Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 20, Issue 3, pp 273–282 | Cite as

Vitamin D in physiological and pathological aging: Lesson from centenarians

  • Evelyn Ferri
  • Martina Casati
  • Matteo Cesari
  • Giovanni Vitale
  • Beatrice ArosioEmail author
Article

Abstract

Vitamin D is a secosteroid hormone that exerts a pleiotropic action on a wide spectrum of tissues, apparatuses and systems. Thus, vitamin D has assumed an increasingly dominant role as a key determinant of biological mechanisms and specific clinical conditions. Older people frequently present vitamin D deficiency, a status potentially influencing several mechanisms responsible for different age-related diseases. Centenarians symbolize the ideal model for investigating the peculiar traits of longevity, as they have reached an age close to the estimated limit of the human lifespan. Interestingly, despite the profound heterogeneity of centenarians in terms of health status, all these people share the same condition of severe vitamin D deficiency, suggesting that they may have implemented a number of adaptive strategies to cope with the age-related physiological derangement of vitamin D metabolism. The lesson deriving from centenarians’ experience suggests that: i) severe vitamin D deficiency does not preclude the possibility of reaching extreme longevity, ii) strategies to prevent hypovitaminosis D may be useful to slow down the processes of “fragilization” occurring in aged people, iii) beneficial effects of vitamin D supplementation need to be confirmed regarding longevity.

Keywords

Vitamin D Aging Centenarians GeroScience Longevity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96S.  https://doi.org/10.1093/ajcn/80.6.1689S.CrossRefGoogle Scholar
  2. 2.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.  https://doi.org/10.1056/NEJMra070553.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fiscaletti M, Stewart P, Munns CF. The importance of vitamin D in maternal and child health: a global perspective. Public Health Rev. 2017;38:19.  https://doi.org/10.1186/s40985-017-0066-3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hayes A, Cashman KD. Food-based solutions for vitamin D deficiency: putting policy into practice and the key role for research. Proc Nutr Soc. 2017;76(1):54–63.  https://doi.org/10.1017/S0029665116000756.CrossRefGoogle Scholar
  5. 5.
    Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–65.  https://doi.org/10.1007/s11154-017-9424-1.CrossRefGoogle Scholar
  6. 6.
    Pilz S, Gaksch M, Hartaigh BO, Tomaschitz A, Marz W. Vitamin D in preventive medicine. Anticancer Res. 2015;35(2):1161–70.Google Scholar
  7. 7.
    Cesareo R, Attanasio R, Caputo M, Castello R, Chiodini I, Falchetti A, et al. Italian Association of Clinical Endocrinologists (AME) and Italian chapter of the American Association of Clinical Endocrinologists (AACE) position statement: clinical Management of Vitamin D Deficiency in adults. Nutrients. 2018;10(5).  https://doi.org/10.3390/nu10050546.CrossRefGoogle Scholar
  8. 8.
    Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.  https://doi.org/10.1152/physrev.00014.2015.CrossRefGoogle Scholar
  9. 9.
    Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.  https://doi.org/10.1172/JCI29449.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bikle D. Vitamin D: Production, Metabolism, and Mechanisms of Action. 2000. doi:NBK278935 [bookaccession].Google Scholar
  11. 11.
    Pilz S, Marz W, Cashman KD, Kiely ME, Whiting SJ, Holick MF, et al. Rationale and plan for Vitamin D food fortification: a review and guidance paper. Front Endocrinol (Lausanne). 2018;9:373.  https://doi.org/10.3389/fendo.2018.00373.CrossRefGoogle Scholar
  12. 12.
    Lips P, Cashman KD, Lamberg-Allardt C, Bischoff-Ferrari HA, Obermayer-Pietsch BR, Bianchi M, et al. MANAGEMENT OF ENDOCRINE DISEASE: current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency; a position statement of the European calcified tissue society. Eur J Endocrinol. 2019.  https://doi.org/10.1530/EJE-18-0736.
