Reviews in Endocrine and Metabolic Disorders

, Volume 20, Issue 3, pp 253–261 | Cite as

Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease

  • Syeda Momna Ishtiaq
  • Haroon Rashid
  • Zulfia Hussain
  • Muhammad Imran Arshad
  • Junaid Ali KhanEmail author


Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic peroxisome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve obesity and obesity-associated NAFLD.


Adiponectin Obesity NAFLD PPAR 



This research was supported by funds from Higher Education Commission, Islamabad, Pakistan project number 6380/Punjab/NRPU/R&D/HEC/2016 and 7538/Sindh/NRPU/R & D/HEC/2017 to J.A.K, 4613/Punjab/NRPU/HEC/2015 to MIA. SMI worked Research Assistant and got PhD fellowship from the project 6380/Punjab/NRPU/R&D/HEC/2016. Z.H. is recipient of Indigenous PhD Scholarship (PIN: 213-58222-2BM2-162) from Higher Education Commission, Islamabad, Pakistan.


  1. 1.
    Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8.Google Scholar
  2. 2.
    Hussain Z, Khan JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10(10):940–4.Google Scholar
  3. 3.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cowerd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, et al. Adiponectin lowers glucose production by increasing SOGA. Am J Pathol. 2010;177(4):1936–45.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, et al. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep. 2018;8(1):9858.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009;17(5):941–64.Google Scholar
  8. 8.
    Tu C, He J, Wu B, Wang W, Li Z. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine. 2018. Scholar
  9. 9.
    Ghowsi M, Khazali H, Sisakhtnezhad S. Evaluation of TNF-α and IL-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci. 2018;21(2):165–74.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Luo Y, Liu M. Adiponectin: a versatile player of innate immunity. J Mol Cell Biol. 2016;8(2):120–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Combs TP, Marliss EB. Adiponectin signaling in the liver. Rev Endocr Metab Disord. 2014;15(2):137–47.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.Google Scholar
  13. 13.
    Vajro P, Paolella G, Fasano A. Microbiota and gut–liver Axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Arslan N. Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 2014;20(44):16452–63.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepat Mon. 2015;15(1):e23941.Google Scholar
  16. 16.
    Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and Immunohistochemical effects of metformin HCl-loaded beads formulations in Streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats. Pak Vet J. 2018;38(2):127–32.Google Scholar
  17. 17.
    Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: current perspectives. Clin Res Hepatol Gastroenterol. 2017;41(1):17–24.Google Scholar
  18. 18.
    Mehmood K, Zhang H, Iqbal MK, Rehman MU. Li kun, Huang S, Shahzad M, Nabi F, Iqbal M, Li J. Tetramethylpyrazine mitigates toxicity and liver oxidative stress in Tibial dyschondroplasia chickens. Pak Vet J. 2018;38(1):76–80.Google Scholar
  19. 19.
    Noureen S, Riaz A, Saif A, Arshad M, Qamar MF, Arshad N. Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: a comparison. Pak Vet J. 2018;38(3):306–10.Google Scholar
  20. 20.
    Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38(3):311–5.Google Scholar
  21. 21.
    Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed Pharmacother. 2018;106:285–91.Google Scholar
  22. 22.
    Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on Spermatozoas. Int J Endocrinol. 2018;2018:1–11.Google Scholar
  23. 23.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.Google Scholar
  24. 24.
    Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol. 2018;63:9–13.Google Scholar
  25. 25.
    Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol. 2013;380:55–64.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet? Annu Rev Pharmacol Toxicol. 2016;56(1):605–26.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Trauner M, Halilbasic E. Nuclear receptors as new perspective for the Management of Liver Diseases. Gastroenterology. 2011;140(4):1120–5.Google Scholar
  29. 29.
    Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011;53(3):1023–34.Google Scholar
  30. 30.
    Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by acetaminophen in mice: the importance of oxidative stress suppression. Adv Pharm Bull. 2018;8(2):331–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR-γ agonist alleviates liver and spleen pathology via inducing Treg cells during Schistosoma japonicum infection. J Immunol Res. 2018;2018:6398078.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One. 2013;8(4):e62253.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 2018;474:227–37.Google Scholar
  34. 34.
    Zhu P, Huang W, Li J, Ma X, Hu M, Wang Y, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92(2):1525–36.Google Scholar
  35. 35.
    Reda E, Hassaneen S, El-Abhar HS. Novel trajectories of bromocriptine antidiabetic action: leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol. 2018;9:771.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Parvin R, Noro E, Saito-Hakoda A, Shimada H, Suzuki S, Shimizu K, et al. Inhibitory effects of a novel PPAR-γ agonist MEKT1 on Pomc expression/ACTH secretion in AtT20 cells. PPAR Res. 2018;5346272.Google Scholar
  37. 37.
    Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, et al. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61(10):2235–46.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2018;498(4):1037–44.Google Scholar
