Forecasting time-varying covariance with a range-based dynamic conditional correlation model

Original Research

Abstract

This paper proposes a range-based dynamic conditional correlation (DCC) model combined by the return-based DCC model and the conditional autoregressive range (CARR) model. The substantial gain in efficiency of volatility estimation can boost the accuracy for estimating time-varying covariances. As to the empirical study, we use the S&P 500 stock index and the 10-year treasury bond futures to examine both in-sample and out-of-sample results for six models, including MA100, EWMA, CCC, BEKK, return-based DCC, and range-based DCC. Of all the models considered, the range-based DCC model is largely supported in estimating and forecasting the covariance matrices.

Keywords

CARR DCC Dynamic covariance Range Volatility 

JEL Classification

C1 C5 G11 

Notes

Acknowledgments

We are greatful indebted to Cheng F. Lee, the editor and the anonymous referees for many insightful comments. The first author, R. Y. Chou was supported by project NSC 97-41-H-001-014 for part of the research in this article. The corresponding author, C.-C. Wu also gratefully acknowledge the financial support from the National Science Council (NSC: 96-2416-H-003-MY2).

References

  1. Alizadeh S, Brandt M, Diebold F (2002) Range-based estimation of stochastic volatility models. J Finance 57(3):1047–1091. doi: 10.1111/1540-6261.00454 CrossRefGoogle Scholar
  2. Andersen T, Bollerslev T, Diebold F, Ebens H (2001) The distribution of realized stock return volatility. J Financ Econ 61(1):43–76. doi: 10.1016/S0304-405X(01)00055-1 CrossRefGoogle Scholar
  3. Bollerslev T (1990) Modeling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev Econ Stat 72(3):498–505. doi: 10.2307/2109358 CrossRefGoogle Scholar
  4. Bollerslev T, Engle R, Wooldridge JM (1988) A capital asset pricing model with time varying covariances. J Polit Econ 96(1):116–131. doi: 10.1086/261527 CrossRefGoogle Scholar
  5. Bollerslev T, Chou RY, Kroner K (1992) ARCH modeling in finance: a review of the theory and empirical evidence. J Econom 52(1–2):5–59. doi: 10.1016/0304-4076(92)90064-X CrossRefGoogle Scholar
  6. Brandt M, Jones C (2006) Volatility forecasting with range-based EGARCH models. J Bus Econ Stat 24(4):470–486. doi: 10.1198/073500106000000206 CrossRefGoogle Scholar
  7. Cappiello L, Engle R, Sheppard K (2006) Asymmetric dynamics in the correlations of global equity and bond returns. J Financ Econometrics 4(4):537–572. doi: 10.1093/jjfinec/nbl005 CrossRefGoogle Scholar
  8. Chou RY (2005) Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model. J Money Credit Bank 37(3):561–582. doi: 10.1353/mcb.2005.0027 CrossRefGoogle Scholar
  9. Chou RY (2006) Modeling the asymmetry of stock movements using price ranges. Adv Econometrics 20(Part A):231–258CrossRefGoogle Scholar
  10. Engle R (2002a) Dynamic conditional correlation: a simple class of multivariate GARCH models. J Bus Econ Stat 20(3):339–350. doi: 10.1198/073500102288618487 CrossRefGoogle Scholar
  11. Engle R (2002b) New frontiers for ARCH models. J Appl Econ 17(5):425–446. doi: 10.1002/jae.683 CrossRefGoogle Scholar
  12. Engle R (2004) Risk and volatility: econometric models and financial practice. Am Econ Rev 94(3):405–420. doi: 10.1257/0002828041464597 CrossRefGoogle Scholar
  13. Engle R, Kroner K (1995) Multivariate simultaneous GARCH. Econometric Theory 11(1):122–150CrossRefGoogle Scholar
