Reliable Computing

, Volume 12, Issue 6, pp 405–408

Introductory Remarks on Reliable Engineering Computing

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonsson, E. K. and Otto, K., Improving Engineering Design with Fuzzy Sets, in: Dubois, D., Prade, H., and Yager, R. R. (eds), Fuzzy Information Engineering: A Guided Tour of Applications,John Wiley & Sons, New York, 1997, Chapter 38, pp. 633–654.Google Scholar
  2. 2.
    Broadwater, R. P., Shaalan, H. E., and Fabrycky, W. J., Decision Evaluation with Interval Math ematics: A Power Distribution System Case Study, IEEE Transactions on Power Delivery 9(1994), pp. 59–65.Google Scholar
  3. 3.
    Dong, W. M., Chiang, W. L., and Wong, F. S.: Propagation of Uncertainties in Deterministic Systems, Computers & Structures26 (3) (1987), pp. 415 123.MATHCrossRefGoogle Scholar
  4. 4.
    Dou, C. H., Woldt, W, Bogardi, I., and Dahab, M.: Steady State Groundwater Flow Simulation with Imprecise Parameters, Water Resources Research31 (11) (1995), pp. 2709–2719.Google Scholar
  5. 5.
    Ely, J. and Baker, G. R.: High Precision Calculations of Vortex Sheet Motion, J. Comp. Phys.Ill (1994), pp. 275–282.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fichtner, G., Reinhart, H. J., and Rippin, D. W. T.: Design of Flexible Chemical Plants by the Application of Interval Mathematics, Computers and Chemical Engineering14 (1990), pp. 1311–1316.CrossRefGoogle Scholar
  7. 7.
    Gau, C.-Y and Stadtherr, M. A.: New Interval Methodologies for Reliable Chemical Process Modeling, Comput, Chem, Eng. 26(2002), pp. 827–840.Google Scholar
  8. 8.
    Hurme, M., Dohnal, M., and Jaervalaeinen, M.: Qualitative Reasoning in Chemical and Safety Engineering, Computers and Chemical Engineering17 (1993), pp. 441 -46.Google Scholar
  9. 9.
    Koyluoglu, H. U., Cakmak, A. S., and Neilson, S. R. K.: Interval Algebra to Deal with Pat tern Loading and Structural Uncertainty, Journal of Engineering Mechanics121 (11) (1995), pp. 1149–1157.CrossRefGoogle Scholar
  10. 10.
    Kutscher, S. and Schulze, J.: Some Aspects of Uncertain Modelling Experiences in Applying Interval Mathematics to Practical Problems, in: Bandemer, H. (ed.), Modelling Uncertain DataAkademie Verlag, Berlin, 1993, pp. 62–68.Google Scholar
  11. 11.
    Lin, X., Melo, O. T., Hastie, D. R., et al: Case Study of Ozone Production in a Rural Area of Central Ontario, Atmos, Environ,26A (2) (1992), pp. 311–324.Google Scholar
  12. 12.
    Lin, Y and Stadtherr, M. A.: Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering, J. Global Optimization29 (3) (2004), pp. 281–296.Google Scholar
  13. 13.
    Moore, R. E.: Methods and Applications of Interval Analysis,SIAM, Philadelphia, 1979.Google Scholar
  14. 14.
    Muhanna, R. L. and Mullen, R. L.: Development of Interval Based Methods for Fuzziness in Continuum Mechanics, in: Proceedings ofISUMA-NAFIPS’95,IEEE, 1995, pp. 705–710.Google Scholar
  15. 15.
    Muhanna, R. L. and Mullen, R. L.: Formulation of Fuzzy Finite Element Methods for Mechanics Problems, Computer-Aided Civil and Infrastructure Engineering(previously Microcomputers in Civil Engineering)14 (1999), pp. 107–117.Google Scholar
  16. 16.
    Muhanna, R. L., Mullen, R. L., and Zhang, H.: Fundamental Concepts for Interval-Based Finite Element Formulations, Reliable Computing,submitted.Google Scholar
  17. 17.
    Muhanna, R. L. and Mullen, R. L.: Interval Methods for Reliable Computing, in: Nikolaidis, E., Ghiocel, D., and Singhal, S. (eds), Engineering Design Reliability Handbook,CRC Press LLC, 2005, pp. 12–1-12–24.Google Scholar
  18. 18.
    Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems—Interval-Based Approach, Journal of Engineering Mechanics, ASCE127 (6) (2001), pp. 557–566.CrossRefGoogle Scholar
  19. 19.
    Mullen, R. L. and Muhanna, R. L.: Efficient Interval Methods for Finite Element Solution, in: Almhana, J. N. and Bhavsar, V. C. (eds), High Performance Computing Systems and Applications,IEEE, 2002, pp. 161–168.Google Scholar
  20. 20.
    Shaalan, H. E. and Broadwater, R. P.: Using Interval Mathematics in Cost Benefit Analysis of Distribution Automation, Electric Power Systems Research27 (1993), pp. 145–152.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.WorthingtonUSA

Personalised recommendations