Role of eating disorders-related polymorphisms in obesity pathophysiology

  • Carolina Ferreira Nicoletti
  • Heitor Bernardes Pereira Delfino
  • Flávia Campos Ferreira
  • Marcela Augusta de Souza Pinhel
  • Carla Barbosa NoninoEmail author


Human biological system provides innumerable neuroendocrine inputs for food intake control, with effects on appetite’s modulation and the satiety signs. Its regulation is very complex, engaging several molecular interactions with many tissues, hormones, and neural circuits. Thus, signaling molecules that control food intake are critical for normal energy homeostasis and a deregulation of these pathways can lead to eating disorders and obesity. In line of this, genetic factors have a significantly influence of the regulation of neural circuits controlling the appetite and satiety pathways, as well as the regulation of brain reward systems. Single Nucleotide Polymorphisms (SNPs) in genes related to hypothalamic appetite and satiety mechanisms, further in multiple neurotransmitter systems may contribute to the development of major Eating Disorders (EDs) related to obesity, among them Binge Eating Disorder (BED) and Bulimia Nervosa (BN), which are discussed in this review.


Obesity Food intake Eating disorders Binge eating disorder (BED) Bulimia nervosa (BN) Polymorphism 



Single Nucleotide Polymorphisms


Eating Disorders


Binge Eating Disorder


Bulimia Nervosa


Melanocortin 4 receptor


Opioid Receptor delta 1


Brain derived neurotropic factor


Fat mass and obesity associated


ventral tegmental area VTA


nucleus accumbens


peptide tyrosine tyrosine




arcuate nucleus


paraventricular nucleus


dorsomedial nucleus


ventromedial nucleus


lateral hypothalamic area


neuropeptide Y


agouti related peptide




cocaine- and amphetamine-regulated transcript


α-melanocyte-stimulating hormone


G protein coupled melanocortin receptors


corticotropin-releasing hormone


thyrotropin-releasing hormone


lumbar cerebrospinal fluid


dopamine 2 receptors


dopamine transporter genes


dopamine receptor gene


serotonin transporter gene


brain derived neurotrophic factor


estrogen receptor 1


estrogen receptor 2


cannabinoid receptor 1


dopamine transporter





This study was supported by Coordination of Improvement of Higher Education Personnel (CAPES), Brazil.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.


  1. 1.
    Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin N Am. 2018;102:13–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sarzynski MA, Jacobson P, Rankinen T, Carlsson B, Sjostrom L, Bouchard C, et al. Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases. Int J Obes. 2011;35:676–83.CrossRefGoogle Scholar
  5. 5.
    Peckmezian T, Hay P. A systematic review and narrative synthesis of interventions for uncomplicated obesity: weight loss, well-being and impact on eating disorders. J Eat Disord. 2017;5:15.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Steiger H, Richardson J, Schmitz N, Joober R, Israel M, Bruce KR, et al. Association of trait-defined, eating-disorder sub-phenotypes with (biallelic and triallelic) 5HTTLPR variations. J Psychiatr Res. 2009;43:1086–94.CrossRefPubMedGoogle Scholar
  7. 7.
    Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, et al. New insights in anorexia nervosa. Front Neurosci. 2016;10:256.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sardahaee FS, Holmen TL, Micali N, Kvaloy K. Effects of single genetic variants and polygenic obesity risk scores on disordered eating in adolescents - the HUNT study. Appetite. 2017;118:8–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Castellini G, Franzago M, Bagnoli S, Lelli L, Balsamo M, Mancini M, et al. Fat mass and obesity-associated gene (FTO) is associated to eating disorders susceptibility and moderates the expression of psychopathological traits. PLoS One. 2017;12:e0173560.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hinney A, Volckmar AL. Genetics of eating disorders. Curr Psychiatry Rep. 2013;15(12):423. Scholar
  11. 11.
    Micali N, Field AE, Treasure JL,Evans DM. Are obesity risk genes associated with binge eating in adolescence? Obesity (Silver Spring) 2015; 23: 1729-1736.Google Scholar
  12. 12.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Davis CA, Levitan RD, Reid C, Carter JC, Kaplan AS, Patte KA, et al. Dopamine for "wanting" and opioids for "liking": a comparison of obese adults with and without binge eating. Obesity (Silver Spring). 2009;17:1220–5.Google Scholar
  14. 14.
    Njike VY, Smith TM, Shuval O, Shuval K, Edshteyn I, Kalantari V, et al. Snack food, satiety, and weight. Adv Nutr. 2016;7:866–78.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tremblay A, Bellisle F. Nutrients, satiety, and control of energy intake. Appl Physiol Nutr Metab. 2015;40:971–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Blundell JE,Halford JCG. Appetite: Physiological and Neurobiological Aspects. Encyclopedia of Human Nutrition. London.: Academic Press, 1998, p. 121–126.Google Scholar
  17. 17.
    Chambers AP, Sandoval DA, Seeley RJ. Integration of satiety signals by the central nervous system. Curr Biol. 2013;23:R379–88.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Korner J, Leibel RL. To eat or not to eat - how the gut talks to the brain. N Engl J Med. 2003;349:926–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14:387–407.CrossRefPubMedGoogle Scholar
  20. 20.
    Matafome P, Seiça R. The role of brain in energy balance. Adv Neurobiol. 2017;19:33–48. Scholar
  21. 21.
    Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev. 2015;16:234–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Martin CK, Bellanger DE, Rau KK, Coulon S, Greenway FL. Safety of the Ullorex oral intragastric balloon for the treatment of obesity. J Diabetes Sci Technol. 2007;1:574–81.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol. 2004;55:137–54.PubMedGoogle Scholar
  24. 24.
    Trayhurn P, Bing C. Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1237–49.CrossRefGoogle Scholar
  25. 25.
    Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57:359–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev. 2005;85:1131–58.CrossRefPubMedGoogle Scholar
  28. 28.
    Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.CrossRefPubMedGoogle Scholar
  29. 29.
    Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1149–58.CrossRefGoogle Scholar
  30. 30.
    Ramos EJ, Meguid MM, Campos AC, Coelho JC. Neuropeptide Y, alpha-melanocyte-stimulating hormone, and monoamines in food intake regulation. Nutrition. 2005;21:269–79.CrossRefPubMedGoogle Scholar
  31. 31.
    Hernandez L, Hoebel BG. Food intake and lateral hypothalamic self-stimulation covary after medial hypothalamic lesions or ventral midbrain 6-hydroxydopamine injections that cause obesity. Behav Neurosci. 1989;103:412–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Meguid MM, Yang ZJ, Koseki M. Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats. Brain Res Bull. 1995;36:487–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang ZJ, Koseki M, Meguid MM, Laviano A. Eating-related increase of dopamine concentration in the LHA with oronasal stimulation. Am J Phys. 1996;270:R315–8.Google Scholar
  34. 34.
    Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: 'liking', 'wanting', and learning. Curr Opin Pharmacol. 2009;9:65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Berridge KC. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology. 2007;191:391–431.CrossRefPubMedGoogle Scholar