  13. 13.
    Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett. 2008;582(1):2–9.  https://doi.org/10.1016/j.febslet.2007.11.016.CrossRefGoogle Scholar
  14. 14.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76.  https://doi.org/10.1210/er.2008-0004.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D, et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab. 2013;98(8):E1283–304.  https://doi.org/10.1210/jc.2013-1195.CrossRefGoogle Scholar
  16. 16.
    Muscogiuri G, Mari D, Prolo S, Fatti LM, Cantone MC, Garagnani P, et al. 25 Hydroxyvitamin D deficiency and its relationship to autoimmune thyroid disease in the elderly. Int J Environ Res Public Health. 2016;13(9).  https://doi.org/10.3390/ijerph13090850.CrossRefGoogle Scholar
  17. 17.
    Muscogiuri G. Vitamin D: past, present and future perspectives in the prevention of chronic diseases. Eur J Clin Nutr. 2018;72(9):1221–5.  https://doi.org/10.1038/s41430-018-0261-4.CrossRefGoogle Scholar
  18. 18.
    Muscogiuri G. New light on an old vitamin: the role of the sunshine vitamin D in chronic disease. Rev Endocr Metab Disord. 2017;18(2):145–7.  https://doi.org/10.1007/s11154-017-9427-y.CrossRefGoogle Scholar
  19. 19.
    Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502–21.  https://doi.org/10.3390/nu5072502.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.  https://doi.org/10.1126/science.1123933.CrossRefGoogle Scholar
  21. 21.
    Rook GA, Steele J, Fraher L, Barker S, Karmali R, O'Riordan J, et al. Vitamin D3, gamma interferon, and control of proliferation of mycobacterium tuberculosis by human monocytes. Immunology. 1986;57(1):159–63.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jorde R, Sollid ST, Svartberg J, Joakimsen RM, Grimnes G, Hutchinson MY. Prevention of urinary tract infections with vitamin D supplementation 20,000 IU per week for five years. Results from an RCT including 511 subjects. Infect Dis (Lond). 2016;48(11–12):823–8.  https://doi.org/10.1080/23744235.2016.1201853.CrossRefGoogle Scholar
  23. 23.
    Kearns MD, Alvarez JA, Seidel N, Tangpricha V. Impact of vitamin D on infectious disease. Am J Med Sci. 2015;349(3):245–62.  https://doi.org/10.1097/MAJ.0000000000000360.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by Vitamin D. Nutrients. 2015;7(9):8127–51.  https://doi.org/10.3390/nu7095383.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Limketkai BN, Mullin GE, Limsui D, Parian AM. Role of Vitamin D in inflammatory bowel disease. Nutr Clin Pract. 2017;32(3):337–45.  https://doi.org/10.1177/0884533616674492.CrossRefGoogle Scholar
  26. 26.
    Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8.  https://doi.org/10.1001/jama.296.23.2832.CrossRefGoogle Scholar
  27. 27.
    Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;144(2):296–309.  https://doi.org/10.1016/j.cell.2011.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zeitelhofer M, Adzemovic MZ, Gomez-Cabrero D, Bergman P, Hochmeister S, N'Diaye M, et al. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2017;114(9):E1678–E87.  https://doi.org/10.1073/pnas.1615783114.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Franceschi C, Ostan R, Mariotti S, Monti D, Vitale G. The aging thyroid: a reappraisal within the Geroscience integrated perspective. Endocr Rev. 2019.  https://doi.org/10.1210/er.2018-00170.
  30. 30.
    Arosio B, Ferri E, Casati M, Mari D, Vitale G, Cesari M. The frailty index in centenarians and their offspring. Aging Clin Exp Res. 2019.  https://doi.org/10.1007/s40520-019-01283-7.CrossRefGoogle Scholar
  31. 31.
    Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018;5:61.  https://doi.org/10.3389/fmed.2018.00061.CrossRefGoogle Scholar
  32. 32.
