, T 1993Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacteriumAppl. Environ. Microbiol.5937903797Google Scholar
  39. Bullister, JL, Lee, BS 1995Chlorofluorocarbon-11 removal in anoxic marine watersGeophys. Res. Lett.2218931896Google Scholar
  40. Cabirol, N, Villemur, R, Perrier, J, Jacob, F, Fouillet, B, Chambon, P 1998Isolation of a methanogenic bacterium, Methanosarcina sp strain FR, for its ability to degrade high concentrations of perchloroethylene. Can. J. Microbiol.4411421147Google Scholar
  41. Carter, SR, Jewell, WJ 1993Biotransformation of tetrachloroethylene by anaerobic attached- films at low-temperaturesWater Res.27607615Google Scholar
  42. Castro, CE 1993Biodehalogenation: The kinetics and rates of the microbial cleavage of carbon-halogen bondsEnviron. Toxicol. Chem.1216091618Google Scholar
  43. Castro, CE, Belser, NO 1966Soil fumigant hydrolysis–hydrolysis of cis- and trans-1,3-dichloropropene in wet soilJ. Agri. Food Chem.146970Google Scholar
  44. Castro, CE, Riebeth, DM, Belser, NO 1992aBiodehalogenation: The metabolism of vinyl chloride by Methylosinus trichosporium Ob3BEnviron. Toxicol. Chem.11749755Google Scholar
  45. Castro, CE, Wade, RS, Riebeth, DM, Bartnicki, EW, Belser, NO 1992bBiodehalogenation–rapid metabolism of vinyl-chloride by a soil Pseudomonas sp direct hydrolysis of a vinyl C-Cl bond.Environ. Toxicol. Chem.11757764Google Scholar
  46. Chang, HL, Alvarez-Cohen, L 1995Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenolBiotechnol. Bioeng.45440449Google Scholar
  47. Chang, HL, Alvarez-Cohen, L 1996Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing culturesAppl. Environ. Microbiol.6233713377Google Scholar
  48. Chang, W, Criddle, CS 1995Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1Biodegradation.619Google Scholar
  49. Chauhan, S, Barbieri, P, Wood, TK 1998Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1Appl. Environ. Microbiol.6430233024Google Scholar
  50. Chen, G 2004Reductive dehalogenation of tetrachloroethylene by microorganisms: Current knowledge and application strategiesAppl. Microbiol. Biotechnol.63373377Google Scholar
  51. Chen, C, Ballapragada, BS, Puhakka, JA, Strand, SE, Ferguson, JF 1999Anaerobic transformation of 1,1,1-trichloroethane by municipal digester sludgeBiodegradation10297305Google Scholar
  52. Chen, C, Puhakka, JA, Ferguson, JF 1996Transformations of 1,1,2,2-tetrachloroethane under methanogenic conditionsEnviron. Sci. Technol.30542547Google Scholar
  53. Christiansen N, Christensen SR, Arvin E & Ahring BK (1997) Transformation of tetrachloroethylene with anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol.Google Scholar
  54. Chu, KH, Jewell, WJ 1994Treatment of tetrachloroethylene with anaerobic attached film processJ. Environ. Eng.-ASCE1205871Google Scholar
  55. Chung, KY, Dickson, DW, Ou, LT 1999Differential enhanced degradation of cis- and trans-1,3-D in soil with a history of repeated field applications of 1,3-DJ. Environ. Sci. Health34749768Part B-Pestic. Contam. Agric. WastesGoogle Scholar
  56. Cline, PV, Viste, DR 1985Migration and degradation patterns of volatile organic compoundsWaste Manag. Res.3351360Google Scholar
  57. Coleman, NV, Spain, JC 2003aEpoxyalkane: Coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60J. Bacteriol.18555365545Google Scholar
  58. Coleman, NV, Spain, JC 2003bDistribution of the coenzyme m pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strainsAppl. Environ. Microbiol.6960416046Google Scholar
  59. Coleman, NV, Mattes, TE, Gossett, JM, Spain, JC 2002aPhylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sitesAppl. Environ. Microbiol.6861626171Google Scholar
  60. Coleman, NV, Mattes, TE, Gossett, JM, Spain, JC 2002bBiodegradation of cis-dichloroethene as the sole carbon source by a beta-ProteobacteriumAppl. Environ. Microbiol.6827262730Google Scholar
  61. Cottrell, L, Golding, BT, Munter, T, Watson, WP 2001In vitro metabolism of chloroprene: Species differences, epoxide stereochemistry and a de-chlorination pathwayChem. Res. Toxicol.1415521562Google Scholar
  62. Coulter, C, Hamilton, JTG, McRoberts, WC, Kulakov, L, Larkin, MJ, Harper, DB 1999Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon sourceAppl. Environ. Microbiol.6543014312Google Scholar
  63. Criddle, CS, Dewitt, JT, McCarty, PL 1990aReductive dehalogenation of carbon tetrachloride by Escherichia coli K-12Appl. Environ. Microbiol.5632473254Google Scholar
  64. Criddle, CS, Dewitt, JT, Grbic Galic, D, McCarty, PL 1990bTransformation of carbon-tetrachloride by Pseudomonas spstrain KC under denitrification conditions.Appl. Environ. Microbiol.5632403246Google Scholar
  65. Cupples, AM, Spormann, AM, McCarty, PL 2003Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCRAppl. Environ. Microbiol.69953959Google Scholar
  66. Davis, JW, Carpenter, CL 1990Aerobic biodegradation of vinyl-chloride in groundwater samplesAppl. Environ. Microbiol.5638783880Google Scholar
  67. Davis, A, Fennemore, GG, Peck, C, Walker, CR, McIlwraith, J, Thomas, S 2003Degradation of carbon tetrachloride in a reducing groundwater environment: Implications for natural attenuationAppl. Geochem.18503525Google Scholar
  68. De Best, JH, Hage, A, Doddema, HJ, Janssen, DB, Harder, W 1999Complete transformation of 1,1,1-trichloroethane to chloroethane by a methanogenic mixed populationAppl. Microbiol. Biotechnol.51277283Google Scholar
  69. De Best, JH, Jongema, H, Weijling, A, Doddema, HJ, Janssen, DB, Harder, W 1997bTransformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfateAppl. Microbiol. Biotechnol.48417423Google Scholar
  70. De Best, JH, Salminen, E, Doddema, HJ, Janssen, DB, Harder, W 1997aTransformation of carbon tetrachloride under sulfate reducing conditionsBiodegradation.8429436Google Scholar
  71. De Best, JH, Ultee, J, Hage, A, Doddema, HJ, Janssen, DB, Harder, W 2000Dichloromethane utilization in a packed-bed reactor in the presence of various electron acceptorsWater Res.34566574Google Scholar
  72. De Wever, H, Cole, JR, Fettig, MR, Hogan, DA, Tiedje, JM 2000Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen nov., sp. nov.Appl. Environ. Microbiol.6622972301Google Scholar
  73. De Wildeman, S, Verstraete, W 2003The quest for microbial reductive dechlorination of C-2 to C-4 chloroalkanes is warrantedAppl. Microbiol. Biotechnol.6194102Google Scholar
  74. De Wildeman, S, Diekert, G, van Langenhove, H, Verstraete, W 2003aStereoselective microbial dehalorespiration with vicinal dichlorinated alkanesAppl. Environ. Microbiol.6956435647Google Scholar
  75. De Wildeman, S, Neumann, A, Diekert, G, Verstraete, W 2003bGrowth-substrate dependent dechlorination of 1,2-dichloroethane by a homoacetogenic bacteriumBiodegradation14241247Google Scholar
  76. De Wildeman, S, Nollet, H, van Langenhove,  H, Verstraete, W 2001Reductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge in lab-scale UASB reactorsAdv. Environ. Res.61727Google Scholar
  77. De Wildeman, S, Linthout, G, van Langenhove, H, Verstraete, W 2004Complete lab-scale detoxification of groundwater containing 1,2-dichloroethaneAppl. Microbiol. Biotechnol.63609612Google Scholar
  78. Debruin, WP, Kotterman, MJJ, Posthumus, MA, Schraa, G, Zehnder, AJB 1992Complete biological reductive transformation of tetrachloroethene to ethane.Appl. Environ.Microbiol.5819962000Google Scholar
  79. Deflaun, MF, Ensley, BD, Steffan, RJ 1992Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacteriumBio-Technol.1015761578Google Scholar