  40. 40.
    Raso GM, Simeoli R, Russo R, Iacono A, Santoro A, Paciello O, Ferrante MC, Canani RB, Calignano A, Meli R. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. Alisi A, editor. PLoS ONE. 2013;8(7):e68626.Google Scholar
  41. 41.
    Mishra S, Gupta V, Mishra S, Kulshrestha H, Kumar S, Gupta V, et al. Association of acylation stimulating protein and adiponectin with metabolic risk marker in North Indian obese women. Diabetes Metab Syndr Clin Res Rev. 2018. Scholar
  42. 42.
    Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.Google Scholar
  43. 43.
    Sayeed M, Gautam S, Verma DP, Afshan T, Kumari T, Srivastava AK, et al. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–23.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMedGoogle Scholar
  45. 45.
    Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.Google Scholar
  46. 46.
    Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145–50.Google Scholar
  47. 47.
    Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015;27(3):532–44.Google Scholar
  48. 48.
    Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver diseases. Diabetes Metab. 2014;40(2):95–107.Google Scholar
  49. 49.
    Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13(8):e0201499.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, De la Peña S, Arroyo Helguera OE. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018;35(4):841–6.Google Scholar
  51. 51.
    Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.Google Scholar
  52. 52.
    Sacerdoti D, Singh SP, Schragenheim J, Bellner L, Vanella L, Raffaele M, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;3484107. Scholar
  53. 53.
    Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández DI, Rodríguez E, Morán L, Hernández-Cosido L, Torres JL, Seoane LM, , Cubero FJ, Marcos M, Sabio G. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 2019; 216(5): 1108–1119.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and Neointimal formation. J Biol Chem. 2002;277(29):25863–6.Google Scholar
  55. 55.
    Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected Ob/Ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8.Google Scholar
  56. 56.
    Wei G, Yi S, Yong D, Shaozhuang L, Guangyong Z, Sanyuan H. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis. 2018;14(7):960–71.Google Scholar
  57. 57.
    Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(3):700–8.Google Scholar
  58. 58.
    Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50(3):957–69.Google Scholar
  59. 59.
    Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep. 2016;6:34151.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267–75.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci. 2018;115(26):E5896–905.Google Scholar
  64. 64.
    Richter FC, Obba S, Simon AK. Local exchange of metabolites shapes immunity. Immunology. 2018;155(3):309–19.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Khan HA, Ahmad MZ, Khan JA, Arshad MI. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Int. 2017;16(3):245–56.Google Scholar
  66. 66.
    Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.Google Scholar
  67. 67.
    Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.Google Scholar
  68. 68.
    Chen J, Montagner A, Tan N, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19(7).pii: E1893.Google Scholar
  69. 69.
    Yu Z, Guo F, Zhang Z, Luo X, Tian J, Li H. Protective effects of glycyrrhizin on LPS and amoxicillin/potassium Clavulanate-induced liver injury in chicken. Pak Vet J. 2017;37(1):13–8.Google Scholar
  70. 70.
    de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12.Google Scholar
  71. 71.
    Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127(1):55–64.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;95974.Google Scholar
  73. 73.
    Mandrika I, Tilgase A, Petrovska R, Klovins J. Hydroxycarboxylic acid receptor ligands modulate Proinflammatory cytokine expression in human macrophages and adipocytes without affecting adipose differentiation. Biol Pharm Bull. 2018;41(10):1574–80.Google Scholar
  74. 74.
    Salvadó L, Barroso E, Gómez-Foix AM, Palomer X, Michalik L, Wahli W, et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia. 2014;57(10):2126–35.Google Scholar
  75. 75.
    Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.Google Scholar
  77. 77.
    Magadum A, Engel F. PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci. 2018;19(7). pii: E2013.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res. 2018;6970407.Google Scholar
  79. 79.
    Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chen J, Liu H, Zhang X. Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(7):732–7.Google Scholar
  81. 81.
    Kim MJ, Park CH, Kim DH, Park MH, Park KC, Hyun MK, et al. Hepatoprotective effects of MHY3200 on high-fat, diet-induced, non-alcoholic fatty liver disease in rats. Mol Basel Switz. 2018;23(8):2057.Google Scholar
  82. 82.
    Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High fat diet upregulates fatty acid oxidation and Ketogenesis via intervention of PPAR-γ. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;48(3):1317–31.Google Scholar
  83. 83.
    Santin JR, Machado ID, Drewes CC, Kupa LD, Soares RM, Cavalcanti DM, et al. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother. 2018;105:947–55.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Pharmacy, Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
  2. 2.Institute of MicrobiologyUniversity of AgricultureFaisalabadPakistan

Personalised recommendations