Review of Quantitative Finance and Accounting

, Volume 47, Issue 4, pp 1187–1220 | Cite as

A PIN per day shows what news convey: the intraday probability of informed trading

  • Thomas PöppeEmail author
  • Michael Aitken
  • Dirk Schiereck
  • Ingo Wiegand
Original Research


This paper develops a new intraday estimation procedure for the sequential microstructure trading model initially proposed by Easley et al. (Rev Financ Stud 10:805–835, 1997a). Using a full year of intraday trading data for the top 100 German stocks, we demonstrate how the new estimation procedure eliminates or significantly reduces the shortcomings of the original approach in recent, high-frequency trading environments. We slice a trading day in buckets of several minutes’ length to obtain one estimate of the composite variable probability of informed trading (PIN) per day. This approach makes PIN applicable in short horizon event studies. Convergence rates are above 95 % even for the most liquid stocks and the model’s underlying assumptions of independence for the arrival of traders and information events are fulfilled to a much higher degree than in the original approach. An empirical application in an event study type setting demonstrates how official announcements stipulated in German insider trading legislation significantly reduce information asymmetry upon public disclosure.


Capital markets Probability of informed trading Information asymmetry High-frequency trading Insider trading regulation 

JEL Classification



  1. Akay O, Cyree KB, Griffiths MD, Winters DB (2012) What does PIN identify? Evidence from the T-bill market. J Financ Mark 15:29–46. doi: 10.1016/j.finmar.2011.08.005 CrossRefGoogle Scholar
  2. Aktas N, Debodt E, Declerck F, Vanoppens H (2007) The PIN anomaly around M&A announcements. J Financ Mark 10:169–191. doi: 10.1016/j.finmar.2006.09.003 CrossRefGoogle Scholar
  3. Andersen TG, Bondarenko O (2014) VPIN and the flash crash. J Financ Mark 17:1–46. doi: 10.1016/j.finmar.2013.05.005 CrossRefGoogle Scholar
  4. Barber BM, Odean T (2008) All that glitters: the effect of attention and news on the buying behavior of individual and institutional investors. Rev Financ Stud 21:785–818. doi: 10.1093/Rfs/Hhm079 CrossRefGoogle Scholar
  5. Benos E, Jochec M (2007) Testing the PIN variable. SSRN 933211:1–22Google Scholar
  6. Bhattacharya U, Daouk H (2002) The world price of insider trading. J Finance 57:75–108. doi: 10.1111/1540-6261.00416 CrossRefGoogle Scholar
  7. Boehmer E, Grammig J, Theissen E (2007) Estimating the probability of informed trading—Does trade misclassification matter? J Financ Mark 10:26–47CrossRefGoogle Scholar
  8. Busse J, Green TC (2002) Market efficiency in real time. J Financ Econ 65:415–437. doi: 10.1016/S0304-405X(02)00148-4 CrossRefGoogle Scholar
  9. Chang C, Lin E (2014) On the determinants of basis spread for Taiwan Index futures and the role of speculators. Rev Pac Basin Financ Mark Policies 17:1450002. doi: 10.1142/S0219091514500027 CrossRefGoogle Scholar
  10. Cheung W, Liu K (2014) A comparison of China’s main board and growth enterprise market board—market microstructure approach. Rev Pac Basin Financ Mark Policies. doi: 10.1142/S0219091514500076 Google Scholar
  11. Collin-Dufresne P, Fos V (2012) Do prices reveal the presence of informed trading? NBER No. 18452Google Scholar