  80. Deipser, A 1998Biodegradation of volatile CFCs, H-CFCs and VC in compost and marlWaste Manage. Res.16330341Google Scholar
  81. Deipser, A, Stegmann, R 1997Biological degradation of VCCs and CFCs under simulated anaerobic landfill conditions in laboratory test digestersEnviron. Sci. Pollut. Res.4209216Google Scholar
  82. Denovan, BA, Strand, SE 1992Biological degradation of chlorofluorocarbons in anaerobic environmentsChemosphere24935940Google Scholar
  83. Devlin, JF, Muller, D 1999Field and laboratory studies of carbon tetrachloride transformation in a sandy aquifer under sulfate reducing conditionsEnviron. Sci. Technol.3310211027Google Scholar
  84. Diez, A, Alvarez, MJ, Prieto, MI, Bautista, JM, Garrido Pertierra, A 1995Monochloroacetate dehalogenase activities of bacterial strains isolated from soilCan. J. Microbiol.41730739Google Scholar
  85. Diez, A, Prieto, MI, Alvarez, MJ, Bautista, JM, Garrido, A, Puyet, A 1996bImproved catalytic performance of a 2-haloacid dehalogenase from Azotobacter sp by ion-exchange immobilisation.Biochem. Biophys. Res. Commun.220828833Google Scholar
  86. Diez, A, Prieto, NI, Alvarez, MJ, Bautista, JM, Puyet, A, Garrido-Pertierra, A 1996aPurification and properties of a high-affinity L-2-haloacid dehalogenase from Azotobacter sp strain RC26.Lett. Appl. Microbiol.23279282Google Scholar
  87. Diks, RMM, Ottengraf, SPP 1991Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter 1.Bioprocess Eng.69399Google Scholar
  88. Distefano, TD 1999The effect of tetrachloroethene on biological dechlorination of vinyl chloride: Potential implication for natural bioattenuationWater Res.3316881694Google Scholar
  89. Distefano, TD, Gossett, JM, Zinder, SH 1991Reductive dechlorination of high-concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesisAppl. Environ. Microbiol.5722872292Google Scholar
  90. Doronina, NV, Sokolov, AP, Trotsenko, YA 1996Isolation and initial characterization of aerobic chloromethane-utilizing bacteriaFEMS Microbiol. Lett.142179183Google Scholar
  91. Doronina, NV, Trotsenko, YA, Krausova, VI, Suzina, NE 1998Paracoccus methylutens spnov.–a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane.Syst. Appl. Microbiol.21230236Google Scholar
  92. Doronina, NV, Trotsenko, YA, Tourova, TP, Kuznetsov, BB, Leisinger, T 2000Methylopila helvetica spnov and Methylobacterium dichloromethanicum sp. nov.–Novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane.Syst. Appl. Microbiol.23210218Google Scholar
  93. Doronina, NV, Trotsenko, YA, Tourova, TP, Kuznetsov, BB, Leisinger, T 2001Albibacter methylovorans gen nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.Int. J. Syst. Evol. Microbiol.5110511058Google Scholar
  94. Duhamel, M, Wehr, SD, Yu, L, Rizvi, H, Seepersad, D, Dworatzek, S, Cox, EE, Edwards, EA 2002Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chlorideWater Res.3641934202Google Scholar
  95. Dungan, RS, Gan, JY, Yates, SR 2001Effect of temperature, organic amendment rate and moisture content on the degradation of 1,3-dichloropropene in soilPest Manag. Sci.5711071113Google Scholar
  96. Egli, C, Scholtz, R, Cook, AM, Leisinger, T 1987Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp and Methanobacterium sp.FEMS Microbiol. Lett.43257261Google Scholar
  97. Egli, C, Stromeyer, S, Cook, AM, Leisinger, T 1990Transformation of tetrachloromethane and trichloromethane to carbon dioxide by anaerobic bacteria is a non-enzymic processFEMS Microbiol. Lett.68207212Google Scholar
  98. Egli, C, Tschan, T, Scholtz, R, Cook, AM, Leisinger, T 1988Transformation of tetrachloromethane to dichloromethane and carbon-dioxide by Acetobacterium woodiiAppl. Environ. Microbiol.5428192824Google Scholar
  99. Egli, C, Thuer, M, Suter, D, Cook, AM, Leisinger, T 1989Monochloroacetic and dichloroacetic acids as carbon and energy-sources for a stable, methanogenic mixed cultureArch. Microbiol.152218223Google Scholar
  100. Ejlertsson, J, Johansson, E, Karlsson, A, Meyerson, U, Svensson, BH 1996Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions Ant. Leeuwen. Int.J. Gen. Mol. Microbiol.696774Google Scholar
  101. Ellis, DA, Hanson, ML, Sibley, PK, Shahid, T, Fineberg, NA, Solomon, KR, Muir, DCG, Mabury, SA 2001The fate and persistence of trifluoroacetic and chloroacetic acids in pond watersChemosphere42309318Google Scholar
  102. Ellis, DE, Lutz, EJ, Odom, JM, Buchanan, RJ, Bartlett, CL, Lee, MD, Harkness, MR, Deweerd, KA 2000Bioaugmentation for accelerated in situ anaerobic bioremediationEnviron. Sci. Technol.3422542260Google Scholar
  103. Ely, RL, Williamson, KJ, Hyman, MR, Arp, DJ 1997Cometabolism of chlorinated solvents by nitrifying bacteria: Kinetics, substrate interactions, toxicity effects, and bacterial responseBiotechnol. Bioeng.54520534Google Scholar
  104. Ensign, SA, Hyman, MR, Arp, DJ 1992Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strainAppl. Environ. Microbiol.5830383046Google Scholar
  105. Fathepure, BZ, Boyd, SA 1988aDependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp strain DCM.Appl. Environ. Microbiol.5429762980Google Scholar
  106. Fathepure, BZ, Boyd, SA 1988bReductive dechlorination of perchloroethylene and the role of methanogensFEMS Microbiol. Lett.49149156Google Scholar
  107. Fathepure, BZ, Vogel, TM 1991Complete degradation of polychlorinated hydrocarbons by a 2–stage biofilm reactorAppl. Environ. Microbiol.5734183422Google Scholar
  108. Fathepure, BZ, Tiedje, JM 1994Reductive dechlorination of tetrachloroethylene by a chlorobenzoate-enriched biofilm reactorEnviron. Sci. Technol.28746752Google Scholar
  109. Fathepure, BZ, Nengu, JP, Boyd, SA 1987Anaerobic bacteria that dechlorinate perchloroetheneAppl. Environ. Microbiol.5326712674Google Scholar
  110. Fennell, DE, Carroll, AB, Gossett, JM, Zinder, SH 2001Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site dataEnviron. Sci. Technol.3518301839Google Scholar
  111. Ferguson, JF, Pietari, JMH 2000Anaerobic transformations and bioremediation of chlorinated solventsEnviron. Pollut.107209215Google Scholar
  112. Fetzner, S 1998Bacterial dehalogenationAppl. Microbiol. Biotechnol.50633657Google Scholar
  113. Flanagan, WP 1998Biodegradation of dichloromethane in a granular activated carbon fluidized bed reactorWater Environ. Res.706066Google Scholar
  114. Forczek, ST, Matucha, M, Uhlirova, H, Albrechtova, J, Fuksova, K, Schroder, HP 2001Biodegradation of trichloroacetic acid in Norway spruce/soil systemBiol. Plant.44317320Google Scholar
  115. Fox, BG, Borneman, JG, Wacket, LP, Lipscomb, JD 1990Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implicationsBiochem.2964196427Google Scholar
  116. Freedman, DL, Gossett, JM 1991Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditionsAppl. Environ. Microbiol.5728472857Google Scholar
  117. Freedman, DL, Herz, SD 1996Use of ethylene and ethane as primary substrates for aerobic cometabolism of vinyl chlorideWater Environ. Res.68320328Google Scholar
  118. Freedman, DL, Smith, CR, Noguera, DR 1997Dichloromethane biodegradation under nitrate-reducing conditionsWater Environ. Res.69115122Google Scholar
  119. Freedman, DL, Danko, AS, Verce, MF 2001Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenesWater Sci. Technol.43333340Google Scholar
  120. Friday, DD, Portier, RJ 1991Development of an immobilized microbe bioreactor for VOC applicationsEnviron. Progress.103039Google Scholar
  121. Frietos dos Santos, LM, Livingstone, AG 1995Novel membrane bioreactor for detoxification of VOC wastewaters: Biodegradation of 1,2-dichloroethaneWater Res.29179194Google Scholar
  122. Galli, R 1987Biodegradation of dichloromethane in waste-water using a fluidized-bed bioreactorAppl. Microbiol. Biotechnol.27206213Google Scholar
  123. Galli, R, McCarty, PL 1989Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium spAppl. Environ. Microbiol.55837844Google Scholar
  124. Gantzer, CJ, Wackett, LP 1991Reductive dechlorination catalyzed by bacterial transition- metal coenzymesEnviron. Sci. Technol.25715722Google Scholar
  125. Garant, H, Lynd, LR 1996Perchloroethylene utilization by methanogenic fed-batch cultures–Acclimation and degradationAppl. Biochem. Biotechnol.57–8895904Google Scholar
  126. Gemmell, CG, Jensen, HL 1964Some studies on trichloroacetate-decomposing soil bacteriaArchiv Fur Mikrobiol.48386392Google Scholar
  127. Gerritse, J, Renard, V, Visser, J, Gottschal, JC 1995Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment culturesAppl. Microbiol. Biotechnol.43920928Google Scholar
  128. Gerritse, J, Renard, V, Gomes, TMP, Lawson, PA, Collins, MD, Gottschal, JC 1996Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols.Arch. Microbiol.165132140Google Scholar
  129. Gerritse, J, Kloetstra, G, Borger, A, Dalstra, G, Alphenaar, A, Gottschal, JC 1997Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostatsAppl. Microbiol. Biotechnol.48553562Google Scholar
  130. Ghisalba, O 1983Chemical wastes and their biodegradationExperentia3912471257Google Scholar
  131. Gisi, D, Willi, L, Traber, H, Leisinger, T, Vuilleumier, S 1998Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethaneAppl. Environ. Microbiol.6411941202Google Scholar
  132. Glod, G, Brodmann, U, Angst, W, Holliger, C, Schwarzenbach, RP 1997Cobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: Reaction kinetics and mechanistic considerationsEnviron. Sci. Technol.3131543160Google Scholar
  133. Govind, R, Flaherty, PA, Dobbs, RA 1991Fate and effects of semivolatile organic pollutants during anaerobic sludge digestionWater Research5547556Google Scholar
  134. Gribble, GW 2003The diversity of naturally produced organohalogensChemosphere52289297CrossRefPubMedGoogle Scholar
  135. Guiot, SR, Kuang, X, Beaullieu, C, Corriveau, A, Hawari, J 1995Anaerobic and aerobic/anaerobic treatment for tetrachloroethylene (PCE)Hinchee, RELeeson, ASemprini, L eds. Third International In Situ and On Site Bioreclamation SymposiumBatelle PressRichland, Capp 65–70Google Scholar
  136. Gupta, M, Gupta, A, Suidan, MT, Sayles, GD 1996Biotransformation rates of chloroform under anaerobic conditions 2. Sulfate reduction.Water Res.3013871394Google Scholar
  137. Habeck, BD, Sublette, KL 1995Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalaminAppl. Biochem. Biotechnol.51–2747759Google Scholar
  138. Hage, JC, Hartmans, S 1999Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp strain DCA1.Appl. Environ. Microbiol.6524662470Google Scholar
  139. Hage, JC, Kiestra, FDG, Hartmans, S 2001Co-metabolic degradation of chlorinated hydrocarbons by Pseudomonas sp strain DCA1.Appl. Microbiol. Biotechnol.57548554Google Scholar
  140. Hageman, KJ, Istok, JD, Field, JA, Buscheck, TE, Semprini, L 2001In situ anaerobic transformation of trichlorofluoroethene in trichloroethene-contaminated groundwaterEnviron. Sci. Technol.3517291735Google Scholar
  141. Hamamura, N, Page, C, Long, T, Semprini, L, Arp, DJ 1997Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3bAppl. Environ. Microbiol.6336073613Google Scholar
  142. Hanson, ML, Sibley, PK, Ellis, DA, Mabury, SA, Muir, DCG, Solomon, KR 2002Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosmsAquat. Toxicol.61251273Google Scholar
  143. Happell, JD, Wallace, DWR 1998Removal of atmospheric CCl4 under bulk aerobic conditions in groundwater and soilsEnviron. Sci. Technol.3212441252Google Scholar
  144. Hardman, DJ, Slater, JH 1981The dehalogenase complement of a soil pseudomonad grown in closed and open cultures on haloalkanoic acidsJ. Gen. Microbiol.127399405Google Scholar
  145. Harker, AR, Kim, Y 1990Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134Appl. Environ. Microbiol.5611791181Google Scholar
  146. Harper, DB 2000The global chloromethane cycle: Biosynthesis, biodegradation and metabolic roleNat. Prod. Rep.17337348Google Scholar
  147. Hartmans, S, Tramper, J 1991Dichloromethane removal from waste gases with a trickle-bed bioreactorBioprocess Eng.68392Google Scholar
  148. Hartmans, S, de Bont, JAM 1992Aerobic vinyl-chloride metabolism in Mycobacterium-aurum L1Appl. Environ. Microbiol.5812201226Google Scholar
  149. Hartmans, S, de, Bont JAM, Tramper, J, Luyben, K 1985Bacterial degradation of vinyl-chlorideBiotechnol. Lett.7383388Google Scholar
  150. Hartmans, S, Kaptein, A, Tramper, J, de, Bont JAM 1992Characterization of a Mycobacterium sp and a Xanthobacter sp. for the removal of vinyl-chloride and 1,2-dichloroethane from waste gases.Appl. Microbiol. Biotechnol.37796801Google Scholar
  151. Hartmans, S, Schmuckle, A, Cook, AM, Leisinger, T 1986Methyl chloride–Naturally-occurring toxicant and C-1 growth substrateJ. Gen. Microbiol.13211391142Google Scholar
  152. Hashimoto, A, Iwasaki, K, Nakasugi, N, Nakajima, M, Yagi, O 2002Degradation pathways of trichloro ethylene and 1,1,1-trichloroethane by Mycobacterium sp TA27. Biosci.Biotechnol. Biochem.66385390Google Scholar
  153. Hashsham, SA, Scholze, R, Freedman, DL 1995Cobalamin-enhanced anaerobic biotransformation of carbon tetrachlorideEnviron. Sci. Technol.2928562863Google Scholar
  154. Haston, ZC, McCarty, PL 1999Chlorinated ethene half-velocity coefficients (Ks) for reductive dehalogenationEnviron. Sci. Technol.33223226Google Scholar
  155. Hauck, R, Hegemann, W 2000Anaerobic degradation of 1,2-dichloropropane in batch and continuous cultureWater Sci. Technol.41713Google Scholar
  156. He, JZ, Ritalahti, KM, Aiello, MR, Loffler, FE 2003aComplete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides speciesAppl. Environ. Microbiol.699961003Google Scholar
  157. He, JZ, Ritalahti, KM, Yang, KL, Koenigsberg, SS, Loffler, FE 2003bDetoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacteriumNature4246265Google Scholar
  158. Heinze, U, Rehm, HJ 1993Biodegradation of dichloroacetic acid by entrapped and adsorptive immobilized Xanthobacter autotrophicus GJ10Appl. Microbiol. Biotechnol.40158164Google Scholar
  159. Hendrickson, ER, Payne, JA, Young, RM, Starr, MG, Perry, MP, Fahnestock, S, Ellis, DE, Ebersole, RC 2002Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and EuropeAppl. Environ. Microbiol.68485495Google Scholar
  160. Henry, SM, Grbic, Galic D 1990Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophsMicrob. Ecol.20151170Google Scholar
  161. Henry, SM, Grbic, Galic D 1991Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquiferAppl. Environ. Microbiol.57236244Google Scholar
  162. Henson, JM, Yates, MV, Cochran, JW 1989Metabolism of chlorinated methanes, ethanes and ethylenes by a mixed bacterial culture grown on methaneJ. Ind. Microbiol.42935Google Scholar
  163. Herbst, B, Wiesmann, U 1996Kinetics and reaction engineering aspects of the biodegradation of dichloromethane and dichloroethaneWater Res.3010691076Google Scholar
  164. Hirsch, P, Alexander, M 1960Microbial decomposition of halogenated propionic and acetic acidsCan. J. Microbiol.6241249Google Scholar
  165. Hoekstra, EJ 2003Review of concentrations and chemistry of trichloroacetate in the environmentChemosphere52355369Google Scholar
  166. Hoekstra, EJ, de, Leer EWB, Brinkman, UAT 1998aNatural formation of chloroform and brominated trihalomethanes in soilEnviron. Sci. Technol.3237243729Google Scholar
  167. Hoekstra, EJ, Verhagen, FJM, Field, JA, de Leer, EWB, Brinkman, UAT 1998bNatural production of chloroform by fungiPhytochem.499197Google Scholar
  168. Hohener, P, Werner, D, Balsiger, C, Pasteris, G 2003Worldwide occurrence and fate of chlorofluorocarbons in groundwaterCrit. Rev. Environ. Sci. Technol.33129Google Scholar
  169. Holliger, C, Schraa, G 1994Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteriaFEMS Microbiol Rev.15297305Google Scholar
  170. Holliger, C, Kengen, SWM, Schraa, G, Stams, AJM, Zehnder, AJ 1992aMethyl-coenzyme m reductase of Methanobacterium-thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethaneJ. Bacteriol.17444354443Google Scholar
  171. Holliger, C, Regeard, C, Diekert, G 2003Dehalogenation by anaerobic bacteriaHaggblom, MHBossert, ID eds. Dehalogenation: Microbial processes and environmental applications (pp 115–157)Kluwer Academic PressBostonGoogle Scholar
  172. Holliger, C, Schraa, G, Stams, AJM, Zehnder, AJB 1990Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteriaBiodegradat.1253256Google Scholar
  173. Holliger, C, Schraa, G, Stams, AJM, Zehnder, AJB 1993A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growthAppl. Environ. Microbiol.5929912997Google Scholar
  174. Holliger, C, Wohlfarth, G, Diekert, G 1998Reductive dechlorination in the energy metabolism of anaerobic bacteriaFEMS Microbiol. Rev.22383398Google Scholar
  175. Holliger, C, Schraa, G, Stupperich, E, Stams, AJM, Zehnder, AJB 1992bEvidence for the Involvement of corrinoids and factor-F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeriJ. Bacteriol.17444274434Google Scholar
  176. Hopkins, GD, McCarty, L. MP 1995Field evaluation of in situ aerobic co-metabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene and as the primary substratesEnviron. Sci. Technol.2916261637Google Scholar
  177. Hopkins, GD, Semprini, L, McCarty, PL 1993Microcosm and in-situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganismsAppl. Environ. Microbiol.5922772285Google Scholar
  178. Horber, C, Christiansen, N, Arvin, E, Ahring, BK 1998Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludgeAppl. Environ. Microbiol.6418601863Google Scholar
  179. Howard, PH, Boelthing, RS, Jarvis, WF, Meylan, WM, Michalenko, EM 1991Handbook of Environmental Degradation Rates. LewisChelseaMIGoogle Scholar
  180. Hu, JY, Wang, ZS, Ng, WJ, Ong, SL 1999Disinfection by-products in water produced by ozonation and chlorinationEnviron. Monitor. Assess.598193Google Scholar
  181. Hur, HG, Sadowsky, MJ, Wackett, LP 1994Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786 (Phg-2) via an engineered metabolic pathwayAppl. Environ. Microbiol.6041484154Google Scholar
  182. Hyman, MR, Ensign, SA, Rasche, ME, Arp, DJ 1992Degradation of hydrochlorofluorocarbons HCFCs by Nitrosomonas europaea Abstracts Gen. MeetingAm. Soc. Microbiol.92264Google Scholar
  183. Inguva, S, Shreve, GS 1999Biodegradation kinetics of trichloroethylene and 1,2-dichloroethane by Burkholderia (Pseudomonas) cepacia PR1(31) and Xanthobacter autotrophicus GJ10Int. Biodeterior. Biodegrad.435761Google Scholar
  184. ITRC1999Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices (ISB-3)Interstate Technology and Regulatory CouncilWashington, DCGoogle Scholar
  185. Jablonski, PE, Ferry, JG 1992Reductive dechlorination of trichloroethylene by the co-reduced Co dehydrogenase enzyme complex from Methanosarcina thermophilaFEMS Microbiol. Lett.965559Google Scholar
  186. Jacobs, MHJ, van denWijngaard, AJ, Pentenga, M, Janssen, DB 1991Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas spEur. J. Biochem.20212171222Google Scholar
  187. Jahng, DJ, Wood, TK 1994Trichloroethylene and chloroform degradation by a Methylosinus trichosporium OB3bAppl. Environ. Microbiol.6024732482Google Scholar
  188. James, MO, Cornett, R, Yan, Z, Henderson, GN, Stacpoole, PW 1997Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated ratsDrug Metab. Dispos.2512231227Google Scholar
  189. Janssen, DB, Pries, F, Vanderploeg, JR 1994Genetics and biochemistry of dehalogenating enzymesAnnu. Rev. Microbiol.48163191Google Scholar
  190. Janssen, DB, Scheper, A, Dijkhuizen, L, Witholt, B 1985Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ-10Appl. Environ. Microbiol.49673677Google Scholar
  191. Janssen, DB, Grobben, G, Hoekstra, R, Oldenhuis, R, Witholt, B 1988Degradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteriaAppl. Microbiol. Biotechnol.29392399Google Scholar
  192. Jensen HL (1957) Decomposition of chlorosubstituted aliphatic acids by soil bacteria. Can. J. Microbiol.Google Scholar
  193. Jin, G, Englande, AJ 1998Carbon tetrachloride biodegradation in a fixed-biofilm reactor and its kinetic studyWater Sci. Technol.38155162Google Scholar
  194. Jitnuyanont, P, Sayavedra-Soto, LA, Semprini, L 2001Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosmsBiodegradation.121122Google Scholar
  195. Kao, CM, Lei, SE 2000Using a peat biobarrier to remediate PCE/TCE contaminated aquifersWater Res.34835845Google Scholar
  196. Kasai, N, Tsujimura, K, Unoura, K, Suzuki, T 1990Degradation of 2,3-dichloro-1-propanol by a Pseudomonas spAgric. Biol. Chem.5431853190Google Scholar
  197. Kastner, M 1991Reductive Dechlorination of trichloroethylenes and tetrachloroethylenes depends on transition from aerobic to anaerobic conditionsAppl. Environ. Microbiol.5720392046Google Scholar
  198. Katsivela, E, Bonse, D, Kruger, A, Strompl, C, Livingston, A, Wittich, RM 1999An extractive membrane biofilm reactor for degradation of 1,3- dichloropropene in industrial waste waterAppl. Microbiol. Biotechnol.52853862Google Scholar
  199. Kearney, PC, Kaufman, DD, Vonendt, DW, Guardia, FS 1969TCA metabolism by soil microorganismsJ. Agri. Food Chem.17581584Google Scholar
  200. Kengen, SWM, Breidenbach, CG, Felske, A, Stams, AJM, Schraa, G, de, Vos WM 1999Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment cultureAppl. Environ. Microbiol.6523122316Google Scholar
  201. Keppler, F, Eiden, R, Niedan, V, Pracht, J, Scholer, HF 2000Halocarbons produced by natural oxidation processes during degradation of organic matterNature403298301Google Scholar
  202. Keppler, F, Borchers, R, Pracht, J, Rheinberger, S, Scholer, HF 2002Natural formation of vinyl chloride in the terrestrial environmentEnviron. Sci. Technol.3624792483Google Scholar
  203. Keuning, S, Janssen, DB, Witholt, B 1985Purification of and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ-10J. Bacteriol.163635639Google Scholar
  204. Khalil, MAK, Rasmussen, RA 1989The potential of soils as a sink of chlorofluorocarbons and other man-made chlorocarbonsGeophys. Res. Lett.16679682Google Scholar
  205. Khalil, MAK, Rasmussen, RA 2000Soil-atmosphere exchange of radioactively and chemically active gasesEnviron. Sci. Pollut. Res.77982Google Scholar
  206. Khalil, MAK, Rasmussen, RA, Wang, MX, Ren, L 1990Emissions of trace gases from chinese rice fields and biogas generators methane dinitrogen oxide carbon monoxide carbon dioxide chlorocarbons and hydrocarbonsChemosphere20207226Google Scholar
  207. Khindaria, A, Grover, TA, Aust, SD 1995Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporiumEnviron. Sci. Technol.29719725Google Scholar
  208. Kim, S, Picardal, FW 1999Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxidesEnviron. Toxicol. Chem.1821422150Google Scholar
  209. Kim, Y, Arp, DJ, Semprini, L 2000Chlorinated solvent cometabolism by butane-grown mixed cultureJ. Environ. Eng.-ASCE126934942Google Scholar