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.  https://doi.org/10.1038/s41574-018-0059-4.CrossRefGoogle Scholar
  33. 33.
    Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.  https://doi.org/10.1016/j.cell.2014.10.039.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee S, Clark SA, Gill RK, Christakos S. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology. 1994;134(4):1602–10.  https://doi.org/10.1210/endo.134.4.8137721.CrossRefGoogle Scholar
  35. 35.
    Gagnon C, Daly RM, Carpentier A, Lu ZX, Shore-Lorenti C, Sikaris K, et al. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and beta-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial. PLoS One. 2014;9(10):e109607.  https://doi.org/10.1371/journal.pone.0109607.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gao Y, Wu X, Fu Q, Li Y, Yang T, Tang W. The relationship between serum 25-hydroxy vitamin D and insulin sensitivity and beta-cell function in newly diagnosed type 2 diabetes. J Diabetes Res. 2015;2015:636891.  https://doi.org/10.1155/2015/636891.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Park S, Kim DS, Kang S. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-gamma expression in nonobese type 2 diabetic rats. J Nutr Biochem. 2016;27:257–65.  https://doi.org/10.1016/j.jnutbio.2015.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Billaudel BJ, Delbancut AP, Sutter BC, Faure AG. Stimulatory effect of 1,25-dihydroxyvitamin D3 on calcium handling and insulin secretion by islets from vitamin D3-deficient rats. Steroids. 1993;58(7):335–41.  https://doi.org/10.1016/0039-128x(93)90094-4.CrossRefGoogle Scholar
  39. 39.
    Wolden-Kirk H, Overbergh L, Gysemans C, Brusgaard K, Naamane N, Van Lommel L, et al. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol. 2013;136:68–79.  https://doi.org/10.1016/j.jsbmb.2012.10.017.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ishida Y, Taniguchi H, Baba S. Possible involvement of 1 alpha,25-dihydroxyvitamin D3 in proliferation and differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 1988;151(3):1122–7.  https://doi.org/10.1016/s0006-291x(88)80482-0.CrossRefGoogle Scholar
  41. 41.
    Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005;28(5):1228–30.  https://doi.org/10.2337/diacare.28.5.1228.CrossRefGoogle Scholar
  42. 42.
    Fornari R, Francomano D, Greco EA, Marocco C, Lubrano C, Wannenes F, et al. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Investig. 2015;38(3):367–72.  https://doi.org/10.1007/s40618-014-0189-z.CrossRefGoogle Scholar
  43. 43.
    Liu S, Song Y, Ford ES, Manson JE, Buring JE, Ridker PM. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005;28(12):2926–32.  https://doi.org/10.2337/diacare.28.12.2926.CrossRefGoogle Scholar
  44. 44.
    Botella-Carretero JI, Alvarez-Blasco F, Villafruela JJ, Balsa JA, Vazquez C, Escobar-Morreale HF. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr. 2007;26(5):573–80.  https://doi.org/10.1016/j.clnu.2007.05.009.CrossRefGoogle Scholar
  45. 45.
    Greene-Finestone LS, Garriguet D, Brooks S, Langlois K, Whiting SJ. Overweight and obesity are associated with lower vitamin D status in Canadian children and adolescents. Paediatr Child Health. 2017;22(8):438–44.  https://doi.org/10.1093/pch/pxx116.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Holick MF. Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets. 2011;12(1):4–18.  https://doi.org/10.2174/138945011793591635.CrossRefGoogle Scholar
  47. 47.
    Mezza T, Muscogiuri G, Sorice GP, Prioletta A, Salomone E, Pontecorvi A, et al. Vitamin D deficiency: a new risk factor for type 2 diabetes? Ann Nutr Metab. 2012;61(4):337–48.  https://doi.org/10.1159/000342771.CrossRefGoogle Scholar
  48. 48.
