Advertisement

The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue

  • José María Moreno-NavarreteEmail author
  • José Manuel Fernandez-Real
Article

Abstract

Given the increasing worldwide prevalence of obesity and associated metabolic disturbances, novel therapeutic strategies are imperatively required. A plausible manner to increase energy expenditure is the enhancement of thermogenic pathways in white (WAT) and brown adipose tissue (BAT). In the last 15 years, the identification of novel endogenous mechanisms to promote BAT activity or browning of WAT has pointed at gut microbiota as an important modulator of host metabolic homeostasis and energy balance. In this review, we focused on the relationship between gut microbiota composition and adipose tissue thermogenic program (including BAT activity and browning of WAT) in both physiological and stress conditions. Specifically, we reviewed the effects of fasting, caloric restriction, cold stress and metabolic endotoxemia on both browning and gut microbiota shifts. Mechanistically speaking, processes related to bile acid metabolism and the endocannabinoid system seem to play an important role. In summary, the gut microbiota seems to impact WAT and BAT physiology at multiple levels.

Keywords

Gut microbiota Adipose tissue Obesity Thermogenesis Lipopolysaccharide Bile acids Short chain fatty acids Endocannabinoid system 

Notes

Acknowledgements

This work was partially supported by research grants PI15/01934, PI16/01173 and PI18/01022 from the Instituto de Salud Carlos III from Spain, FEDER funds and was also supported by Fundació Marató de TV3 (201612-31). CIBEROBN Fisiopatología de la Obesidad y Nutrición is an initiative from the Instituto de Salud Carlos III from Spain.

Compliance with ethical standards

Duality of interest

The authors declared no conflict of interest.