  210. Kim, Y, Arp, DJ, Semprini, L 2002Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed cultureBiotechnol. Bioeng.80498508Google Scholar
  211. Klecka, GM, Gonsior, SJ, Markham, DA 1990Biological transformations of 1,1,1-trichloroethane in subsurface soils and ground waterEnviron. Toxicol. Chem.914371452Google Scholar
  212. Klecka, GM, Carpenter, CL, Gonsior, SJ 1998Biological transformations of 1,2-dichloroethane in subsurface soils and groundwaterJ. Contam. Hydrol.34139154Google Scholar
  213. Kleopfer, RD, Easley, DM, B., HJB, Delhi, TG, Jackson, DE, Wurrey, CJ 1985Anaerobic degradation of trichloroethylene in soilEnviron. Sci. Technol.19277280Google Scholar
  214. Klier, NJ, West, RJ, Donberg, PA 1999Aerobic biodegradation of dichloroethylenes in surface and subsurface soilsChemosphere3811751188Google Scholar
  215. Koh, SC, Bowman, JP, Sayler, GS 1993Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68–1Appl. Environ. Microbiol.59960967Google Scholar
  216. Kohler-Straub, D, Leisinger, T 1995Dichloromethane as the sole carbon source for Hyphomicrobium sp strain DM2 under denitrifying conditions.Biodegrad.6229235Google Scholar
  217. Komatsu, T, Momonoi, K, Matsuo, T, Hanaki, K 1994Biotransformation of cis-1,2-dichloroethylene to ethylene and ethane under anaerobic conditionsWater Sci. Technol.307584Google Scholar
  218. Koob, M, Dekant, W 1992Biotransformation of the hexachlorobutadiene metabolites 1-(glutathione-S-yl)-pentachlorobutadiene and 1-(cystein-S-yl)-pentachlorobutadiene in the isolated perfused-rat-liverXenobiotica22125138Google Scholar
  219. Koons, BW, Baeseman, JL, Novak, PJ 2001Investigation of cell exudates active in carbon tetrachloride and chloroform degradationBiotechnol. Bioeng.741217Google Scholar
  220. Koziollek, P, Bryniok, D, Knackmuss, HJ 1999Ethene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chlorideArch. Microbiol.172240246Google Scholar
  221. Kromann, A, Ludvigsen, L, Albrechtsen, HJ, Christensen, TH, Ejlertsson, J, Svensson, BH 1998Degradability of chlorinated aliphatic compounds in methanogenic leachates sampled at eight landfillsWaste Manage. Res.165462Google Scholar
  222. Krone, UE, Thauer, RK 1992Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeriFEMS Microbiol. Lett.90201204Google Scholar
  223. Krone, UE, Laufer, K, Thauer, RK, Hogenkamp, HPC 1989Coenzyme-F430 as a possible catalyst for the reductive dehalogenation of chlorinated-C1 hydrocarbons in methanogenic bacteriaBiochem.281006110065Google Scholar
  224. Krone, UE, Thauer, RK, Hogenkamp, HPC, Steinbach, K 1991Reductive formation of carbon-monoxide from CCl4 and freon-11, freon-12, and freon-13 catalyzed by corrinoidsBiochem.3027132719Google Scholar
  225. Kuntz, RL, Brown, LR, Zappi, ME, French, WT 2003Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrousJ. Ind. Microbiol. Biotechnol.30651655Google Scholar
  226. Landa, AS, Sipkema, EM, Weijma, J, Beenackers, A, Dolfing, J, Janssen, DB 1994Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrateAppl. Environ. Microbiol.6033683374Google Scholar
  227. Landmeyer, JE, Bradley, PM, Thomas, JM 2000Biodegradation of disinfection byproducts as a potential removal process during aquifer storage recoveryJ. Am. Water Resour. Assoc.36861867Google Scholar
  228. Laturnus, F, Haselmann, KF, Borch, T, Gron, C 2002Terrestrial natural sources of trichloromethane (chloroform, CHCl3)–An overviewBiogeochem.60121139Google Scholar
  229. Lecloux, AJ 2003Scientific activities of Euro Chlor in monitoring and assessing naturally and man-made organohalogensChemosphere52521529Google Scholar
  230. Lee, BS, Bullister, JL, Whitney, FA 1999aChlorofluorocarbon CFC-11 and carbon tetrachloride removal in Saanich Inlet, an intermittently anoxic basinMar. Chem.66171185Google Scholar
  231. Lee, MD, Odom, JM, Buchanan, RJ 1998New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the fieldAnnu. Rev. Microbiol.52423452Google Scholar
  232. Lee, MD, Sehayek, L, Sleep, BE, Vandell, TD 1999bInvestigation and remediation of a 1,2-dichloroethane spill part II: Documentation of natural attenuationGround Water Monit. Remediat.198288Google Scholar
  233. Leisinger, T, Bader, R, Hermann, R, Schmidt-Appert, M, Vuilleumier, S 1994Microbes, enzymes and genes involved in dichloromethane utilizationBiodegradation5237248Google Scholar
  234. Lendvay, JM, Loffler, FE, Dollhopf, M, Aiello, MR, Daniels, G, Fathepure, BZ, Gebhard, M, Heine, R, Helton, R, Shi, J, Krajmalnik-Brown, R, Major, CL, Barcelona, MJ, Petrovskis, E, Hickey, R, Tiedje, JM, Adriaens, P 2003Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediationEnviron. Sci. Technol.3714221431Google Scholar
  235. Lesage, S, Brown, S, Hosler, KR 1992Degradation of chlorofluorocarbon-113 under anaerobic conditionsChemosphere2412251243Google Scholar
  236. Lesage, S, Brown, S, Millar, K 1996Vitamin B-12-catalyzed dechlorination of perchloroethylene present as residual DNAPLGround Water Monit. Remediat.167685Google Scholar
  237. Lesage, S, Jackson, RE, Priddle, MW, Riemann, PG 1990Occurrence and fate of organic-solvent residues in anoxic groundwater at the Gloucester landfill, CanadaEnviron. Sci. Technol.24559566Google Scholar
  238. Lesage, S, McBride, RA, Cureton, PM, Brown, S 1993Fate of organic-solvents in landfill leachates under simulated field conditions and in anaerobic microcosmsWaste Manage. Res.11215226Google Scholar
  239. Lewis, TA, Crawford, RL 1995Transformation of carbon-tetrachloride via sulfur and oxygen substitution by Pseudomonas spstrain KC. J. Bacteriol.17722042208Google Scholar
  240. Lewis, TA, Paszczynski, A, Gordon-Wylie, SW, Jeedigunta, S, Lee, CH, Crawford, RL 2001Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid)Environ. Sci. Technol.35552559Google Scholar
  241. Li, S, Wacket, LP 1992Trichloroethylene oxidation by toluene dioxygenaseBiochem. Biophys. Res. Commun.185443451Google Scholar
  242. Li, SY, Wackett, LP 1993Reductive dehalogenation by cytochrome P450(cam)–substrate- binding and catalysisBiochem.3293559361Google Scholar
  243. Lignell, R, Heinonen Tanski, H, Uusi Rauva, A 1984Degradation of trichloro acetic acid in soilActa Agriculturae Scandinavica3438Google Scholar
  244. Little, M, Williams, PA 1971Bacterial Halidohydrolase–purification, some properties and its modification by specific amino acid reagentsEur. J. Biochem.2199109Google Scholar
  245. Loffler, FE, Sun, Q, Li, JR, Tiedje, JM 200016S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides speciesAppl. Environ. Microbiol.6613691374Google Scholar
  246. Loffler, FE, Champine, JE, Ritalahti, KM, Sprague, SJ, Tiedje, JM 1997Complete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteriaAppl. Environ. Microbiol.6328702875Google Scholar
  247. Long, JL, Stensel, HD, Ferguson, JF, Strand, SE, Ongerth, JE 1993Anaerobic and aerobic treatment of chlorinated aliphatic- compoundsJ. Environ. Eng.-ASCE119300320Google Scholar
  248. Lontoh, S, Zahn, JA, DiSpirito, AA, Semrau, JD 2000Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenaseFEMS Microbiol. Lett.186109113Google Scholar
  249. Lorah, MM, Olsen, LD 1999Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: Field evidence of anaerobic biodegradationWater Resour. Res.3538113827Google Scholar
  250. Lovley, DR, Woodward, JC 1992Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soilsEnviron. Sci. Technol.26925929Google Scholar
  251. Magli, A, Rainey, FA, Leisinger, T 1995Acetogenesis from dichloromethane by a 2-component mixed culture comprising a novel bacteriumAppl. Environ. Microbiol.6129432949Google Scholar
  252. Magli, A, Wendt, M, Leisinger, T 1996Isolation and characterization of Dehalobacterium formicoaceticum gen nov sp nov, a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy.Arch. Microbiol.166101108Google Scholar
  253. Magli, A, Messmer, M, Leisinger, T 1998Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticumAppl. Environ. Microbiol.64646650Google Scholar
  254. Magnuson, JK, Stern, RV, Gossett, JM, Zinder, SH, Burris, DR 1998Reductive dechlorination of tetrachloroethene to ethene by two- component enzyme pathwayAppl. Environ. Microbiol.6412701275Google Scholar
  255. Malachowsky, KJ, Phelps, TJ, Teboli, AB, Minnikin, DE, White, DC 1994Aerobic mineralization of trichloroethylene, vinyl-chloride, and aromatic-compounds by Rhodococcus speciesAppl. Environ. Microbiol.60542548Google Scholar
  256. Mars, AE, Houwing, J, Dolfing, J, Janssen, DB 1996Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch cultureAppl. Environ. Microbiol.62886891Google Scholar
  257. Matucha, M, Forczek, ST, Gryndler, M, Uhlirova, H, Fuksova, K, Schroder, P 2003Trichloroacetic acid in Norway spruce/soil-system I Biodegradation in soil.Chemosphere50303309Google Scholar
  258. Maymo-Gatell, X, Chine, YT, Gossett, JM, Zinder, SH 1997Isolation of a bacterium that reductively dechlorinates tetrachloroethene to etheneScience27615681571CrossRefPubMedGoogle Scholar
  259. Maymo-Gatell, X, Anguish, T, Zinder, SH 1999Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195Appl. Environ. Microbiol.6531083113Google Scholar
  260. Maymo-Gatell, X, Nijenhuis, I, Zinder, SH 2001Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”Environ. Sci. Technol.35516521Google Scholar
  261. McAnulla, C, McDonald, IR, Murrell, JC 2001Methyl chloride utilising bacteria are ubiquitous in the natural environmentFEMS Microbiol. Lett.201151155Google Scholar
  262. McCarty, PL 1997Microbiology–Breathing with chlorinated solventsScience27615211522CrossRefPubMedGoogle Scholar
  263. McCarty, PL, Goltz, M, Hopkins, G, Dolan, M, Allan, JP, Kawakami, BT, Carrothers, TJ 1998Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injectionEnviron. Sci. Technol.3288100Google Scholar
  264. McCormick, ML, Bouwer, EJ, Adriaens, P 2002Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactionsEnviron. Sci. Technol.36403410Google Scholar
  265. McCulloch, A 2002Trichloroacetic acid in the environmentChemosphere47667686Google Scholar
  266. McDonald, IR, Doronina, NV, Trotsenko, YA, McAnulla, C, Murrell, JC 2001Hyphomicrobium chloromethanicum sp nov and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment.Int. J. Syst. Evol. Microbiol.51119122Google Scholar
  267. McDonald, IR, Warner, KL, McAnulla, C, Woodall, CA, Oremland, RS, Murrell, JC 2002A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecologyEnviron. Microbiol.4193203Google Scholar
  268. Messmer, M, Reinhardt, S, Wohlfarth, G, Diekert, G 1996Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assayArch. Microbiol.1651825Google Scholar
  269. Meusel, M, Rehm, HJ 1993Biodegradation of dichloroacetic acid by freely suspended and adsorptive immobilized Xanthobacter autotrophicus GJ10 in soilAppl. Microbiol. Biotechnol.40165171Google Scholar
  270. Middeldorp, PJM, Luijten, MLGC, van de Pas, BA, van Eekert, MHA, Kengen, SWM, Schraa, G, Stams, AJM 1999Anaerobic microbial reductive dehalogenation of chlorinated ethenesBioremediat. J.3151169Google Scholar
  271. Mikesell, MD, Boyd, SA 1990Dechlorination of chloroform by Methanosarcina strainsAppl. Environ. Microbiol.5611981201Google Scholar
  272. Miller, E, Wohlfarth, G, Diekert, G 1998Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-SArch. Microbiol.169497502Google Scholar
  273. Modesto, P, Amerlynck, P, Nyns, EJ, Naveau, HP 1992Acclimatization of a methanogenic consortium to polychlorinated compounds in a fixed film stationary bed reactorWater Sci. Technol.25265273Google Scholar
  274. Moghaddam, AP, Abbas, R, Fisher, JW, Stavrou, S, Lipscomb, JC 1996Formation of dichloroacetic acid by rat and mouse gut microflora, an in vitro studyBiochem. Biophys. Res. Commun.228639645Google Scholar
  275. Nelson, YM, Jewell, WJ 1993Vinyl-chloride biodegradation with methanotrophic attached filmsJ. Environ. Eng.-ASCE119890907Google Scholar
  276. Newman, LM, Wackett, LP 1991Fate of 2,2,2-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene oxidation by methanotrophsAppl. Environ. Microbiol.5723992402Google Scholar
  277. Newman, LM, Wackett, LP 1997Trichloroethylene oxidation by purified toluene 2-monooxygenase: Products, kinetics, and turnover-dependent inactivationJ. Bacteriol.1799096Google Scholar
  278. Neumann, A, Wohlfarth, G, Diekert, G 1995Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivoransArch. Microbiol.163276281Google Scholar
  279. Neumann, A, Wohlfarth, G, Diekert, G 1996Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivoransJ. Biol. Chem.2711651516519Google Scholar
  280. Nielsen, PH, Holm, PE, Christensen, TH 1992A field method for determination of groundwater and groundwater-sediment associated potentials for degradation of xenobiotic organic-compoundsChemosphere25449462Google Scholar
  281. Nielsen, RB, Keasling, JD 1999Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwaterBiotechnol. Bioeng.62160165Google Scholar
  282. Okeke, BC, Chang, YC, Hatsu, M, Suzuki, T, Takamizawa, K 2001Purification, cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1Can. J. Microbiol.47448456Google Scholar
  283. Oldenhuis, R, Oedzes, JY, Vanderwaarde, JJ, Janssen, DB 1991Kinetics of chlorinated-hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethyleneAppl. Environ. Microbiol.57714Google Scholar
  284. Oldenhuis, R, Vink, RLJM, Janssen, D, Witholt, B 1989Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenaseAppl. Environ. Microbiol.5528192826Google Scholar
  285. Olivas, Y, Dolfing, J, Smith, GB 2002The influence of redox potential on the degradation of halogenated methanesEnviron. Toxicol. Chem.21493499Google Scholar
  286. Oremland, RS, Lonergan, DJ, Culbertson, CW, Lovley, DR 1996Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sedimentsAppl. Environ. Microbiol.6218181821Google Scholar
  287. Ou, LT, Thomas, JE, Chung, KY, Ogram, AV 2001Degradation of 1,3-dichloropropene by a soil bacterial consortium and Rhodococcus sp AS2C isolated from the consortium.Biodegradation123947Google Scholar
  288. Ou, LT, Chung, KY, Thomas, JE, Obreza, TA, Dickson, DW 1995Degradation of 1,3–dichloropropene (1,3-D) in soils with different histories of field applications of 1,3-DJ. Nematol.27249257Google Scholar
  289. Parsons, F, Wood, PR, DeMarco, J 1984Transformation of tetrachloroethene and trichloroethene in microcosms and groundwaterJ. Am. Water Works Assoc.5659Google Scholar
  290. Pavlostathis, SG, Zhuang, P 1991Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface SoilAppl. Microbiol. Biotechnol.36416420Google Scholar
  291. Pavlostathis, SG, Zhuang, P 1993Reductive dechlorination of chloroalkenes in microcosms developed with a field contaminated soilChemosphere27585595Google Scholar
  292. Peters, RJB, Erkelens, C, Deleer, EWB, Degalan, L 1991The analysis of halogenated acetic-acids in Dutch drinking-waterWat. Res.25473477Google Scholar
  293. Phelps, TJ, Malachowsky, K, Schram, RM, White, DC 1991Aerobic mineralization of vinyl-chloride by a bacterium of the order actinomycetalesAppl. Environ. Microbiol.5712521254Google Scholar