    Saneei P, Salehi-Abargouei A, Esmaillzadeh A. Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev. 2013;14(5):393–404.  https://doi.org/10.1111/obr.12016.CrossRefGoogle Scholar
  49. 49.
    Rodriguez-Rodriguez E, Navia B, Lopez-Sobaler AM, Ortega RM. Vitamin D in overweight/obese women and its relationship with dietetic and anthropometric variables. Obesity (Silver Spring). 2009;17(4):778–82.  https://doi.org/10.1038/oby.2008.649.CrossRefGoogle Scholar
  50. 50.
    Greco EA, Lenzi A, Migliaccio S. Role of Hypovitaminosis D in the pathogenesis of obesity-induced insulin resistance. Nutrients. 2019;11(7).  https://doi.org/10.3390/nu11071506.CrossRefGoogle Scholar
  51. 51.
    Rafiq S, Jeppesen PB. Is Hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: a systematic review and meta-analysis of observational studies. Nutrients. 2018;10(1).  https://doi.org/10.3390/nu10010059.CrossRefGoogle Scholar
  52. 52.
    Hu Z, Chen J, Sun X, Wang L, Wang A. Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: a meta-analysis of interventional studies. Medicine. 2019;98(14):e14970.  https://doi.org/10.1097/MD.0000000000014970.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vitale G, Cesari M, Mari D. Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med. 2016;35:10–5.  https://doi.org/10.1016/j.ejim.2016.07.017.CrossRefGoogle Scholar
  54. 54.
    Sohl E, de Jongh RT, Heijboer AC, Swart KM, Brouwer-Brolsma EM, Enneman AW, et al. Vitamin D status is associated with physical performance: the results of three independent cohorts. Osteoporos Int. 2013;24(1):187–96.  https://doi.org/10.1007/s00198-012-2124-5.CrossRefGoogle Scholar
  55. 55.
    van Schoor NM, Visser M, Pluijm SM, Kuchuk N, Smit JH, Lips P. Vitamin D deficiency as a risk factor for osteoporotic fractures. Bone. 2008;42(2):260–6.  https://doi.org/10.1016/j.bone.2007.11.002.CrossRefGoogle Scholar
  56. 56.
    Visser M, Deeg DJ, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.  https://doi.org/10.1210/jc.2003-030604.CrossRefGoogle Scholar
  57. 57.
    Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A. Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology. 2013;154(11):4018–29.  https://doi.org/10.1210/en.2013-1369.CrossRefGoogle Scholar
  58. 58.
    Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39.  https://doi.org/10.1242/dmm.010389.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152(8):2976–86.  https://doi.org/10.1210/en.2011-0159.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155(2):347–57.  https://doi.org/10.1210/en.2013-1205.CrossRefGoogle Scholar
  61. 61.
    Zhou QG, Hou FF, Guo ZJ, Liang M, Wang GB, Zhang X. 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. Diabetes Metab Res Rev. 2008;24(6):459–64.  https://doi.org/10.1002/dmrr.873.CrossRefGoogle Scholar
  62. 62.
    Victorelli S, Passos JF. Telomeres and cell senescence - size matters not. EBioMedicine. 2017;21:14–20.  https://doi.org/10.1016/j.ebiom.2017.03.027.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pusceddu I, Farrell CJ, Di Pierro AM, Jani E, Herrmann W, Herrmann M. The role of telomeres and vitamin D in cellular aging and age-related diseases. Clin Chem Lab Med. 2015;53(11):1661–78.  https://doi.org/10.1515/cclm-2014-1184.CrossRefGoogle Scholar
  64. 64.
    Ylikomi T, Laaksi I, Lou YR, Martikainen P, Miettinen S, Pennanen P, et al. Antiproliferative action of vitamin D. Vitam Horm. 2002;64:357–406.CrossRefGoogle Scholar
  65. 65.
    Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R, Siegfried Z, et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell. 2010;17(3):273–85.  https://doi.org/10.1016/j.ccr.2009.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Skrajnowska D, Bobrowska-Korczak B. Potential molecular mechanisms of the anti-cancer activity of Vitamin D. Anticancer Res. 2019;39(7):3353–63.  https://doi.org/10.21873/anticanres.13478.CrossRefGoogle Scholar
  67. 67.
    Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, Han J, et al. Plasma vitamin D biomarkers and leukocyte telomere length. Am J Epidemiol. 2013;177(12):1411–7.  https://doi.org/10.1093/aje/kws435.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, et al. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 2007;86(5):1420–5.  https://doi.org/10.1093/ajcn/86.5.1420.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhu H, Guo D, Li K, Pedersen-White J, Stallmann-Jorgensen IS, Huang Y, et al. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes. 2012;36(6):805–9.  https://doi.org/10.1038/ijo.2011.197.CrossRefGoogle Scholar
  70. 70.
    Franceschi C, Zaikin A, Gordleeva S, Ivanchenko M, Bonifazi F, Storci G, et al. Inflammaging 2018: An update and a model. Semin Immunol. 2018;40:1–5.  https://doi.org/10.1016/j.smim.2018.10.008.CrossRefGoogle Scholar
  71. 71.
    Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17–35.  https://doi.org/10.1016/j.smim.2018.09.003.CrossRefGoogle Scholar
  72. 72.
    Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80(6 Suppl):1717S–20S.  https://doi.org/10.1093/ajcn/80.6.1717S.CrossRefGoogle Scholar
  73. 73.
    Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein. J Biol Chem. 2013;288(27):19450–8.  https://doi.org/10.1074/jbc.M113.467670.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ding C, Wilding JP, Bing C. 1,25-dihydroxyvitamin D3 protects against macrophage-induced activation of NFkappaB and MAPK signalling and chemokine release in human adipocytes. PLoS One. 2013;8(4):e61707.  https://doi.org/10.1371/journal.pone.0061707.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Du T, Zhou ZG, You S, Lin J, Yang L, Zhou WD, et al. Regulation by 1, 25-dihydroxy-vitamin D3 on altered TLRs expression and response to ligands of monocyte from autoimmune diabetes. Clin Chim Acta. 2009;402(1–2):133–8.  https://doi.org/10.1016/j.cca.2008.12.038.CrossRefGoogle Scholar
  76. 76.
    Guillot X, Semerano L, Saidenberg-Kermanac'h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Joint Bone Spine. 2010;77(6):552–7.  https://doi.org/10.1016/j.jbspin.2010.09.018.CrossRefGoogle Scholar
  77. 77.
    Annweiler C, Schott AM, Berrut G, Chauvire V, Le Gall D, Inzitari M, et al. Vitamin D and ageing: neurological issues. Neuropsychobiology. 2010;62(3):139–50.  https://doi.org/10.1159/000318570.CrossRefGoogle Scholar
  78. 78.
    Kalueff AV, Tuohimaa P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care. 2007;10(1):12–9.  https://doi.org/10.1097/MCO.0b013e328010ca18.CrossRefGoogle Scholar
  79. 79.
    Yu J, Gattoni-Celli M, Zhu H, Bhat NR, Sambamurti K, Gattoni-Celli S, et al. Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J Alzheimers Dis. 2011;25(2):295–307.  https://doi.org/10.3233/JAD-2011-101986.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gensous N, Bacalini MG, Pirazzini C, Marasco E, Giuliani C, Ravaioli F, et al. The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology. 2017;18(4):549–59.  https://doi.org/10.1007/s10522-017-9695-7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98.  https://doi.org/10.1007/s00223-012-9619-0.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Carlberg C. Molecular endocrinology of vitamin D on the epigenome level. Mol Cell Endocrinol. 2017;453:14–21.  https://doi.org/10.1016/j.mce.2017.03.016.CrossRefGoogle Scholar
  83. 83.
    Castellano-Castillo D, Morcillo S, Crujeiras AB, Sanchez-Alcoholado L, Clemente-Postigo M, Torres E, et al. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer. 2019;19(1):93.  https://doi.org/10.1186/s12885-018-5226-4.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhu H, Bhagatwala J, Huang Y, Pollock NK, Parikh S, Raed A, et al. Race/ethnicity-specific Association of Vitamin D and Global DNA methylation: cross-sectional and interventional findings. PLoS One. 2016;11(4):e0152849.  https://doi.org/10.1371/journal.pone.0152849.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Duque G, Macoritto M, Kremer R. 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARgamma2). Exp Gerontol. 2004;39(3):333–8.  https://doi.org/10.1016/j.exger.2003.11.008.CrossRefGoogle Scholar
  86. 86.
    Klotz B, Mentrup B, Regensburger M, Zeck S, Schneidereit J, Schupp N, et al. 1,25-dihydroxyvitamin D3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity. PLoS One. 2012;7(1):e29959.  https://doi.org/10.1371/journal.pone.0029959.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    An BS, Tavera-Mendoza LE, Dimitrov V, Wang X, Calderon MR, Wang HJ, et al. Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol Cell Biol. 2010;30(20):4890–900.  https://doi.org/10.1128/MCB.00180-10.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Eelen G, Verlinden L, Meyer MB, Gijsbers R, Pike JW, Bouillon R, et al. 1,25-Dihydroxyvitamin D3 and the aging-related forkhead box O and sestrin proteins in osteoblasts. J Steroid Biochem Mol Biol. 2013;136:112–9.  https://doi.org/10.1016/j.jsbmb.2012.09.011.CrossRefGoogle Scholar
  89. 89.
    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033–41.  https://doi.org/10.1056/NEJMoa032546.CrossRefGoogle Scholar
  90. 90.
    Braga M, Simmons Z, Norris KC, Ferrini MG, Artaza JN. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr Connect. 2017;6(3):139–50.  https://doi.org/10.1530/EC-17-0008.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Fernandez-Barral A, Costales-Carrera A, Buira SP, Jung P, Ferrer-Mayorga G, Larriba MJ, et al. Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 2019.  https://doi.org/10.1111/febs.14998.
  92. 92.
    Le TYL, Ogawa M, Kizana E, Gunton JE, Chong JJH. Vitamin D improves cardiac function after myocardial infarction through modulation of resident cardiac progenitor cells. Heart Lung Circ. 2018;27(8):967–75.  https://doi.org/10.1016/j.hlc.2018.01.006.CrossRefGoogle Scholar
  93. 93.
    Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Feron F, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer's disease. Mol Neurobiol. 2018;55(8):6463–79.  https://doi.org/10.1007/s12035-017-0839-1.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28(1):53–64.  https://doi.org/10.1210/me.2013-1252.CrossRefPubMedGoogle Scholar
  95. 95.
    Bhat M, Ismail A. Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. J Steroid Biochem Mol Biol. 2015;152:171–9.  https://doi.org/10.1016/j.jsbmb.2015.05.012.CrossRefGoogle Scholar
  96. 96.
    Nakai K, Fujii H, Kono K, Goto S, Kitazawa R, Kitazawa S, et al. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am J Hypertens. 2014;27(4):586–95.  https://doi.org/10.1093/ajh/hpt160.CrossRefGoogle Scholar
  97. 97.
    Gokce N, Holbrook M, Duffy SJ, Demissie S, Cupples LA, Biegelsen E, et al. Effects of race and hypertension on flow-mediated and nitroglycerin-mediated dilation of the brachial artery. Hypertension. 2001;38(6):1349–54.  https://doi.org/10.1161/hy1201.096575.CrossRefGoogle Scholar
  98. 98.
    Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Sliwinska A. Vitamin D supplementation reduces both oxidative DNA damage and insulin resistance in the elderly with metabolic disorders. Int J Mol Sci. 2019;20(12).  https://doi.org/10.3390/ijms20122891.CrossRefGoogle Scholar
  99. 99.
    Ju SY, Lee JY, Kim DH. Low 25-hydroxyvitamin D levels and the risk of frailty syndrome: a systematic review and dose-response meta-analysis. BMC Geriatr. 2018;18(1):206.  https://doi.org/10.1186/s12877-018-0904-2.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17.  https://doi.org/10.1007/s00262-008-0639-6.CrossRefGoogle Scholar
  101. 101.
    Franceschi C, Valensin S, Bonafe M, Paolisso G, Yashin AI, Monti D, et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol. 2000;35(6–7):879–96.  https://doi.org/10.1016/s0531-5565(00)00172-8.CrossRefGoogle Scholar
  102. 102.
    Ostan R, Monti D, Mari D, Arosio B, Gentilini D, Ferri E, et al. Heterogeneity of thyroid function and impact of peripheral thyroxine Deiodination in centenarians and semi-supercentenarians: association with functional status and mortality. J Gerontol A Biol Sci Med Sci. 2019;74(6):802–10.  https://doi.org/10.1093/gerona/gly194.CrossRefGoogle Scholar
  103. 103.
    Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci. 2003;58(3):232–7.  https://doi.org/10.1093/gerona/58.3.m232.CrossRefGoogle Scholar
  104. 104.
    Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327(23):1637–42.  https://doi.org/10.1056/NEJM199212033272305.CrossRefGoogle Scholar
  105. 105.
    Passeri G, Pini G, Troiano L, Vescovini R, Sansoni P, Passeri M, et al. Low vitamin D status, high bone turnover, and bone fractures in centenarians. J Clin Endocrinol Metab. 2003;88(11):5109–15.  https://doi.org/10.1210/jc.2003-030515.CrossRefGoogle Scholar
  106. 106.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.  https://doi.org/10.1172/JCI112134.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Need AG, Morris HA, Horowitz M, Nordin C. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58(6):882–5.  https://doi.org/10.1093/ajcn/58.6.882.CrossRefGoogle Scholar
  108. 108.
    Passeri G, Vescovini R, Sansoni P, Galli C, Franceschi C, Passeri M. Calcium metabolism and vitamin D in the extreme longevity. Exp Gerontol. 2008;43(2):79–87.  https://doi.org/10.1016/j.exger.2007.06.013.CrossRefGoogle Scholar
  109. 109.
    Yao Y, Fu S, Shi Q, Zhang H, Zhu Q, Zhang F, et al. Prevalence of functional dependence in Chinese centenarians and its relationship with serum vitamin D status. Clin Interv Aging. 2018;13:2045–53.  https://doi.org/10.2147/CIA.S182318.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Haslam A, Johnson MA, Hausman DB, Cress ME, Houston DK, Davey A, et al. Vitamin D status is associated with grip strength in centenarians. J Nutr Gerontol Geriatr. 2014;33(1):35–46.  https://doi.org/10.1080/21551197.2013.867825.CrossRefGoogle Scholar
  111. 111.
    Pareja-Galeano H, Alis R, Sanchis-Gomar F, Lucia A, Emanuele E. Vitamin D, precocious acute myocardial infarction, and exceptional longevity. Int J Cardiol. 2015;199:405–6.  https://doi.org/10.1016/j.ijcard.2015.07.082.CrossRefGoogle Scholar
  112. 112.
    Milman S, Schulder-Katz M, Deluty J, Zimmerman ME, Crandall JP, Barzilai N, et al. Individuals with exceptional longevity manifest a delayed association between vitamin D insufficiency and cognitive impairment. J Am Geriatr Soc. 2014;62(1):153–8.  https://doi.org/10.1111/jgs.12601.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gussago C, Arosio B, Guerini FR, Ferri E, Costa AS, Casati M, et al. Impact of vitamin D receptor polymorphisms in centenarians. Endocrine. 2016;53(2):558–64.  https://doi.org/10.1007/s12020-016-0908-7.CrossRefGoogle Scholar
  114. 114.
