Reviews in Endocrine and Metabolic Disorders

, Volume 20, Issue 3, pp 295–302 | Cite as

Risk of vertebral fractures in hypoparathyroidism

  • Anna Maria Formenti
  • Francesco Tecilazich
  • Raffaele Giubbini
  • Andrea GiustinaEmail author


Parathyroid hormone (PTH) exerts both anabolic and catabolic actions on bone,depending on the duration and periodicity of exposure. Hypoparathyroidism is defined by inadequate production of PTH in the presence oflow serum calcium. In hypoparathyroidism it has been reported an increase in corticaland trabecular bone mass, but it is still unknown if these quantitative variations maybe accompanied by qualitative ones and increased bone strength. Despite the extensive data available on the effects of hypoparathyroidism on bone, itseffect on the hard end point in this area which is the risk of fractures still remainsunresolved and highly debated. As a matter of fact no previous review has focused onthis relevant clinical topic. This review will deal with the various aspects of bone metabolism (turn-over,density, quality) in hypoparathyroidism, focusing on the few data available on therisk of fracture and in particular of morphometric vertebral fractures, the emerging way to assess actual skeletal fragility particularly in secondary forms of osteoporosis.


Hypoparathyroidism Vertebral fractures Morphometry Parathyroid hormone Bone metabolism Bone mineral density Bone quality 



Parathyroid hormone


Calcium sensing receptor


Transforming growth factor alpha


Fibroblast growth factor 23


Receptor activator of nuclear factor-kappaB ligand


Insulin-like growth factor 1


Tumor necrosis factor


Bone mineral density


Volumetric bone mineral density


Peripheral quantitative computed tomography


Vertebral fractures


Dual-energy X-ray absorptiometery


Anterior vertebral height


Middle vertebral height


Posterior vertebral height


Growth hormone deficiency


Compliance with ethical standards

Conflict of interest

Author AG has received research grants from Ipsen and Novartis. Author AG is consultant for Ipsen, Pfizer, Astellas, Abiogen and Shire. Author AMF is consultant for Shire and Abiogen. Author FT declares that he has no conflict of interest. Author RG declares that he has no conflict of interest.


  1. 1.
    Hanley DA, Morrish WP, Hodsman AB, Dempster DW. Pharmacological mechanisms of therapeutics: parathyroid hormone. In: Bilezikian JP, Raisz L, Martin TJ, editors. Principles of Bone Biology: Elsevier; Amsterdam, 2008; p. 1661–95.Google Scholar
  2. 2.
    Brown EM. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab. 1983;56:572–81.Google Scholar
  3. 3.
    Wallace J, Scarpa A. Similarities of Li+ and low Ca2+ in the modulation of secretion by parathyroid cells in vitro. J Biol Chem. 1983;258:6288–92.Google Scholar
  4. 4.
    Dusso A, Cozzolino M, Lu Y, Sato T, Slatopolsky E. 1,25-Dihydroxyvitamin D downregulation of TGFalpha/EGFR expression and growth signaling: a mechanism for the antiproliferative actions of the sterol in parathyroid hyperplasia of renal failure. J Steroid Biochem Mol Biol. 2004;89–90:507–11.Google Scholar
  5. 5.
    Xu M, Choudhary S, Goltzman D, Ledgard F, Adams D, Gronowicz G, et al. Do cyclooxygenase-2 knockout mice have primary hyperparathyroidism? Endocrinology. 2005;146:1843–53.Google Scholar
  6. 6.
    Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21:1245–54.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ullrich KJ, Rumrich G, Kloss S. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport. Pflugers Arch. 1976;364:223–8.Google Scholar
  8. 8.
    van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ. Coordinated control of renal Ca (2+) transport proteins by parathyroid hormone. Kidney Int. 2005;68:1708–21.Google Scholar
  9. 9.
    Goltzman D. Physiology of parathyroid hormone. Endocrinol Metab Clin N Am. 2018;47:743–58.Google Scholar
  10. 10.
    Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41–50.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J Biol Chem. 2001;276:7586–92.Google Scholar
  12. 12.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.Google Scholar
  13. 13.
    Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357:905–16.Google Scholar
  14. 14.
    Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH (1--38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene associated bone formation. Endocrinology. 2001;142:4047–54.Google Scholar
  15. 15.
    Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res. 2004;19:235–44.Google Scholar
  16. 16.
    Stein EM, Silva BC, Boutroy S, Zhou B, Wang J, Udesky J, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013;28:1029–40.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Vignali E, Viccica G, Diacinti D, Cetani F, Cianferotti L, Ambrogini E, et al. Morphometric vertebral fractures in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 2009;94:2306–12.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–59.PubMedPubMedCentralGoogle Scholar
  19. 19.
    McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124:1247–53.Google Scholar
  20. 20.
    Shoback D. Clinical practice. Hypoparathyroidism. N Engl J Med. 2008;359:391–403.Google Scholar
  21. 21.
    Seo GH, Chai YJ, Choi HJ, Lee KE. Incidence of permanent hypocalcaemia after total thyroidectomy with or without central neck dissection for thyroid carcinoma: a nationwide claim study. Clin Endocrinol. 2016;85:483–7.Google Scholar
  22. 22.
    Tecilazich F, Formenti AM, Frara S, Giubbini R, Giustina A. Treatment of hypoparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32:955–64.Google Scholar
  23. 23.
    Mannstadt M, Bilezikian JP, Thakker RV, Hannan FM, Clarke BL, Rejnmark L, et al. Hypoparathyroidism. Nat Rev Dis Primers. 2017;3:17055.Google Scholar
  24. 24.
    Bollerslev J, Rejnmark L, Marcocci C, Shoback DM, Sitges-Serra A, van Biesen W, et al. European Society of Endocrinology Clinical Guideline: treatment of chronic hypoparathyroidism in adults. Eur J Endocrinol. 2015;173:G1–20.Google Scholar
  25. 25.
    Gafni RI, Brahim JS, Andreopoulou P, Bhattacharyya N, Kelly MH, Brillante BA, et al. Daily parathyroid hormone 1-34 replacement therapy for hypoparathyroidism induces marked changes in bone turnover and structure. J Bone Miner Res. 2012;27:1811–20.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rubin MR, Dempster DW, Sliney J Jr, Zhou H, Nickolas TL, Stein EM, et al. PTH(1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J Bone Miner Res. 2011;26:2727–36.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Abugassa S, Nordenstrom J, Eriksson S, Sjoden G. Bone mineral density in patients with chronic hypoparathyroidism. J Clin Endocrinol Metab. 1993;76:1617–21.Google Scholar
  28. 28.
    Fujiyama K, Kiriyama T, Ito M, Nakata K, Yamashita S, Yokoyama N, et al. Attenuation of postmenopausal high turnover bone loss in patients with hypoparathyroidism. J Clin Endocrinol Metab. 1995;80:2135–8.Google Scholar
  29. 29.
    Touliatos JS, Sebes JI, Hinton A, McCommon D, Karas JG, Palmieri GM. Hypoparathyroidism counteracts risk factors for osteoporosis. Am J Med Sci. 1995;310:56–60.Google Scholar
  30. 30.
    Takamura Y, Miyauchi A, Yabuta T, Kihara M, Ito Y, Miya A. Attenuation of postmenopausal bone loss in patients with transient hypoparathyroidism after total thyroidectomy. World J Surg. 2013;37:2860–5.Google Scholar
  31. 31.
    Chen Q, Kaji H, Iu MF, Nomura R, Sowa H, Yamauchi M, et al. Effects of an excess and a deficiency of endogenous parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab. 2003;88:4655–8.Google Scholar
  32. 32.
    Cusano NE, Nishiyama KK, Zhang C, Rubin MR, Boutroy S, McMahon DJ, et al. Noninvasive assessment of skeletal microstructure and estimated bone strength in hypoparathyroidism. J Bone Miner Res. 2016;31:308–16.Google Scholar
  33. 33.
    Langdahl BL, Mortensen L, Vesterby A, Eriksen EF, Charles P. Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone. 1996;18:103–8.Google Scholar
  34. 34.
    Rubin MR, Dempster DW, Zhou H, Shane E, Nickolas T, Sliney J Jr, et al. Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res. 2008;23:2018–24.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Underbjerg L, Sikjaer T, Mosekilde L, Rejnmark L. Postsurgical hypoparathyroidism--risk of fractures, psychiatric diseases, cancer, cataract, and infections. J Bone Miner Res. 2014;29:2504–10.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res. 1992;7:221–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jalava T, Sarna S, Pylkkanen L, Mawer B, Kanis JA, Selby P, et al. Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res. 2003;18:1254–60.Google Scholar
  38. 38.
    Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800.Google Scholar
  39. 39.
    Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine. 2012;42:39–51.Google Scholar
  40. 40.
    Bonadonna S, Mazziotti G, Nuzzo M, Bianchi A, Fusco A, De Marinis L, et al. Increased prevalence of radiological spinal deformities in active acromegaly: a cross-sectional study in postmenopausal women. J Bone Miner Res. 2005;20:1837–44.Google Scholar
  41. 41.
    Formenti AM, Doga M, Frara S, Ritelli M, Colombi M, Banfi G, et al. Skeletal fragility: an emerging complication of Ehlers-Danlos syndrome. Endocrine. 2019;63:225–30.Google Scholar
  42. 42.
    Frara S, Losa M, Doga M, Formenti AM, Mortini P, Mazziotti G, et al. High prevalence of radiological vertebral fractures in patients with TSH-secreting pituitary adenoma. J Endocr Soc. 2018;2:1089–99.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Mendonca ML, Pereira FA, Nogueira-Barbosa MH, Monsignore LM, Teixeira SR, Watanabe PC, et al. Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr Disord. 2013;13:1.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chawla H, Saha S, Kandasamy D, Sharma R, Sreenivas V, Goswami R. Vertebral fractures and bone mineral density in patients with idiopathic hypoparathyroidism on long-term follow-up. J Clin Endocrinol Metab. 2017;102:251–8.Google Scholar
  45. 45.
    Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R, et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2015;100:384–94.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Angeli A, Guglielmi G, Dovio A, Capelli G, de Feo D, Giannini S, et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone. 2006;39:253–9.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.Google Scholar
  48. 48.
    Mazziotti G, Doga M, Frara S, Maffezzoni F, Porcelli T, Cerri L, et al. Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine. 2016;52:103–10.Google Scholar
  49. 49.
    Mazziotti G, Chiavistelli S, Giustina A. Pituitary diseases and bone. Endocrinol Metab Clin N Am. 2015;44:171–80.Google Scholar
  50. 50.
    Mazziotti G, Frara S, Giustina A. Pituitary diseases and bone. Endocr Rev. 2018;39:440–88.Google Scholar
  51. 51.
    Mazziotti G, Bianchi A, Bonadonna S, Nuzzo M, Cimino V, Fusco A, et al. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J Bone Miner Res. 2006;21:520–8.Google Scholar
  52. 52.
    Mazziotti G, Bianchi A, Bonadonna S, Cimino V, Patelli I, Fusco A, et al. Prevalence of vertebral fractures in men with acromegaly. J Clin Endocrinol Metab. 2008;93(12):4649–55.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna Maria Formenti
    • 1
  • Francesco Tecilazich
    • 1
  • Raffaele Giubbini
    • 2
  • Andrea Giustina
    • 1
    Email author
  1. 1.San Raffaele Vita-Salute University Via OlgettinaMilanoItaly
  2. 2.University of BresciaBresciaItaly

Personalised recommendations