  12. Duarte J, Young L (2008) Why is PIN priced? J Financ Econ 91:119–138. doi: 10.1016/j.jfineco.2007.10.008 Google Scholar
  13. Dufour A, Engle RF (2000) Time and the price impact of a trade. J Finance 55:2467–2498. doi: 10.1111/0022-1082.00297 CrossRefGoogle Scholar
  14. Easley D, O’Hara M (1987) Price, trade size, and information in securities markets. J Financ Econ 19:69–90. doi: 10.1016/0304-405x(87)90029-8 CrossRefGoogle Scholar
  15. Easley D, O’Hara M (1992) Time and the process of security price adjustment. J Finance 47:577. doi: 10.2307/2329116 CrossRefGoogle Scholar
  16. Easley D, Kiefer NM, O’Hara M, Paperman JB (1996) Liquidity, information, and infrequently traded stocks. J Finance 51:1405–1436. doi: 10.2307/2329399 CrossRefGoogle Scholar
  17. Easley D, Kiefer NM, O’Hara M (1997a) One day in the life of a very common stock. Rev Financ Stud 10:805–835. doi: 10.1093/rfs/10.3.805 CrossRefGoogle Scholar
  18. Easley D, Kiefer NM, O’Hara M (1997b) The information content of the trading process. J Empir Finance 4:159–186. doi: 10.1016/S0927-5398(97)00005-4 CrossRefGoogle Scholar
  19. Easley D, O’Hara M, Paperman JB (1998) Financial analysts and information-based trade. J Financ Mark 1:175–201. doi: 10.1016/S1386-4181(98)00002-0 CrossRefGoogle Scholar
  20. Easley D, O’Hara M, Saar G (2001) How stock splits affect trading: a microstructure approach. J Financ Quant Anal 36:25–51. doi: 10.2307/2676196 CrossRefGoogle Scholar
  21. Easley D, Hvidkjaer S, O’Hara M (2002) Is information risk a determinant of asset returns? J Finance 57:2185–2221CrossRefGoogle Scholar
  22. Easley D, Engle RF, O’Hara M, Wu L (2008) Time-varying arrival rates of informed and uninformed trades. J Financ Econom 6:171–207. doi: 10.1093/jjfinec/nbn003 CrossRefGoogle Scholar
  23. Easley D, Hvidkjaer S, O’Hara M (2010) Factoring information into returns. J Financ Quant Anal 45:1. doi: 10.1017/S0022109010000074 CrossRefGoogle Scholar
  24. Easley D, Lopez de Prado M, O’Hara M (2012) Flow toxicity and liquidity in a high-frequency world. Rev Financ Stud 25:1457–1493. doi: 10.1093/rfs/hhs053 CrossRefGoogle Scholar
  25. Ellis K, Michaely R, O’Hara M (2000) The accuracy of trade classification rules: evidence from Nasdaq. J Financ Quant Anal 35:529–551. doi: 10.2307/2676254 CrossRefGoogle Scholar
  26. Fernandes N, Ferreira MA (2009) Insider trading laws and stock price informativeness. Rev Financ Stud 22:1845–1887. doi: 10.1093/rfs/hhn066 CrossRefGoogle Scholar
  27. Fuller KP, Ness BF, Ra Ness (2009) Is information risk priced for NASDAQ-listed stocks? Rev Quant Finance Account 34:301–312. doi: 10.1007/s11156-009-0131-1 CrossRefGoogle Scholar
  28. Grammig J, Schiereck D, Theissen E (2001) Knowing me, knowing you: trader anonymity and informed trading in parallel markets. J Financ Mark 4:385–412CrossRefGoogle Scholar
  29. Green TC (2006) The value of client access to analyst recommendations. J Financ Quant Anal 41:1–24CrossRefGoogle Scholar
  30. Grossman SJ, Stiglitz JE (1980) On the impossibility of informationally efficient markets. Am Econ Rev 70:393–408Google Scholar
  31. Hachmeister A, Schiereck D (2010) Dancing in the dark: post-trade anonymity, liquidity and informed trading. Rev Quant Finance Account 34:145–177. doi: 10.1007/s11156-010-0165-4 CrossRefGoogle Scholar
  32. Hasbrouck J (1991) Measuring the information content of stock trades. J Finance 46:179–207. doi: 10.2307/2328693 CrossRefGoogle Scholar
  33. Heidle HG, Huang RD (2002) Information-based trading in dealer and auction markets: an analysis of exchange listings. J Financ Quant Anal 37:391–424. doi: 10.2307/3594986 CrossRefGoogle Scholar
  34. Huang RD, Stoll HR (1997) The components of the bid-ask spread: a general approach. Rev Financ Stud 10:995–1034. doi: 10.2307/2962337 CrossRefGoogle Scholar
  35. Jackson D (2013) Estimating PIN for firms with high levels of trading. J Empir Finance 24:116–120. doi: 10.1016/j.jempfin.2013.10.001 CrossRefGoogle Scholar
  36. Kim ST, Lin JC, Slovin MB (1997) Market structure, informed trading, and analysts’ recommendations. J Financ Quant Anal 32:507–524. doi: 10.2307/2331235 CrossRefGoogle Scholar
  37. Kumar R, Popescu M (2014) The implied intra-day probability of informed trading. Rev Quant Finance Account 42:357–371. doi: 10.1007/s11156-013-0345-0 CrossRefGoogle Scholar
  38. Lambert RA, Leuz C, Verrecchia RE (2012) Information asymmetry, information precision, and the cost of capital. Rev Finance 16:1–29. doi: 10.1093/rof/rfr014 CrossRefGoogle Scholar
  39. Lee CMC, Ready MJ (1991) Inferring trade direction from intraday data. J Finance 46:733–746. doi: 10.2307/2328845 CrossRefGoogle Scholar
  40. Lei Q, Wu G (2005) Time-varying informed and uninformed trading activities. J Financ Mark 8:153–181. doi: 10.1016/j.finmar.2004.09.002 CrossRefGoogle Scholar
  41. Luo M, Chen T, Yan I (2014) Price informativeness and institutional ownership: evidence from Japan. Rev Quant Finance Account 42:627–651. doi: 10.1007/s11156-013-0355-y CrossRefGoogle Scholar
  42. Muntermann J, Guettler A (2007) Intraday stock price effects of ad hoc disclosures: the German case. J Int Financ Mark Inst Money 17:1–24. doi: 10.1016/j.intfin.2005.08.003 CrossRefGoogle Scholar
  43. Nyholm K (2003) Inferring the private information content of trades: a regime-switching approach. J Appl Econom 18:457–470. doi: 10.1002/jae.707 CrossRefGoogle Scholar
  44. Patell JM, Wolfson MA (1984) The intraday speed of adjustment of stock prices to earnings and dividend announcements. J Financ Econ 13:223–252. doi: 10.1016/0304-405x(84)90024-2 CrossRefGoogle Scholar
  45. Tay A, Ting C, Tse YK, Warachka M (2009) Using high-frequency transaction data to estimate the probability of informed trading. J Financ Econom 7:288–311. doi: 10.1093/jjfinec/nbp005 CrossRefGoogle Scholar
  46. Vega C (2006) Stock price reaction to public and private information. J Financ Econ 82:103–133. doi: 10.1016/j.jfineco.2005.07.011 CrossRefGoogle Scholar
  47. William Lin H-W, Ke W-C (2011) A computing bias in estimating the probability of informed trading. J Financ Mark 14:625–640. doi: 10.1016/j.finmar.2011.03.001 CrossRefGoogle Scholar
  48. Wuensche O, Theissen E, Grammig J (2011) Time and the price impact of a trade: a structural approach. SSRN. doi: 10.2139/ssrn.968241 Google Scholar
  49. Yan Y, Zhang S (2012) An improved estimation method and empirical properties of the probability of informed trading. J Bank Finance 36:454–467. doi: 10.1016/j.jbankfin.2011.08.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thomas Pöppe
    • 1
    Email author
  • Michael Aitken
    • 2
  • Dirk Schiereck
    • 1
  • Ingo Wiegand
    • 3
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Capital Markets CRC Ltd.The RocksAustralia
  3. 3.Stanford Graduate School of BusinessStanford UniversityStanfordUSA

Personalised recommendations