    De Benedictis G, Franceschi C. The unusual genetics of human longevity. Science of aging knowledge environment : SAGE KE 2006;2006(10):pe20.  https://doi.org/10.1126/sageke.2006.10.pe20.CrossRefGoogle Scholar
  115. 115.
    Franceschi C, Bezrukov V, Blanche H, Bolund L, Christensen K, de Benedictis G, et al. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of healthy aging). Ann N Y Acad Sci. 2007;1100:21–45.  https://doi.org/10.1196/annals.1395.003.CrossRefGoogle Scholar
  116. 116.
    Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, et al. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring. Age. 2013;35(5):1961–73.  https://doi.org/10.1007/s11357-012-9463-1.CrossRefGoogle Scholar
  117. 117.
    Gueresi P, Miglio R, Monti D, Mari D, Sansoni P, Caruso C, et al. Does the longevity of one or both parents influence the health status of their offspring? Exp Gerontol. 2013;48(4):395–400.  https://doi.org/10.1016/j.exger.2013.02.004.CrossRefGoogle Scholar
  118. 118.
    Ostan R, Bucci L, Cevenini E, Palmas MG, Pini E, Scurti M, et al. Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age. 2013;35(5):1995–2007.  https://doi.org/10.1007/s11357-012-9483-x.CrossRefGoogle Scholar
  119. 119.
    Ostan R, Monti D, Mari D, Arosio B, Gentilini D, Ferri E, et al. Heterogeneity of thyroid function and impact of peripheral thyroxine deiodination in centenarians and semi-supercentenarians: association with functional status and mortality. J Gerontol A Biol Sci Med Sci. 2018.  https://doi.org/10.1093/gerona/gly194.CrossRefGoogle Scholar
  120. 120.
    Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF. Centenarian offspring: start healthier and stay healthier. J Am Geriatr Soc. 2008;56(11):2089–92.  https://doi.org/10.1111/j.1532-5415.2008.01949.x.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, et al. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci U S A. 2002;99(12):8442–7.  https://doi.org/10.1073/pnas.122587599.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Tedone E, Arosio B, Gussago C, Casati M, Ferri E, Ogliari G, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians' offspring. Exp Gerontol. 2014;58:90–5.  https://doi.org/10.1016/j.exger.2014.06.018.CrossRefGoogle Scholar
  123. 123.
    Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofen EA, Andersen SL, et al. Lower all-cause, cardiovascular, and cancer mortality in centenarians' offspring. J Am Geriatr Soc. 2004;52(12):2074–6.  https://doi.org/10.1111/j.1532-5415.2004.52561.x.CrossRefGoogle Scholar
  124. 124.
    Terry DF, Wilcox MA, McCormick MA, Perls TT. Cardiovascular disease delay in centenarian offspring. J Gerontol A Biol Sci Med Sci. 2004;59(4):385–9.CrossRefGoogle Scholar
  125. 125.
    Vitale G, Brugts MP, Ogliari G, Castaldi D, Fatti LM, Varewijck AJ, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians' offspring. Aging (Albany NY). 2012;4(9):580–9.  https://doi.org/10.18632/aging.100484.CrossRefGoogle Scholar
  126. 126.
    Noordam R, de Craen AJ, Pedram P, Maier AB, Mooijaart SP, van Pelt J et al. Levels of 25-hydroxyvitamin D in familial longevity: the Leiden Longevity Study. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2012;184(18):E963–8.  https://doi.org/10.1503/cmaj.120233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Department of Clinical Sciences and Community Health (DISCCO)University of MilanMilanItaly
  3. 3.Istituto Auxologico Italiano, IRCCS, Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed OncologicaMilanItaly

Personalised recommendations