  294. Picardal, FW, Arnold, RG, Couch, H, Little, AM, Smith, ME 1993Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200Appl. Environ. Microbiol.5937633770Google Scholar
  295. Poelarends, GJ, Wilkens, M, Larkin, MJ, van Elsas, JD, Janssen, DB 1998Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170Appl. Environ. Microbiol.6429312936Google Scholar
  296. Rasche, ME, Hyman, MR, Arp, DJ 1991Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea cometabolic inactivation of ammonia monooxygenase and substrate specificityAppl. Environ. Microbiol.5729862994Google Scholar
  297. Rasche, ME, Hicks, RE, Hyman, MR, Arp, DJ 1990Oxidation of monohalogenated ethanes and n chlorinated alkanes by whole cells of Nitrosomonas europaeaJ. Bacteriol.17253685373Google Scholar
  298. Reinhard, M, Curtis, GP, Kriegman, MM 1990Transformations of carbon-tetrachloride and hexachloroethane induced by natural sediments and minerals under anaerobic and aerobic conditionsENVR Abstr. Pap. Am. Chem. Soc.19996Google Scholar
  299. Rhee, E, Speece, RE 2000Probing of maximal biodegradation rates of methylene chloride, carbon tetrachloride, and 1,1,1-trichloroethane in methanogenic processesEnviron. Technol.21147156Google Scholar
  300. Richards, DJ, Shieh, WK 1986Biological fate of organic priority pollutants in the aquatic environmentWater Res.2010771090Google Scholar
  301. Ridder, IS, Rozeboom, HJ, Kingma, J, Janssen, DB, Dijkstra, BW 1995Crystallization and preliminary X-ray analysis of l-2-haloacid dehalogenase from Xanthobacter-autotrophicus GJ10Protein Sci.426192620Google Scholar
  302. Roberts, TR, Stoydin, G 1976The degradation of (Z) and (E)-1,3-dichloropropenes and 1,2-dichloropropane in soilJ. Pest. Sci.7325335Google Scholar
  303. Rugge, K, Bjerg, PL, Pedersen, JK, Mosbaek, H, Christensen, TH 1999An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark 1. Experimental setup, tracer movement, and fate of aromatic and chlorinated compounds.Water Resour. Res.3512311246Google Scholar
  304. Ryoo, D, Shim, H, Canada, K, Barbieri, P, Wood, TK 2000Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1Nat. Biotechnol.18775778Google Scholar
  305. Saeki, S, Mukaia, S, Iwasaki, K, Yagi, O 1999Production of trichloroacetic acid, trichloroethanol and dichloroacetic acid from trichloroethylene degradation by Methylocystis sp. strain M.Biocatal. Biotransform.17347357Google Scholar
  306. Schaefer, JK, Oremland, RS 1999Oxidation of methyl halides by the facultative methylotroph strain IMB-1Appl. Environ. Microbiol.6550355041Google Scholar
  307. Schafer, A, Bouwer, EJ 2000Toluene induced cometabolism of cis-1,2-dichloroethylene and vinyl chloride under conditions expected down gradient of a permeable Fe(0) barrierWater Res.3433913399Google Scholar
  308. Schlotelburg, C, Wintzingerode, C, Hauck, R, Wintzingerode, F, Hegemann, W, Gobel, UB 2002Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1,2-dichloropropaneFEMS Microbiol. Ecol.39229237Google Scholar
  309. Schneider, B, Muller, R, Frank, R, Lingens, F 1993Site-directed mutagenesis of the 2-haloalkanoic acid dehalogenase-i gene from Pseudomonas sp. strain cbs3 and its effect on catalytic activity.Biol. Chem. Hoppe-Seyler374489496Google Scholar
  310. Schroder, HF 1987Chlorinated hydrocarbons in biological sewage purification–fate and difficulties in balancingWater Sci. Technol.19429438Google Scholar
  311. Schumacher, W, Holliger, C 1996The proton electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in ‘Dehalobacter restrictus’J. Bacteriol.17823282333Google Scholar
  312. Schumacher, W, Holliger, C, Zehnder, AJB, Hagen, WR 1997Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictusFEBS Lett.409421425Google Scholar
  313. Semprini, L 1997Strategies for the aerobic co-metabolism of chlorinated solventsCurr. Opin. Biotechnol.8296308Google Scholar
  314. Semprini L, Hopkins GD, Roberts PV & McCarty PL (1990) In-situ biotransformation of carbon tetrachloride, 1,1,1-trichloroethane, Freon-11, and Freon-113 under anoxic conditions. In: Anonymous (Ed) AGU 1990 Fall Meeting. (pp 1324). American Geophysical Union, Washington, DC, United States Google Scholar
  315. Semprini, L, Hopkins, GD, McCarty, PL, Roberts, PV 1992In situ transformation of carbon-tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditionsEnviron. Sci. Technol.2624542461Google Scholar
  316. Shurtliff, MM, Parkin, GF, Weathers, LJ, Gibson, DT 1996Biotransformation of trichloroethylene by a phenol-induced mixed cultureJ. Environ. Eng.-ASCE122581589Google Scholar
  317. Slater, JH, Bull, AT, Hardman, DJ 1997Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanesAdv. Microb. Physiol.38133176Google Scholar
  318. Small, FJ, Tilley, JK, Ensign, SA 1995Characterization of a new pathway for epichlorohydrin degradation by whole cells of Xanthobacter strain PY2Appl. Environ. Microbiol.6115071513Google Scholar
  319. Smidt, H, Akkermans, ADL, Oost, J, Vos, WM 2000Halorespiring bacteria-molecular characterization and detectionEnzyme Microb. Technol.27812820Google Scholar
  320. Snoeyenbos-West, O, Praagh, CG, Lovley, DR 2001Trichlorobacter thiogenes should be renamed as a Geobacter speciesAppl. Environ. Microbiol.6710201021Google Scholar
  321. Sonier, DN, Duran, NL, Smith, GB 1994Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic-compoundsAppl. Environ. Microbiol.6045674572Google Scholar
  322. Sponza, DT 2002Simultaneous granulation, biomass retainment and carbon tetrachloride (CT) removal in an upflow anaerobic sludge blanket (UASB) reactorProcess Biochem.3710911101Google Scholar
  323. Stirling, DI, Dalton, H 1979The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath)FEMS Microbiol. Lett.5315318Google Scholar
  324. Strand, SE, Bjelland, MD, Stensel, HD 1990Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane-oxidizing bacteriaRes. J. Water Poll. Control Fed.62124129Google Scholar
  325. Stucki, G, Leisinger, T 1983Bacterial-degradation of 2-chloroethanol proceeds via 2-chloroacetic acidFEMS Microbiol. Lett.16123126Google Scholar
  326. Stucki, G, Thuer, M 1994Increased removal capacity for 1,2-dichloroethane by biological modification of the granular activated carbon processAppl. Microbiol. Biotechnol.42167172Google Scholar
  327. Stucki, G, Thuer, M 1995Experiences of a large scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatmentEnv. Sci. Technol.2923392345Google Scholar
  328. Stucki, G, Krebser, U, Leisinger, T 1983Bacterial growth on 1,2-dichloroethaneExperientia Basel3912711273Google Scholar
  329. Stucki, G, Thuer, M, Bentz, R 1992Biological degradation of 1,2-dichloroethane under groundwater conditionsWater Res.26273278Google Scholar
  330. Sun, BL, Griffin, BM, Ayala-del-Rio, HL, Hashsham, SA, Tiedje, JM 2002Microbial dehalorespiration with 1,1,1-trichloroethaneScience29810231025Google Scholar
  331. Suyama, A, Yamashita, M, Yoshino, S, Furukawa, K 2002Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51.J. Bacteriol.18434193425Google Scholar
  332. Suyama, A, Iwakiri, R, Kai, K, Tokunaga, T, Sera, N, Furukawa, K 2001Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes.Biosci. Biotechnol. Biochem.6514741481Google Scholar
  333. Swoboda-Colberg, NG 1995Chemical contamination of the environment: Sources, types and fate of synthetic organic chemicalsYoung, LYCerniglia, C eds. Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 27–74)John Wiley & SonsNew YorkGoogle Scholar
  334. Tanaka, K 1997Abiotic degradation of tetrachloromethane in anaerobic culture mediaJ. Ferment. Bioeng.83118120Google Scholar
  335. Tandol, V, Distefano, TD, Bowser, PA, Gossett, JM, Zinder, SH 1994Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment cultureEnviron. Sci. Technol.28973979Google Scholar
  336. Terzenbach, DP, Blaut, M 1994Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteriaFEMS Microbiol. Lett.123213218Google Scholar
  337. Tesoriero, AJ, Loffler, FE, Liebscher, H 2001Fate and origin of 1,2-dichloropropane in an unconfined shallow aquiferEnviron. Sci. Technol.35455461Google Scholar
  338. Tiedje, JM 1993Bioremediation from an ecological perspective. In: In Situ Bioremediation: When Does it Work?National Academy PressWashington, DC110120Google Scholar
  339. Traunecker, J, Preuss, A, Diekert, G 1991Isolation and characterization of a methyl-chloride utilizing, strictly anaerobic bacteriumArch. Microbiol.156416421Google Scholar
  340. Tsien, HC, Brusseau, GA, Hanson, RS, Wackett, LP 1989Biodegradation of trichloroethylene by Methylosinus trichosporium OB3bAppl. Environ. Microbiol.5531553161Google Scholar
  341. Agteren, MH, Keuning, S, Janssen, DB 1998Handbook of Biodegradation and Biological Treatment of Hazardous Organic Compounds.Kluwer Academic PublishersDordrecht, The NetherlandsGoogle Scholar
  342. Pas, BA, Gerritse, J, Vos, WM, Schraa, G, Stams, AJM 2001Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1Arch. Microbiol.176165169Google Scholar
  343. Wijngaard, AJ, Janssen, DB, Witholt, B 1989Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sedimentJ. Gen. Microbiol.13521992208Google Scholar
  344. Wijngaard, AJ, Kamp, KWHJ, Ploeg, J, Pries, F, Kazemier, B, Janssen, DB 1992Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophsAppl. Environ. Microbiol.58976983Google Scholar
  345. Dijk, H 1980Dissipation rates in soil of 1,2-dichloropropane and 1,3- and 2,3-dichloropropenesJ. Pest. Sci.11625632Google Scholar
  346. Eekert, MHA, Stams, AJM, Field, JA, Schraa, G 1999Gratuitous dechlorination of chloroethanes by methanogenic granular sludgeAppl. Microbiol. Biotechnol.514652Google Scholar
  347. Eekert, MHA, Schroder, TJ, Stams, AJM, Schraa, G, Field, JA 1998Degradation and fate of carbon tetrachloride in unadapted methanogenic granular sludgeAppl. Environ. Microbiol.6423502356Google Scholar
  348. Eekert, MHA, Schroder, TJ, Rhee, A, Stams, AJM, Schraa, G, Field, JA 2001Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortiumBioresour. Technol.77163170Google Scholar
  349. Hylckama Vlieg, JET, Koning, W, Janssen, DB 1996Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatographyAppl. Environ. Microbiol.6233043312Google Scholar
  350. Pee, KH, Unversucht, S 2003Biological dehalogenation and halogenation reactionsChemosphere52299312Google Scholar
  351. Vancheeswaran, S, Hyman, MR, Semprini, L 1999Anaerobic biotransformation of trichlorofluoroethene in groundwater microcosmsEnviron. Sci. Technol.3320402045Google Scholar
  352. Vandenbergh, PA, Kunka, BS 1988Metabolism of volatile chlorinated aliphatic-hydrocarbons by Pseudomonas fluorescensAppl. Environ. Microbiol.5425782579Google Scholar
  353. Vannelli, T, Logan, M, Arciero, DM, Hopper, AB 1990Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaeaAppl. Environ. Microbiol.5611691171Google Scholar
  354. Veenstra, JN, Sanders, DA, Johan, J 1999Removal of air-phase 1,2-dichloroethane in a biofilter: A comparison of cometabolism using pre-loaded phenol and concurrent phenol additionJ. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng.3415691589Google Scholar
  355. Verce, MF, Freedman, DL 2000Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas spBiotechnol. Bioeng.71274285Google Scholar
  356. Verce, MF, Ulrich, RL, Freedman, DL 2000Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditionsAppl. Environ. Microbiol.6635353542Google Scholar
  357. Verce, MF, Ulrich, RL, Freedman, DL 2001Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene.Environ. Sci. Technol.3542424251Google Scholar
  358. Verhagen, C, Smit, E, Janssen, DB, VanElsas, JD 1995Bacterial dichloropropene degradation in soil; Screening of soils and involvement of plasmids carrying the DhlA geneSoil Biol. Biochem.2715471557Google Scholar
  359. Vink, JPM, Groen, KP 1992Mathematical descriptions of accelerated transformation of 1,3-dichloropropene in soil - A microbiological assessmentSci. Total Environ.123591603Google Scholar
  360. Vogel, T, McCarty, PL 1985Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditionsAppl. Environ. Microbiol.4910801083Google Scholar
  361. Vogel, T, Criddle, CS, McCarty, PL 1987Transformation of halogenated aliphatic compoundsEnviron. Sci. Technol.21722736Google Scholar
  362. Vogel, TM, McCarty, PL 1987Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditionsEnviron. Sci. Technol.2112081213Google Scholar
  363. von, Wintzingerode F, Schlotelburg, C, Hauck, R, Hegemann, W, Gobel, UB 2001Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropaneFEMS Microbiol. Ecol.35189196Google Scholar
  364. Wacket, LP, Gibson, DT 1988Degradation of trichlotoethylene by toluene dioxygenase in whole cells studies with Pseudomonas putida F1Appl. Environ. Microbiol.5417031708Google Scholar
  365. Wackett, LP 1995Bacterial co-metabolism of halogenated organic compoundsYoung, LYCerniglia, C eds. Microbial Transformation and Degradation of Toxic Organic ChemicalsJohn Wiley & SonsNew York217241Google Scholar
  366. Wackett, LP, Brusseau, GA, Householder, SR, Hanson, RS 1989Survey of microbial oxygenases trichloroethylene degradation by propane-oxidizing bacteriaAppl. Environ. Microbiol.5529602964Google Scholar
  367. Wackett, LP, Sadowsky, MJ, Newman, LM, Hur, HG, Li, SY 1994Metabolism of polyhalogenated compounds by a genetically-engineered bacteriumNature368627629Google Scholar
  368. Weightman, AL, Weightman, AJ, Slater, JH 1992Microbial dehalogenation of trichloroacetic acidWorld J. Microbiol. Biotechnol.8512518Google Scholar
  369. WHO1984Environmental Health Criteria 33: EpichlorohydrinWorld Health OrganizationGeneva, SwitzerlandGoogle Scholar
  370. WHO1990Vinylidene Chloride. Environmental Health Criteria 100World Health OrganizationGeneva, SwitzerlandGoogle Scholar
  371. Wilcox, DW, Autenrieth, RL, Bonner, JS 1995Propane-induced biodegradation of vapor-phase trichloroethyleneBiotechnol. Bioeng.46333342Google Scholar
  372. Wild, AP, Winkelbauer, W, Leisinger, T 1995Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed bed reactorBiodegrad.6309318Google Scholar
  373. Winterton, N 2000Chlorine: the only green element - towards a wider acceptance of its role in natural cyclesGreen Chem.2173225Google Scholar
  374. Witt, ME, Klecka, GM, Lutz, EJ, Ei, TA, Grosso, NR, Chapelle, FH 2002Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistryJ. Contam. Hydrol.576180Google Scholar
  375. Yagi, O, Hashimoto, A, Iwasaki, K, Nakajima, M 1999Aerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil.Appl. Environ. Microbiol.6546934696Google Scholar
  376. Yu, P, Welander, T 1995Growth of an aerobic bacterium with trichloroacetic-acid as the sole source of energy and carbonAppl. Microbiol. Biotechnol.42769774Google Scholar
  377. Yu, ZT, Smith, GB 1997Chloroform dechlorination by a wastewater methanogenic consortium and cell extracts of Methanosarcina barkeriWater Res.3118791886Google Scholar
  378. Zou, SW, Stensel, HD, Ferguson, JF 2000Carbon tetrachloride degradation: Effect of microbial growth substrate and vitamin B-12 contentEnviron. Sci. Technol.3417511757Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of Chemical and Environmental EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations