Reliable Computing

, Volume 12, Issue 4, pp 303–321 | Cite as

Computational Experience with Rigorous Error Bounds for the Netlib Linear Programming Library

Article

Abstract

The Netlib library of linear programming problems is a well known suite containing many real world applications. Recently it was shown by Ordóñez and Freund that 71% of these problems are ill-conditioned. Hence, numerical difficulties may occur. Here, we present rigorous results for this library that are computed by a verification method using interval arithmetic. In addition to the original input data of these problems we also consider interval input data. The computed rigorous bounds and the performance of the algorithms are related to the distance to the next ill-posed linear programming problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alefeld, G. and Herzberger, ].: Introduction to Interval Computations, Academic Press, New York, 1983.MATHGoogle Scholar
  2. 2.
    Beeck, H.: Linear Programming with Inexact Data, Technical Report 7830, Abteilung Mathe- matik, TU Miinchen, 1978.Google Scholar
  3. 3.
    Berkelaar, M., Notebaert, P., and Eikland, K.: lp solve, http ://groups.yahoo.com/group/lp-solve.
  4. 4.
    Floudas, C.: Deterministic Global Optimization: Theory, Methods and Applications (Nonconvex Optimization and Its Applications 37), Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.Google Scholar
  5. 5.
    Fourer, R. and Gay, D. M.: Experience with a Primal Presolve Algorithm, in: Hager, W. W., Hearn, D. W., and Pardalos, P. M. (eds), Large Scale Optimization: State of the Art, Kluwer Academic Publishers, Norwell, Dordrecht, 1994, pp. 135–154.Google Scholar
  6. 6.
    Free Software Foundation: gcc, http://gcc.gnu.org.
  7. 7.
    Hansen, E. and Walster, G. W.: Global Optimization Using Interval Analysis, second edition, Pure and Applied Mathematics, Dekker, 2003.Google Scholar
  8. 8.
    Jansson, C.: A Rigorous Lower Bound for the Optimal Value of Convex Optimization Problems, J. Global Optimization 28 (2004), pp. 121–137.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jansson, C.: Rigorous Lower and Upper Bounds in Linear Programming, SIAM J. Optim. 14 (3) (2004), pp. 914–935.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kearfott, R.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.MATHGoogle Scholar
  11. 11.
    Keil, C.: LURUPA-Rigorose Fehlerschranken fur Lineare Programme, Diplomarbeit, Technis- che Universitat Hamburg-Harburg, 2004.Google Scholar
  12. 12.
    Kniippel, O.: PROFIL/BIAS and Extensions, Version 2.0, Technical report, Inst. f. Informatik III, Technische Universitat Hamburg-Harburg, 1998.Google Scholar
  13. 13.
    Krawczyk, R.: Fehlerabschatzung bei linearer Optimierung, in: Nickel, K. (ed.), Interval Math ematics, Lecture Notes in Computer Science 29, Springer Verlag, Berlin, 1975, pp. 215–222.Google Scholar
  14. 14.
    Moore, R.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.MATHGoogle Scholar
  15. 15.
    Netlib: Netlib Linear Programming Library, http://www.netlib.org/Ip.
  16. 16.
    Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1990.Google Scholar
  17. 17.
    Neumaier, A.: Introduction to Numerical Analysis, Cambridge University Press, 2001.Google Scholar
  18. 18.
    Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint Satisfaction, ActaNumerica 13 (2004), pp. 271–369.MathSciNetGoogle Scholar
  19. 19.
    Neumaier, A. and Shcherbina, O.: Safe Bounds in Linear and Mixed-Integer Programming, Mathematical Programming, Ser. A 99 (2004), pp. 283–296.MATHMathSciNetGoogle Scholar
  20. 20.
    Ordonez, F. and Freund, R.: Computational Experience and the Explanatory Value of Condition Measures for Linear Optimization, SIAM J. Optimization 14 (2) (2003), pp. 307–333.MATHMathSciNetGoogle Scholar
  21. 21.
    Rump, S.: Solving Algebraic Problems with High Accuracy. Habilitationsschrift, in: Kulisch, U. and Miranker, W. (eds), A New Approach to Scientific Computation, Academic Press, New York, 1983. pp. 51–120.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Reliable ComputingHamburg University of TechnologyHamburgGermany

Personalised recommendations