  14. Engle R, Manganelli S (2004) CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econ Stat 22(4):367–381. doi: 10.1198/073500104000000370 CrossRefGoogle Scholar
  15. Engle R, Sheppard K (2001) ‘Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH’, Working Paper. University of California, San DiegoGoogle Scholar
  16. Ferland R, Lalancette S (2006) Dynamics of realized volatilities and correlations: an empirical study. J Bank Finance 30(7):2109–2130. doi: 10.1016/j.jbankfin.2005.05.020 CrossRefGoogle Scholar
  17. Fernades M, Mota B, Rocha G (2005) A multivariate conditional autoregressive range model. Econ Lett 86(3):435–440. doi: 10.1016/j.econlet.2004.09.005 CrossRefGoogle Scholar
  18. French KR, Schwert GW, Stambaugh RF (1987) Expected stock returns and volatility. J Financ Econ 19(1):3–29. doi: 10.1016/0304-405X(87)90026-2 CrossRefGoogle Scholar
  19. Gallant R, Hsu C, Tauchen G (1999) Using daily range data to calibrate volatility diffusions and extracting integrated volatility. Rev Econ Stat 81(4):617–631. doi: 10.1162/003465399558481 CrossRefGoogle Scholar
  20. Garman M, Klass M (1980) On the estimation of security price volatilities from historical data. J Bus 53(1):67–78. doi: 10.1086/296072 CrossRefGoogle Scholar
  21. Hafner CM, Franses PH (2003) A generalized dynamic conditional correlation model for many asset returns, Working Paper. Erasmus University RotterdamGoogle Scholar
  22. Kunitomo N (1992) Improving the Parkinson method of estimating security price volatilities. J Bus 65(2):295–302. doi: 10.1086/296570 CrossRefGoogle Scholar
  23. Martens M, van Dijk D (2007) Measuring volatility with the realized range. J Econom 138(1):181–207. doi: 10.1016/j.jeconom.2006.05.019 CrossRefGoogle Scholar
  24. Parkinson M (1980) The extreme value method for estimating the variance of the rate of return. J Bus 53(1):61–65. doi: 10.1086/296071 CrossRefGoogle Scholar
  25. Rogers LCG, Satchell SE (1991) Estimating variance from high, low and closing prices. Ann Appl Probab 1(4):504–512. doi: 10.1214/aoap/1177005835 CrossRefGoogle Scholar
  26. Shu JH, Zhang JE (2006) Testing range estimators of historical volatility. J Futures Mark 26(3):297–313. doi: 10.1002/fut.20197 CrossRefGoogle Scholar
  27. Taylor N (2004) Trading intensity, volatility, and arbitrage activity. J Bank Finance 28(5):1137–1162. doi: 10.1016/S0378-4266(03)00116-X CrossRefGoogle Scholar
  28. Tsay RS (2002) Analysis of financial time series. Wiley, New YorkCrossRefGoogle Scholar
  29. Tse YK, Tsui AKC (2002) A multivariate GARCH model with time-varying correlations. J Bus Econ Stat 20(3):351–362. doi: 10.1198/073500102288618496 CrossRefGoogle Scholar
  30. White H (1994) Estimation, inference and specification analysis. Cambridge University Press, CambridgeGoogle Scholar
  31. Wiggins J (1991) Empirical tests of the bias and efficiency of the extreme-value variance estimator for common stocks. J Bus 64(3):417–432. doi: 10.1086/296544 CrossRefGoogle Scholar
  32. Yang D, Zhang Q (2000) Drift independent volatility estimation based on high, low, open, and close prices. J Bus 73(3):477–491. doi: 10.1086/209650 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of EconomicsAcademia SinicaTaipeiTaiwan, ROC
  2. 2.Institute of Business ManagementNational Chiao Tung UniversityHsinchuTaiwan, ROC
  3. 3.Department of FinanceNational Kaohsiung First University of Science and TechnologyKaohsiung CityTaiwan, ROC
  4. 4.Institute of FinanceNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations