Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 19, Issue 4, pp 363–395 | Cite as

Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties?

  • Christian A. KochEmail author
  • Siegfried Krabbe
  • Bernd HehmkeEmail author
Article
  • 110 Downloads

Abstract

The immune system is closely intertwined with the endocrine system. Many effects of medications used for various clinical endocrine conditions such as the metabolic syndrome, hypercholesterolemia, diabetes mellitus, hypertension, Graves’ disease and others also have an impact on the immune system. Some drugs including statins, metformin, angiotensin converting enzyme and proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones are known to have immunomodulatory properties. We here review the literature on this topic and provide some clinical examples including the use of statins in Graves’ orbitopathy, rheumatoid arthritis, multiple sclerosis, and adult-onset Still’s disease. In that context, we introduce a special immunodiagnostics method developed at the Institute of  Diabetes “Gerhardt Katsch” in Karlsburg, Germany, to not only measure but also monitor immune disease activity.

Keywords

Statin Flow cytometry Interleukin 2 Autoantigen Somatostatin Immune Thyroid Orbitopathy Autoimmune Multiple sclerosis Rheumatoid arthritis Metformin PCSK9 Testosterone Lupus 

Notes

Compliance with ethical standards

All patients have provided informed consent for the off label use of statins and for permission to conduct experiments and publish the results. One case study with Graves’s orbitopathy has been published in poster format at the Endocrine Society Meeting 2018 in Chicago: Statins As Immunomodulatory Therapy In Graves’ Orbitopathy. Poster Presentation SAT-676, 100th Endocrine Society Meeting, Chicago, IL, March 17, 2018.

Conflict of interest

Prof. Koch declares no direct conflict with this article. He has served on the Advisory Board of Novartis on the topic acromegaly and has participated in educational conferences on the topics neuroendocrine tumors and acromegaly sponsored by Novartis and Ipsen. Dr. Hehmke declares no conflict of interest. Prof. Krabbe declares no direct conflict with this article. He has served on the Advisory Board of Lilly and as speaker for Berlin-Chemie, Amgen, and MSD Sharp & Dohme / Merck & Co. Inc.

Figure and Table legends are provided within the respective text sections.

Reference [16] and parts of the table from it are available as open access article and for reproduction use as long as the source is acknowledged / cited which is the case here.

References

  1. 1.
    Karalis K, Sano H, Redwine J, Listwak S, Wilder RL, Chrousos GP. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science. 1991;254(5030):421–3.Google Scholar
  2. 2.
    Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332(20):1351–62.Google Scholar
  3. 3.
    Franchimont D, Bouma G, Galon J, Wolkersdörfer GW, Haidan A, Chrousos GP, Bornstein SR. Adrenal cortical activation in murine colitis. Gastroenterology 2000 119(6):1560–1568.Google Scholar
  4. 4.
    Antonelli A, Ferrari SM, Frascerra S, Di Domenicantonio A, Nicolini A, Ferrari P, Ferrannini E, Fallahi P. Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab 2011;96(6):1859–1863.Google Scholar
  5. 5.
    Antonelli A, Ferri C, Fallahi P, Colaci M, Giuggioli D, Ferrari SM, et al. Th1 and Th2 chemokine serum levels in systemic sclerosis in the presence or absence of autoimmune thyroiditis. J Rheumatol. 2008;35(9):1809–11.Google Scholar
  6. 6.
    Ferrari SM, Fallahi P, Galetta F, Citi E, Benvenga S, Antonelli A. Thyroid disorders induced by checkpoint inhibitors. Rev Endocr Metab Disord. 2018.  https://doi.org/10.1007/s11154-018-9463-2.
  7. 7.
    Gubbi S, Hannah-Shmouni F, Stratakis CA, Koch CA. Primary hypophysitis and other autoimmune disorders of the sellar and suprasellar regions. Rev Endocr Metab Disord 2018.Google Scholar
  8. 8.
    Koch CA, Robyn JA, Pacak K. How do levels of (endogenous) glucocorticoids, interleukin-10 and interleukin-12 relate to multiple sclerosis relapse before, during and after pregnancy? Clin Endocrinol. 1999;50(6):818–9.Google Scholar
  9. 9.
    Melcescu E, Kemp EH, Majithia V, Vijayakumar V, Uwaifo GI, Koch CA. Graves' disease, hypoparathyroidism, systemic lupus erythematosus, alopecia, and angioedema: autoimmune polyglandular syndrome variant or coincidence? Int J Immunopathol Pharmacol. 2013;26(1):217–22.Google Scholar
  10. 10.
    Melcescu E, Hogan RB 2nd, Brown K, Boyd SA, Abell TL, Koch CA. The various faces of autoimmune endocrinopathies: non-tumoral hypergastrinemia in a patient with lymphocytic colitis and chronic autoimmune gastritis. Exp Mol Pathol. 2012;93(3):434–40.Google Scholar
  11. 11.
    Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord. 2016;17(1):29–39.Google Scholar
  12. 12.
    Hehmke B, Michaelis D, Gens E, Laube F, Kohnert KD. Aberrant activation of CD8+ T-cell and CD8+ T-cell subsets in patients with newly diagnosed IDDM. Diabetes. 1995;44(12):1414–9.Google Scholar
  13. 13.
    Hehmke B, Salzsieder E, Matic GB, Winkler RE, Tiess M, Ramlow W. Immunoadsorption of immunoglobulins alters intracytoplasmic type 1 and type 2 T cell cytokine production in patients with refractory autoimmune diseases. Ther Apher. 2000;4(4):296–302.Google Scholar
  14. 14.
    Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.Google Scholar
  15. 15.
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.Google Scholar
  16. 16.
    Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Curr Neuropharmacol. 2012;10(2):97–123.Google Scholar
  17. 17.
    Ameri P, Ferone D. Diffuse endocrine system, neuroendocrine tumors and immunity: what’s new ? Neuroendocrinology. 2012;95(4):267–76.Google Scholar
  18. 18.
    Blum AM, Metwali A, Mathew RC, Cook G, Elliott D, Weinstock JV. Granuloma T lymphocytes in murine schistosomiasis mansoni have somatostatin receptors and respond to somatostatin with decreased IFN-gamma secretion. J Immunol. 1992;149:3621.Google Scholar
  19. 19.
    Bhanat E, Koch CA, Parmar R, Garla V, Vijayakumar V. Somatostatin receptor expression in non-classical locations - clinical relevance? Rev Endocr Metab Disord. 2018;19(2):123–32.Google Scholar
  20. 20.
    Lincke T, Orschekowski G, Singer J, Sabri O, Paschke R. Increased gallium-68 DOTATOC uptake in normal thyroid gland. Horm Metab Res. 2011;43(4):282–6.Google Scholar
  21. 21.
    Koch CA, Petersenn S. Black swans - neuroendocrine tumors of rare locations. Rev Endocr Metab Disord. 2018;19(2):111–21.Google Scholar
  22. 22.
    Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to 18F FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.Google Scholar
  23. 23.
    Bedi O, Dhawan V, Sharma PL, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedeberg's Arch Pharmacol. 2016;389(7):695–712.Google Scholar
  24. 24.
    Troeman DP, Postma DF, van Werkhoven CH, Oosterheert JJ. The immunomodulatory effects of statins in community-acquired pneumonia: a systematic review. J Inf Secur. 2013;67(2):93–101.Google Scholar
  25. 25.
    Xu X, Gao W, Cheng S, Yin D, Li F, Wu Y, et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflammation. 2017;14(1):167.Google Scholar
  26. 26.
    Moctezuma-Velázquez C, Abraldes JG, Montano-Loza AJ. The use of statins in patients with chronic liver disease and cirrhosis. Curr Treat Options Gastroenterol. 2018;16(2):226–40.Google Scholar
  27. 27.
    Mascitelli L, Goldstein MR. Statin immunomodulation and thyroid cancer. Clin Endocrinol. 2015;82(4):620.Google Scholar
  28. 28.
    Vallianou NG, Kostantinou A, Kougias M, Kazazis C. Statins and cancer. Anti Cancer Agents Med Chem. 2014;14(5):706–12.Google Scholar
  29. 29.
    Coward WR, Chow SC. Effect of atorvastatin on TH1 and TH2 cytokine secreting cells during T cell activation and differentiation. Atherosclerosis. 2006;186:302–9.Google Scholar
  30. 30.
    Rosenson RS, Tangney CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet. 1999;353:983–4.Google Scholar
  31. 31.
    Bruegel M, Teupser D, Haffner I, Mueller M, Thiery J. Statins reduce macrophage inflammatory protein-1alpha expression in human activated monocytes. Clin Exp Pharmacol Physiol. 2006;33(12):1144–9.Google Scholar
  32. 32.
    Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res. 2014;88:41–52.Google Scholar
  33. 33.
    Jameel A, Ooi KG, Jeffs NR, Galatowicz G, Lightman SL, Calder VL. Statin Modulation of Human T-Cell Proliferation, IL-1β and IL-17 Production, and IFN-γ T Cell Expression: Synergy with Conventional Immunosuppressive Agents. Int J Inflam. 2013;2013:434586.Google Scholar
  34. 34.
    Khattri S, Zandman-Goddard G. Statins and autoimmunity. Immunol Res. 2013 Jul;56(2–3):348–57.Google Scholar
  35. 35.
    Lozanoska-Ochser B, Barone F, Pitzalis C, et al. Atorvastatin fails to prevent the development of autoimmune diabetes despite inhibition of pathogenic beta-cell-specific CD8 T-cells. Diabetes. 2006;55:1004–10.Google Scholar
  36. 36.
    Kotyla PJ, Kucharz EJ. Statins Therapy for Connective Tissue Diseases: New Therapeutic Opportunities. Endocr Metab Immune Disord Drug Targets. 2018;18(2):135–47.Google Scholar
  37. 37.
    Lei A, Yang Q, Li X, Chen H, Shi M, Xiao Q, et al. Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis. Immunology. 2016;149(4):432–46.Google Scholar
  38. 38.
    Côté-Daigneault J, Mehandru S, Ungaro R, Atreja A, Colombel JF. Potential Immunomodulatory Effects of Statins in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2016;22(3):724–32.Google Scholar
  39. 39.
    Barsante MM, Roffe E, Yokoro CM, et al. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol. 2005;516:282–9.Google Scholar
  40. 40.
    Leung BP, Sattar N, Crilly A, et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol. 2003;170:1524–30.Google Scholar
  41. 41.
    ten Cate R, Nibbering PH, Bredius RG. Therapy-refractory systemic juvenile idiopathic arthritis successfully treated with statins. Rheumatology (Oxford). 2004;43(7):934–5.Google Scholar
  42. 42.
    Lv S, Liu Y, Zou Z, Li F, Zhao S, Shi R, et al. The impact of statins therapy on disease activity and inflammatory factor in patients with rheumatoid arthritis: a meta-analysis. Clin Exp Rheumatol. 2015;33(1):69–76.Google Scholar
  43. 43.
    McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, Ford I, et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet. 2004;363(9426):2015–21.Google Scholar
  44. 44.
    Li XL, Dou YC, Liu Y, Shi CW, Cao LL, Zhang XQ, et al. Atorvastatin ameliorates experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol. 2011;271(2):455–61.Google Scholar
  45. 45.
    Aktas O, Waiczies S, Smorodchenko A, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting TH1 cells through atorvastatin. J Exp Med. 2003;197:725–33.Google Scholar
  46. 46.
    Neuhaus O, Strasser-Fuchs S, Fazekas F, et al. Statins as immunomodulators: comparison with interferon-beta 1-beta in MS. Neurology. 2002;59:990–7.Google Scholar
  47. 47.
    Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet. 2004;363:1607–8.Google Scholar
  48. 48.
    Li XL, Zhang ZC, Zhang B, Jiang H, Yu CM, Zhang WJ, et al. Atorvastatin calcium in combination with methylprednisolone for the treatment of multiple sclerosis relapse. Int Immunopharmacol. 2014;23(2):546–9.Google Scholar
  49. 49.
    Cuthbert JA, Lipsky PE. Sterol metabolism and lymphocyte responsiveness: inhibition of endogenous sterol synthesis prevents mitogen-induced human T cell proliferation. J Immunol. 1981;126(6):2093–9.Google Scholar
  50. 50.
    Kurakata S, Kada M, Shimada Y, Komai T, Nomoto K. Effects of different inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, pravastatin sodium and simvastatin, on sterol synthesis and immunological functions in human lymphocytes in vitro. Immunopharmacology. 1996;34(1):51–61.Google Scholar
  51. 51.
    Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.Google Scholar
  52. 52.
    Albert MA, Danielson E, Rifai N, Ridker PM, Investigators PRINCE. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA. 2001;286(1):64–70.Google Scholar
  53. 53.
    van de Ree MA, Huisman MV, Princen HM, Meinders AE, Kluft C, DALI-Study Group. Strong decrease of high sensitivity C-reactive protein with high-dose atorvastatin in patients with type 2 diabetes mellitus. Atherosclerosis. 2003;166(1):129–35.Google Scholar
  54. 54.
    van Halm VP, Nielen MM, Nurmohamed MT, van Schaardenburg D, Reesink HW, Voskuyl AE, et al. van der Horst-Bruinsma IE, Dijkmans BA.Lipids and inflammation: serial measurements of the lipid profile of blood donors who later developed rheumatoid arthritis. Ann Rheum Dis. 2007;66(2):184–8.Google Scholar
  55. 55.
    Gruaz L, Delucinge-Vivier C, Descombes P, Dayer JM, Burger D. Blockade of T cell contact-activation of human monocytes by high-density lipoproteins reveals a new pattern of cytokine and inflammatory genes. PLoS One. 2010;5(2):e9418.Google Scholar
  56. 56.
    Kahaly G, et al. Mycophenolate plus methylprednisolone vs. methylprednisolone alone in active, moderate to severe graves orbitopathy (MINGO): a randomized, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 2018;6(4):287–98.Google Scholar
  57. 57.
    Bartalena L, et al. The 2016 European thyroid association/European group on graves Orbitopathy guidelines for the Management of Graves Orbitopathy. Eur Thyroid J. 2016;5(1):9–26.Google Scholar
  58. 58.
    Melcescu E, Horton WB, Kim D, Vijayakumar V, Corbett JJ, Crowder KW, et al. Graves orbitopathy: update on diagnosis and therapy. South Med J. 2014;107(1):34–43.Google Scholar
  59. 59.
    Bifulco M, Ciaglia E. Statin reduces orbitopathy risk in patients with graves’ disease by modulating apoptosis and autophagy activities. Endocrine. 2016;53:649–50.Google Scholar
  60. 60.
    Liao KL, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005:89–118.Google Scholar
  61. 61.
    Markovic-Plese S, Singh AK, Singh I. Therapeutic potential of statins in multiple sclerosis: immune modulation, neuroprotection and neurorepair. Future Neurol. 2008;3:1–21.Google Scholar
  62. 62.
    Soliman M, et al. T-cells recognise multiple epitopes in the human thyrotropin receptor extracellular domain. J Clin Endocrinol Metab. 1995;80:905–14.Google Scholar
  63. 63.
    Fisfalen EL, et al. Proliferative responses of T-cells to thyroid antigens and synthetic thyroid peroxidase peptides in autoimmune thyroid disease. J Clin Endocrinol Metab. 1995;80:1597–604.Google Scholar
  64. 64.
    Björkhem-Bergman L, Lindh JD, Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol. 2011;72(1):164–5.Google Scholar
  65. 65.
    Jain MK, Ridker PM. Antiinflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4:977–87.Google Scholar
  66. 66.
    Yousseff S, Stuve O, Patarryo JC, Ruiz P, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78–84.Google Scholar
  67. 67.
    Gleicher N, Kushnir VA, Darmon SK, Wang Q, Zhang L, Albertini DF, et al. New PCOS-like phenotype in older infertile women of likely autoimmune adrenal etiology with high AMH but low androgens. J Steroid Biochem Mol Biol. 2017;167:144–52.Google Scholar
  68. 68.
    Banaszewska B, Pawelczyk L, Spaczynski RZ, Dziura J, Duleba AJ. Effects of simvastatin and oral contraceptive agent on polycystic ovary syndrome: prospective, randomized, crossover trial. J Clin Endocrinol Metab. 2007;92(2):456–61.Google Scholar
  69. 69.
    Sun J, Yuan Y, Cai R, Sun H, Zhou Y, Wang P, et al. An investigation into the therapeutic effects of statins with metformin on polycystic ovary syndrome: a meta-analysis of randomised controlled trials. BMJ Open. 2015;5(3):e007280.Google Scholar
  70. 70.
    Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112(6):1809–14.Google Scholar
  71. 71.
    Prattichizzo F, Giuliani A, Mensà E, Sabbatinelli J, De Nigris V, Rippo MR, et al. Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res Rev. 2018;48:87–98.Google Scholar
  72. 72.
    Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget. 2016;7(26):40767–80.Google Scholar
  73. 73.
    Negrotto L, Farez MF, Correale J. Immunologic Effects of Metformin and Pioglitazone Treatment on Metabolic Syndrome and Multiple Sclerosis. JAMA Neurol. 2016;73(5):520–8.Google Scholar
  74. 74.
    Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol. 2016;292:58–67.Google Scholar
  75. 75.
    Kang KY, Kim YK, Kim J, Jung HR, Kim IJ, Cho JH, et al. Ju JH. Metformin downregulates Th17 differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol. 2013;16:85–92.Google Scholar
  76. 76.
    Lee SY, Lee SH, Yang EJ, Kim EK, Kim JK, Shin DY, et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. Plos One. 2015;10(9):e0135858.Google Scholar
  77. 77.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262–6.Google Scholar
  78. 78.
    Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.Google Scholar
  79. 79.
    Csongrádi É, Káplár M, Nagy B Jr, Koch CA, Juhász A, Bajnok L, et al. Adipokines as atherothrombotic risk factors in obese subjects: Associations with haemostatic markers and common carotid wall thickness. Nutr Metab Cardiovasc Dis. 2017;27(6):571–80.Google Scholar
  80. 80.
    Ullah MI, Washington T, Kazi M, Tamanna S, Koch CA. Testosterone deficiency as a risk factor for cardiovascular disease. Horm Metab Res. 2011;43(3):153–64.Google Scholar
  81. 81.
    Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord. 2016;17(3):389–403.Google Scholar
  82. 82.
    Turner JB, Kumar A, Koch CA. The effects of indoor and outdoor temperature on metabolic rate and adipose tissue - the Mississippi perspective on the obesity epidemic. Rev Endocr Metab Disord. 2016;17(1):61–71.Google Scholar
  83. 83.
    Koch CA. EDITORIAL: "The Koch's" view on the sense of taste in endocrinology. Rev Endocr Metab Disord. 2016;17(2):143–7.Google Scholar
  84. 84.
    Isoda K, Akita K, Kitamura K, Sato-Okabayashi Y, Kadoguchi T, Isobe S, et al. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. Int J Cardiol. 2018;270:221–7.Google Scholar
  85. 85.
    Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A. 2009;106(35):14948–53.Google Scholar
  86. 86.
    Sagawa K, Nagatani K, Komagata Y, Yamamoto K. Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum. 2005;52(6):1920–8.Google Scholar
  87. 87.
    Martin MF, Surrall KE, McKenna F, Dixon JS, Bird HA, Wright V. Captopril: a new treatment for rheumatoid arthritis? Lancet. 1984;1(8390):1325–8.Google Scholar
  88. 88.
    Andersson P, Bratt J, Heimbürger M, Cederholm T, Palmblad J. Inhibition of neutrophil-dependent cytotoxicity for human endothelial cells by ACE inhibitors. Scand J Immunol. 2014;80(5):339–45.Google Scholar
  89. 89.
    Abadir P, Hosseini S, Faghih M, Ansari A, Lay F, Smith B, et al. Topical reformulation of valsartan for treatment of chronic diabetic wounds. J Invest Dermatol. 2018;138(2):434–43.Google Scholar
  90. 90.
    Rosenson RS, Hegele RA, Fazio S, Cannon CP. The evolving future of PCSK9 inhibitors. J Am Coll Cardiol. 2018;72(3):314–29.Google Scholar
  91. 91.
    Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, et al. American association of clinical endocrinologists and American College of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23(Suppl 2):1–87.Google Scholar
  92. 92.
    Shapiro MD, Fazio S. PCSK9 and atherosclerosis - lipids and beyond. J Atheroscler Thromb. 2017;24(5):462–72.Google Scholar
  93. 93.
    Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. Boyd JH. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143.Google Scholar
  94. 94.
    Liu A, Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med. 2018.  https://doi.org/10.1111/joim.12758.
  95. 95.
    Theocharidou E, Papademetriou M, Reklou A, Sachinidis A, Boutari C, Giouleme O. The role of PCSK9 in the pathogenesis of non-alcoholic fatty liver disease and the effect of PCSK9 inhibitors. Curr Pharm Des 2018.Google Scholar
  96. 96.
    Groth KA, Skakkebæk A, Høst C, Gravholt CH, Bojesen A. Clinical review: Klinefelter syndrome--a clinical update. J Clin Endocrinol Metab. 2013;98(1):20–30.Google Scholar
  97. 97.
    Zitzmann M. Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol. 2009;5(12):673–81.Google Scholar
  98. 98.
    Saad F, Aversa A, Isidori AM, Zafalon L, Zitzmann M, Gooren L. Onset of effects of testosterone treatment and time span until maximum effects are achieved. Eur J Endocrinol. 2011;165(5):675–85.Google Scholar
  99. 99.
    Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain. 2013;136(Pt 1):132–46.Google Scholar
  100. 100.
    Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80(6):548–52.Google Scholar
  101. 101.
    Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-12 and TNF-alpha/IL-10 balance. Clinical implications. Ann N Y Acad Sci. 2000;917:94–105.Google Scholar
  102. 102.
    Crispín JC, Tsokos GC. IL-17 in Systemic Lupus Erythematosus. J Biomed Biotechnol. 2010:1–4.Google Scholar
  103. 103.
    Nalbandian A, Crispín JC, Tsokos GC. Interleukin-17 and systemic lupus erythematosus: current concepts. Clin Exp Immunol. 2009;157(2):209–215.Google Scholar
  104. 104.
    Dey ID, Isenberg DA, Lahita RG. How hormones affect lupus treatment. Endocrine news, 2012.Google Scholar
  105. 105.
    Gomez FP, Steelman AJ, Young CR, Welsh CJ. Hormone and immune system interactions in demyelinating disease. Horm Behav. 2013;63(2):315–21.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medicover GmbH BerlinBerlinGermany
  2. 2.Carl von Ossietzky UniversityOldenburgGermany
  3. 3.Technical University of DresdenDresdenGermany
  4. 4.University of LouisvilleLouisvilleUSA
  5. 5.University of Tennessee Health Science CenterMemphisUSA
  6. 6.University of GreifswaldGreifswaldGermany
  7. 7.Institute of Diabetes ‘‘Gerhardt Katsch’’KarlsburgGermany

Personalised recommendations