References

  1. 1.
    Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23:804–14.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O'Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: updated evidence report and systematic review for the US preventive services task force. JAMA. 2018;320:1172–91.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Panagiotou OA, Markozannes G, Adam GP, Kowalski R, Gazula A, Di M, et al. Comparative effectiveness and safety of bariatric procedures in Medicare-eligible patients: a systematic review. JAMA Surg. 2018;153:e183326.CrossRefGoogle Scholar
  4. 4.
    Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.CrossRefGoogle Scholar
  5. 5.
    Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal physiological stress by living at thermoneutrality. Cell Metab. 2009;9:203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tomilov A, Bettaieb A, Kim K, Sahdeo S, Tomilova N, Lam A, et al. Shc depletion stimulates brown fat activity in vivo and in vitro. Aging Cell. 2014;13:1049–58.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156:304–16.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Himms-Hagen J. Nonshivering thermogenesis. Brain Res Bull. 1984;12:151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    PMID:22269323: Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545–52.Google Scholar
  10. 10.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–73.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67:1716–25.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17:297–312.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep. 2019;8:317–32.  https://doi.org/10.1007/s13679-019-00352-2.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mestdagh R, Dumas ME, Rezzi S, Kochhar S, Holmes E, Claus SP, et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res. 2012;11:620–30.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Suárez-Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin DJ, Stevanović A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497–501.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480:104–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type 2 cytokine signalling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–308.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fischer K, Ruiz HH, Jhun K, Finan B, Oberlin DJ, van der Heide V, et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med. 2017;23:623–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li B, Li L, Li M, Lam SM, Wang G, Wu Y, Zhang H, Niu C, Zhang X, Liu X, Hambly C, Jin W, Shui G, Speakman JR. Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Rep. 2019; 26:2720–37.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J. 2015;29:2397–411.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signalling and colonic metabolism. Nat Commun. 2018;9:2872.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017;26:672–85.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hanatani S, Motoshima H, Takaki Y, Kawasaki S, Igata M, Matsumura T, et al. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-ay mice. J Clin Biochem Nutr. 2016;59:207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sahuri-Arisoylu M, Brody LP, Parkinson JR, Parkes H, Navaratnam N, Miller AD, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate. Int J Obes. 2016;40:955–63.CrossRefGoogle Scholar
  31. 31.
    Kim N, Nam M, Kang MS, Lee JO, Lee YW, Hwang GS, et al. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci Rep. 2017;7:41066.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  33. 33.
    Iwanaga T, Kuchiiwa T, Saito M. Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue. Biomed Res. 2009;30:217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Desautels M, Dulos RA. Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice. Am J Phys. 1988;255:E120–8.Google Scholar
  35. 35.
    Sivitz WI, Fink BD, Donohoue PA. Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression. Endocrinology. 1999;140:1511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kim YH, Lee JH, Yeung JL, Das E, Kim RY, Jiang Y, et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in Ob/Ob mice. Sci Rep. 2019;9:2479.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Frederich RC, Löllmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, et al. Expression of Ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest. 1995;96:1658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gan L, Liu Z, Feng F, Wu T, Luo D, Hu C, et al. Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice. Int J Obes. 2018;42:252–9.CrossRefGoogle Scholar
  40. 40.
    Kim KH, Kim YH, Son JE, Lee JH, Kim S, Choe MS, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017;27:1309–26.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fabbiano S, Suárez-Zamorano N, Chevalier C, Lazarević V, Kieser S, Rigo D, Leo S, Veyrat-Durebex C, Gaïa N, Maresca M, Merkler D, Gomez de Agüero M, Macpherson A, Schrenzel J, Trajkovski M. Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metab. 2018;28:907–921.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Okla M, Zaher W, Alfayez M, Chung S. Inhibitory effects of toll-like receptor 4, NLRP3 Inflammasome, and interleukin-1β on white adipocyte Browning. Inflammation. 2018;41:626–42.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Okla M, Wang W, Kang I, Pashaj A, Carr T, Chung S. Activation of toll-like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum physiological stress. J Biol Chem. 2015;290:26476–90.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179:269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tobias PS, Soldau K, Ulevitch RJ. Identification of a lipid a binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem. 1989;264:10867–71.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Moreno-Navarrete JM, Ortega F, Serino M, Luche E, Waget A, Pardo G, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond). 2012;36:1442–9.CrossRefGoogle Scholar
  48. 48.
    Tilves CM, Zmuda JM, Kuipers AL, Nestlerode CS, Evans RW, Bunker CH, et al. Association of Lipopolysaccharide-Binding Protein with Aging-Related Adiposity Change and Prediabetes among African Ancestry men. Diabetes Care. 2016;39:385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Liu X, Lu L, Yao P, Ma Y, Wang F, Jin Q, et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia. 2014;57:1834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moreno-Navarrete JM, Escoté X, Ortega F, Serino M, Campbell M, Michalski MC, et al. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 2013;56:2524–37.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Moreno-Navarrete JM, Escoté X, Ortega F, Camps M, Ricart W, Zorzano A, et al. Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. Diabetologia. 2015;58:2424–34.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gavaldà-Navarro A, Moreno-Navarrete JM, Quesada-López T, Cairó M, Giralt M, Fernández-Real JM, et al. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia. 2016;59:2208–18.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Moreno-Navarrete JM, Jové M, Padró T, Boada J, Ortega F, Ricart W, et al. Adipocyte lipopolysaccharide binding protein (LBP) is linked to a specific lipidomic signature. Obesity (Silver Spring). 2017;25:391–400.CrossRefGoogle Scholar
  54. 54.
    Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue Browning and Reduction of metabolic Endotoxemia in mice. Diabetes. 2017;66:1222–36.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–32.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang YM, Liu HX, Fang NY. 9-PAHSA promotes browning of white fat via activating G-protein-coupled receptor 120 and inhibiting lipopolysaccharide / NF-kappa B pathway. Biochem Biophys Res Commun. 2018;506:153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cao W, Huang H, Xia T, Liu C, Muhammad S, Sun C. Homeobox a5 promotes white adipose tissue Browning through inhibition of the Tenascin C/toll-like receptor 4/nuclear factor kappa B inflammatory Signalling in mice. Front Immunol. 2018;9:647.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR. Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring). 2010;18:872–8.CrossRefGoogle Scholar
  59. 59.
    Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T, et al. Switch from physiological stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One. 2010;5:e11033.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lidell ME, Seifert EL, Westergren R, Heglind M, Gowing A, Sukonina V, et al. The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes. 2011;60:427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell. 2001;106:563–73.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154:2687–701.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kim JK, Kim HJ, Park SY, Cederberg A, Westergren R, Nilsson D, et al. Adipocyte-specific overexpression of FOXC2 prevents diet-induced increases in intramuscular fatty acyl CoA and insulin resistance. Diabetes. 2005;54:1657–63.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. The gut microbiota modulates energy metabolism in the hibernating Brown bear Ursus arctos. Cell Rep. 2016;14:1655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhang XY, Sukhchuluun G, Bo TB, Chi QS, Yang JJ, Chen B, et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome. 2018;6:103.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med. 2017;23:839–49.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ziętak M, Kovatcheva-Datchary P, Markiewicz LH, Ståhlman M, Kozak LP, Bäckhed F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016;23:1216–23.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–71.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology Gut 2016;65:426–36.Google Scholar
  71. 71.
    Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia Muciniphila protects against atherosclerosis by preventing metabolic Endotoxemia-induced inflammation in Apoe−/− mice. Circulation. 2016;133:2434–46.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, et al. Intestinal farnesoid X receptor signalling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125:386–402.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159–65.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pathak P, Liu H, Boehme S, Xie C, Krausz KW, Gonzalez F, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J Biol Chem. 2017;292:11055–69.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signalling to improve metabolism. Hepatology. 2018;68:1574–88.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Pfeiffer N, Desmarchelier C, Blaut M, Daniel H, Haller D, Clavel T. Acetatifactor muris gen. Nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol. 2012;194:901–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Hirano S, Masuda N. Enhancement of the 7 alpha-dehydroxylase activity of a gram-positive intestinal anaerobe by Bacteroides and its significance in the 7-dehydroxylation of ursodeoxycholic acid. J Lipid Res. 1982;23:1152–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Ishii M, Toda T, Ikarashi N, Kusunoki Y, Kon R, Ochiai W, et al. Gastrectomy increases the expression of hepatic cytochrome P450 3A by increasing lithocholic acid-producing enteric bacteria in mice. Biol Pharm Bull. 2014;37:298–305.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Somm E, Henry H, Bruce SJ, Aeby S, Rosikiewicz M, Sykiotis GP, et al. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI. Insight. 2017;2:91809.Google Scholar
  84. 84.
    Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, et al. The bile acid Chenodeoxycholic acid increases human Brown adipose tissue activity. Cell Metab. 2015;22:418–26.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton RH, Cardellini M, et al. Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity. Mol Nutr Food Res. 2018;62(3).  https://doi.org/10.1002/mnfr.201700721.CrossRefGoogle Scholar
  87. 87.
    Weitkunat K, Stuhlmann C, Postel A, Rumberger S, Fankhänel M, Woting A, et al. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci Rep. 2017;7:6109.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hu J, Kyrou I, Tan BK, Dimitriadis GK, Ramanjaneya M, Tripathi G, et al. Short-chain fatty acid acetate stimulates Adipogenesis and mitochondrial biogenesis via GPR43 in Brown adipocytes. Endocrinology. 2016;157:1881–94.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: Beiging and metabolic adaptations. Diabetes. 2015;64:2361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Moreno-Navarrete JM, Ortega F, Moreno M, Xifra G, Ricart W, Fernández-Real JM. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action. Mol Cell Endocrinol. 2015;405:84–93.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Comas F, Martínez C, Sabater M, Ortega F, Latorre J, Díaz-Sáez F, et al. Neuregulin 4 is a novel marker of beige adipocyte precursor cells in human adipose tissue. Front Physiol. 2019 Jan 31;10:39.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, et al. Caloric restriction and diet-induced weight loss do not induce Browning of human subcutaneous white adipose tissue in women and men with obesity. Cell Rep. 2018;22:1079–89.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José María Moreno-Navarrete
    • 1
    • 2
    Email author
  • José Manuel Fernandez-Real
    • 1
    • 2
  1. 1.Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII)GironaSpain
  2. 2.Department of MedicineUniversitat de GironaGironaSpain

Personalised recommendations