  36. 36.
    Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res. 2015;277:14–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Wyler SC, Lord CC, Lee S, Elmquist JK, Liu C. Serotonergic control of metabolic homeostasis. Front Cell Neurosci. 2017;11:277.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Berthoud HR, Munzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152:1728–38.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jerlhag E, Janson AC, Waters S, Engel JA. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS One. 2012;7:e49557.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Figlewicz DP. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Phys Regul Integr Comp Phys. 2003;284:R882–92.Google Scholar
  41. 41.
    Mebel DM, Wong JC, Dong YJ, Borgland SL. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci. 2012;36:2336–46.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59:954–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 2011;12:141–51.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA, Wichmann R, et al. Decoding neural circuits that control compulsive sucrose seeking. Cell. 2015;160:528–41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron. 2016;90:1286–98.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    MacLean PS, Blundell JE, Mennella JA, Batterham RL. Biological control of appetite: a daunting complexity. Obesity (Silver Spring). 2017;25(Suppl 1):S8–S16.CrossRefGoogle Scholar
  49. 49.
    Pike KM, Dunne PE. The rise of eating disorders in Asia: a review. J Eat Disord. 2015;3:33.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Association AP. iagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed ed. Arlington: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  51. 51.
    Culbert KM, Racine SE, Klump KL. Research review: what we have learned about the causes of eating disorders - a synthesis of sociocultural, psychological, and biological research. J Child Psychol Psychiatry. 2015;56:1141–64.CrossRefPubMedGoogle Scholar
  52. 52.
    Mitchison D, Hay PJ. The epidemiology of eating disorders: genetic, environmental, and societal factors. Clin Epidemiol. 2014;6:89–97.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Marcus MD. Obesity and eating disorders: articles from the international journal of eating disorders 2017-2018. Int J Eat Disord. 2018;51:1296–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Palavras MA, Hay P, Filho CA, Claudino A. The efficacy of psychological therapies in reducing weight and binge eating in people with bulimia nervosa and binge eating disorder who are overweight or obese-a critical synthesis and meta-analyses. Nutrients. 2017;9.Google Scholar
  55. 55.
    Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet. 2010;375:583–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14:406–14.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Himmerich H, Treasure J. Psychopharmacological advances in eating disorders. Expert Rev Clin Pharmacol. 2018;11:95–108.CrossRefPubMedGoogle Scholar
  58. 58.
    Conceicao E, Bastos AP, Brandao I, Vaz AR, Ramalho S, Arrojado F, et al. Loss of control eating and weight outcomes after bariatric surgery: a study with a Portuguese sample. Eat Weight Disord. 2014;19:103–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Meany G, Conceicao E, Mitchell JE. Binge eating, binge eating disorder and loss of control eating: effects on weight outcomes after bariatric surgery. Eur Eat Disord Rev. 2014;22:87–91.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    da Luz FQ, Hay P, Touyz S, Sainsbury A. Obesity with comorbid eating disorders: associated health risks and treatment approaches. Nutrients. 2018;10.Google Scholar
  61. 61.
    Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes. 2011;35:1455–65.CrossRefGoogle Scholar
  62. 62.
    Wilson JL, Enriori PJ. A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol. 2015;418(Pt 2):108–19.CrossRefPubMedGoogle Scholar
  63. 63.
    Monteleone AM, Piscitelli F, Dalle Grave R, El Ghoch M, Di Marzo V, Maj M, et al. Peripheral endocannabinoid responses to hedonic eating in binge-eating disorder. Nutrients. 2017;9.Google Scholar
  64. 64.
    Mathes WF, Brownley KA, Mo X, Bulik CM. The biology of binge eating. Appetite. 2009;52:545–53.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Avena NM. The study of food addiction using animal models of binge eating. Appetite. 2010;55:734–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159:1193–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bello NT, Hajnal A. Dopamine and binge eating behaviors. Pharmacol Biochem Behav. 2010;97:25–33.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Blundell JE. Serotonin manipulations and the structure of feeding behaviour. Appetite. 1986;7(Suppl):39–56.CrossRefPubMedGoogle Scholar
  71. 71.
    Steiger H. Eating disorders and the serotonin connection: state, trait and developmental effects. J Psychiatry Neurosci. 2004;29:20–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Klump KL, Suisman JL, Burt SA, McGue M, Iacono WG. Genetic and environmental influences on disordered eating: an adoption study. J Abnorm Psychol. 2009;118:797–805.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Panaro BL, Tough IR, Engelstoft MS, Matthews RT, Digby GJ, Moller CL, et al. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab. 2014;20:1018–29.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST trial. Diabetes. 2012;61:3005–11.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yilmaz Z, Hardaway JA, Bulik CM. Genetics and epigenetics of eating disorders. Adv Genomics Genet. 2015;5:131–50.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Hudson JI, Lalonde JK, Berry JM, Pindyck LJ, Bulik CM, Crow SJ, et al. Binge-eating disorder as a distinct familial phenotype in obese individuals. Arch Gen Psychiatry. 2006;63:313–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Mitchell KS, Neale MC, Bulik CM, Aggen SH, Kendler KS, Mazzeo SE. Binge eating disorder: a symptom-level investigation of genetic and environmental influences on liability. Psychol Med. 2010;40:1899–906.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Javaras KN, Laird NM, Reichborn-Kjennerud T, Bulik CM, Pope HG Jr, Hudson JI. Familiality and heritability of binge eating disorder: results of a case-control family study and a twin study. Int J Eat Disord. 2008;41(2):174–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Levitan RD, Masellis M, Basile VS, Lam RW, Kaplan AS, Davis C, et al. The dopamine-4 receptor gene associated with binge eating and weight gain in women with seasonal affective disorder: an evolutionary perspective. Biol Psychiatry. 2004;56:665–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton Neurosci. 2006;126-127:30–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Helder SG, Collier DA. The genetics of eating disorders. Curr Top Behav Neurosci. 2011;6:157–75.CrossRefPubMedGoogle Scholar
  82. 82.
    Beckers S, Peeters A, Zegers D, Mertens I, Van Gaal L, Van Hul W. Association of the BDNF Val66Met variation with obesity in women. Mol Genet Metab. 2008;95:110–2.CrossRefPubMedGoogle Scholar
  83. 83.
    Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev. 2016;63:223–38.CrossRefPubMedGoogle Scholar
  84. 84.
    Feng J. Role of Cyfip2 in binge eating. Biol Psychiatry. 2017;81:e77–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Steiger H, Thaler L, Gauvin L, Joober R, Labbe A, Israel M, et al. Epistatic interactions involving DRD2, DRD4, and COMT polymorphisms and risk of substance abuse in women with binge-purge eating disturbances. J Psychiatr Res. 2016;77:8–14.CrossRefPubMedGoogle Scholar
  86. 86.
    Rozenblat V, Ong D, Fuller-Tyszkiewicz M, Akkermann K, Collier D, Engels R, et al. A systematic review and secondary data analysis of the interactions between the serotonin transporter 5-HTTLPR polymorphism and environmental and psychological factors in eating disorders. J Psychiatr Res. 2017;84:62–72.CrossRefPubMedGoogle Scholar
  87. 87.
    Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M. The Leu72Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder. Psychiatr Genet. 2007;17:13–6.CrossRefPubMedGoogle Scholar
  88. 88.
    Qasim A, Mayhew AJ, Ehtesham S, Alyass A, Volckmar AL, Herpertz S, Hinney A, et al. Gain-of-function variants in the melanocortin 4 receptor gene confer susceptibility to binge eating disorder in subjects with obesity: a systematic review and meta-analysis. Obes Rev. 2019;20(1):13–21. Scholar
  89. 89.
    Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C, et al. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:620–8.CrossRefGoogle Scholar
  90. 90.
    Davis C, Levitan RD, Yilmaz Z, Kaplan AS, Carter JC, Kennedy JL. Binge eating disorder and the dopamine D2 receptor: genotypes and sub-phenotypes. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;38:328–35.CrossRefGoogle Scholar
  91. 91.
    Noble EP. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet. 2003;116B:103–25.CrossRefPubMedGoogle Scholar
  92. 92.
    Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999;4:290–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Shinohara M, Mizushima H, Hirano M, Shioe K, Nakazawa M, Hiejima Y, et al. Eating disorders with binge-eating behaviour are associated with the s allele of the 3'-UTR VNTR polymorphism of the dopamine transporter gene. J Psychiatry Neurosci. 2004;29:134–7.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kaye WH, Frank GK, Bailer UF, Henry SE, Meltzer CC, Price JC, et al. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol Behav. 2005;85:73–81.CrossRefPubMedGoogle Scholar
  95. 95.
    Monteleone P, Zanardini R, Tortorella A, Gennarelli M, Castaldo E, Canestrelli B, et al. The 196G/a (val66met) polymorphism of the BDNF gene is significantly associated with binge eating behavior in women with bulimia nervosa or binge eating disorder. Neurosci Lett. 2006;406:133–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: when reward outweighs homeostasis. Physiol Behav. 2007;91:506–12.CrossRefPubMedGoogle Scholar
  97. 97.
    Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, et al. Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes. 2000;49:436–44.CrossRefPubMedGoogle Scholar
  98. 98.
    Lilenfeld LR, Kaye WH, Greeno CG, Merikangas KR, Plotnicov K, Pollice C, et al. A controlled family study of anorexia nervosa and bulimia nervosa: psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch Gen Psychiatry. 1998;55:603–10.CrossRefPubMedGoogle Scholar
  99. 99.
    Strober M, Freeman R, Lampert C, Diamond J, Kaye W. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 2000;157:393–401.CrossRefPubMedGoogle Scholar
  100. 100.
    Monteleone P, Bifulco M, Di Filippo C, Gazzerro P, Canestrelli B, Monteleone F, et al. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav. 2009;8:728–32.CrossRefPubMedGoogle Scholar
  101. 101.
    Muller TD, Greene BH, Bellodi L, Cavallini MC, Cellini E, Di Bella D, et al. Fat mass and obesity-associated gene (FTO) in eating disorders: evidence for association of the rs9939609 obesity risk allele with bulimia nervosa and anorexia nervosa. Obes Facts. 2012;5:408–19.CrossRefPubMedGoogle Scholar
  102. 102.
    Thaler L, Groleau P, Badawi G, Sycz L, Zeramdini N, Too A, et al. Epistatic interactions implicating dopaminergic genes in bulimia nervosa (BN): relationships to eating- and personality-related psychopathology. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;39:120–8.CrossRefGoogle Scholar
  103. 103.
    Steiger H, Joober R, Israël M, Young SN, Ng Ying Kin NM, Gauvin L, Bruce KR, et al. The 5HTTLPR polymorphism, psychopathologic symptoms, and platelet [3H-] paroxetine binding in bulimic syndromes. Int J Eat Disord. 2005;37(1):57–60.CrossRefPubMedGoogle Scholar
  104. 104.
    Baker JH, Thornton LM, Bulik CM, Kendler KS, Lichtenstein P. Shared genetic effects between age at menarche and disordered eating. J Adolesc Health. 2012;51:491–6.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nilsson M, Naessén S, Dahlman I, Lindén Hirschberg A, Gustafsson JA, Dahlman-Wright K. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry. 2004;9(1):28–34.CrossRefPubMedGoogle Scholar
  106. 106.
    Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006;27:73–100.CrossRefPubMedGoogle Scholar
  107. 107.
    Steiger H, Richardson J, Joober R, Gauvin L, Israel M, Bruce KR, et al. The 5HTTLPR polymorphism, prior maltreatment and dramatic-erratic personality manifestations in women with bulimic syndromes. J Psychiatry Neurosci. 2007;32:354–62.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol. 2009;20:1–17.CrossRefPubMedGoogle Scholar
  109. 109.
    Jimerson DC, Lesem MD, Kaye WH, Brewerton TD. Low serotonin and dopamine metabolite concentrations in cerebrospinal fluid from bulimic patients with frequent binge episodes. Arch Gen Psychiatry. 1992;49:132–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Tauscher J, Pirker W, Willeit M, de Zwaan M, Bailer U, Neumeister A, et al. [123I] beta-CIT and single photon emission computed tomography reveal reduced brain serotonin transporter availability in bulimia nervosa. Biol Psychiatry. 2001;49:326–32.CrossRefPubMedGoogle Scholar
  111. 111.
    Kaplan AS, Levitan RD, Yilmaz Z, Davis C, Tharmalingam S, Kennedy JL. A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa. Int J Eat Disord. 2008;41:22–8.CrossRefPubMedGoogle Scholar
  112. 112.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Qasim A, Mayhew AJ, Ehtesham S, Alyass A, Volckmar AL, Herpertz S, Hinney A, et al. Gain-offunction variants in the melanocortin 4 receptor gene confer susceptibility to binge eating disorder in subjects with obesity: a systematic review and meta-analysis. Obes Rev. 2019;20(1):13–21.
  116. 116.
    Potoczna N, Branson R, Kral JG, Piec G, Steffen R, Ricklin T, Hoehe MR, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. 2004;8(8):971–81.Google Scholar
  117. 117.
    Hirata T, Uemura T, Shinohara M, Hirano M. Association between Dopamine Transporter Gene (DAT1) Polymorphisms and Eating Disorders with Binge Eating Behavior. Open Journal of Psychiatry. 2017;7:329–343.Google Scholar
  118. 118.
    Nilsson M, Naessén S, Dahlman I, Lindén Hirschberg A, Gustafsson JA, Dahlman-Wright K. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry. 2004 Jan;9(1):28-34.Google Scholar
  119. 119.
    Thaler L, Groleau P, Joober R, Bruce KR, Israel M, Badawi G, Sycz L, Steiger H. Epistatic interaction between 5HTTLPR and TPH2 polymorphisms predicts novelty seeking in women with bulimia nervosa spectrum disorders. Psychiatry Res. 2013;208(1):101–3.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carolina Ferreira Nicoletti
    • 1
  • Heitor Bernardes Pereira Delfino
    • 1
  • Flávia Campos Ferreira
    • 1
  • Marcela Augusta de Souza Pinhel
    • 1
    • 2
  • Carla Barbosa Nonino
    • 3
    Email author
  1. 1.Department of Internal Medicine, Ribeirao Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular BiologySão José do Rio Preto Medical SchoolSão PauloBrazil
  3. 3.Department of Health Sciences, Ribeirão Preto Medical School – FMRP/USP – Laboratory of Nutrigenomic StudiesUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations