Advertisement

The protective effect of myo-inositol on human thyrocytes

  • Silvia Martina Ferrari
  • Giusy Elia
  • Francesca Ragusa
  • Sabrina Rosaria Paparo
  • Claudia Caruso
  • Salvatore Benvenga
  • Poupak Fallahi
  • Alessandro Antonelli
Article

Abstract

Patients affected by autoimmune thyroiditis reached positive effects on indices of thyroid autoimmunity and/or thyroidal function, after following a treatment with selenomethionine (Se) alone, or Se in combination with Myo-inositol (Myo-Ins). Our purpose was to investigate if Myo-Ins alone, or a combination of Se + Myo-Ins, is effective in protecting thyroid cells from the effects given by cytokines, or hydrogen peroxide (H2O2). We assessed the interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10) secretion by stimulating primary thyrocytes (obtained from Hashimoto’s thyroiditis or from control patients) with cytokines in presence/absence of H2O2. Our results confirm: 1) the toxic effect of H2O2 in primary thyrocytes that leads to an increase of the apoptosis, to a decrease of the proliferation, and to a slight reduction of cytokines-induced CXCL10 secretion; 2) the secretion of CXCL10 chemokine induced by IFN-γ + tumor necrosis factor alpha (TNF)-α has been decreased by Myo + Ins, both in presence or absence of H2O2; 3) no effect has been shown by the treatment with Se. Therefore, a protective effect of Myo-Ins on thyroid cells has been suggested by our data, which exact mechanisms are at the basis of this effect need to be furtherly investigated.

Keywords

Myo-inositol Selenomethionine Hydrogen peroxide Thyrocytes Cytokines CXCL10 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Garmendia Madiaraga A, Santos Palacios S, Guillén-Grima F, Galofré JC. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J Clin Endocrinol Metab. 2014;99:923–31.CrossRefGoogle Scholar
  2. 2.
    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and nutrition examination survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.CrossRefGoogle Scholar
  3. 3.
    Benvenga S, Trimarchi F. Changed presentation of Hashimoto's thyroiditis in north-eastern Sicily and Calabria (southern Italy) based on a 31-year experience. Thyroid. 2008;18:429–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Latina A, Gullo D, Trimarchi F, Benvenga S. Hashimoto's thyroiditis: similar and dissimilar characteristics in neighboring areas. Possible implications for the epidemiology of thyroid cancer. PLoS One. 2013;8:e55450.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rizzo M, Rossi RT, Bonaffini O, Scisca C, Altavilla G, Calbo L, et al. Increased annual frequency of Hashimoto's thyroiditis between years 1988 and 2007 at a cytological unit of Sicily. Ann Endocrinol (Paris). 2010;71:525–34.CrossRefGoogle Scholar
  6. 6.
    Baser H, Can U, Baser S, Yerlikaya FH, Aslan U, Hidayetoglu BT. Assesment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine. 2015;48:916–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Rostami R, Aghasi MR, Mohammadi A, Nourooz-Zadeh J. Enhanced oxidative stress in Hashimoto's thyroiditis: inter-relationships to biomarkers of thyroid function. Clin Biochem. 2013;46:308–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Ademoğlu E, Ozbey N, Erbil Y, Tanrikulu S, Barbaros U, Yanik BT, et al. Determination of oxidative stress in thyroid tissue and plasma of patients with Graves' disease. Eur J Intern Med. 2006;17:545–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Tang XL, Liu XJ, Sun WM, Zhao J, Zheng RL. Oxidative stress in Graves' disease patients and antioxidant protection against lymphocytes DNA damage in vitro. Pharmazie. 2005;60:696–700.PubMedGoogle Scholar
  10. 10.
    Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab. 2007;92:3764–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Riou C, Remy C, Rabilloud R, Rousset B, Fonlupt P. H2O2 induces apoptosis of pig thyrocytes in culture. J Endocrinol. 1998;156:315–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Granger DN, Vowinkel T, Petnehazy T. Modulation of the inflammatory response in cardiovascular disease. Hypertension. 2004;43:924–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Kiyoshima T, Enoki N, Kobayashi I, Sakai T, Nagata K, Wada H, et al. Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts. Int J Mol Med. 2012;30:1007–12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kimura S, Yonemura T, Kaya H. Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases. J Periodontal Res. 1993;28:197–203.CrossRefPubMedGoogle Scholar
  15. 15.
    Chiaradia E, Gaiti A, Scaringi L, Cornacchione P, Marconi P, Avellini L. Antioxidant systems and lymphocyte proliferation in the horse, sheep and dog. Vet Res. 2002;33:661–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Desagher S, Glowinski J, Prémont J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci. 1997;17:9060–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci. 2005;118:3695–703.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakayama N, Yamaguchi S, Sasaki Y, Chikuma T. Hydrogen peroxide-induced oxidative stress activates proteasomal trypsin-like activity in human U373 glioma cells. J Mol Neurosci. 2016;58:297–305.CrossRefPubMedGoogle Scholar
  19. 19.
    Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury. J Cell Physiol. 1991;149:347–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Benhamou PY, Moriscot C, Richard MJ, Beatrix O, Badet L, Pattou F, et al. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia. 1998;41:1093–100.CrossRefPubMedGoogle Scholar
  21. 21.
    Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274:27905–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Pierre N, Barbé C, Gilson H, Deldicque L, Raymackers JM, Francaux M. Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun. 2014;450:459–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaczara P, Sarna T, Burke JM. Dynamics of H2O2 availability to ARPE-19 cultures in models of oxidative stress. Free Radic Biol Med. 2010;48:1064–70.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, et al. Oxidative stress-induced premature senescence in Wharton's jelly-derived mesenchymal stem cells. Int J Med Sci. 2014;11:1201–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Do GY, Kim JW, Chae SK, Ahn JH, Park HJ, Park JY, et al. Antioxidant effect of edaravone on the development of preimplantation porcine embryos against hydrogen peroxide-induced oxidative stress. J Embryo Transfer. 2016;30:289–98.CrossRefGoogle Scholar
  26. 26.
    Guarneri F, Benvenga S. Environmental factors and genetic background that interact to cause autoimmune thyroid disease. Curr Opin Endocrinol Diabetes Obes. 2007;14:398–409.CrossRefPubMedGoogle Scholar
  27. 27.
    Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14:174–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Fallahi P, Ferri C, Ferrari SM, Corrado A, Sansonno D, Antonelli A. Cytokines and HCV-related disorders. Clin Dev Immunol. 2012;2012:468107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV. Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci U S A. 1987;84:2868–71.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM. Human Mig chemokine: biochemical and functional characterization. J Exp Med. 1995;182:1301–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol. 1997;61:246–57.CrossRefPubMedGoogle Scholar
  32. 32.
    Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev. 2014;25:57–65.CrossRefPubMedGoogle Scholar
  34. 34.
    Antonelli A, Ferrari SM, Fallahi P, Ghiri E, Crescioli C, Romagnani P, et al. Interferon-alpha, −beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists. Cytokine. 2010;50:260–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Antonelli A, Ferrari SM, Frascerra S, Pupilli C, Mancusi C, Metelli MR, et al. CXCL9 and CXCL11 chemokines modulation by peroxisome proliferator-activated receptor-alpha agonists secretion in Graves' and normal thyrocytes. J Clin Endocrinol Metab. 2010;95:E413–20.CrossRefGoogle Scholar
  36. 36.
    Antonelli A, Ferrari SM, Frascerra S, Di Domenicantonio A, Nicolini A, Ferrari P, et al. Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 2011;96:1859–63.CrossRefGoogle Scholar
  37. 37.
    Antonelli A, Fallahi P, Delle Sedie A, Ferrari SM, Maccheroni M, Bombardieri S, et al. High values of Th1 (CXCL10) and Th2 (CCL2) chemokines in patients with psoriatic arthtritis. Clin Exp Rheumatol. 2009;27:22–7.Google Scholar
  38. 38.
    Antonelli A, Ferri C, Fallahi P, Ferrari SM, Frascerra S, Sebastiani M, et al. High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryoglobulinemia in presence or absence of autoimmune thyroiditis. Cytokine. 2008;42:137–43.CrossRefGoogle Scholar
  39. 39.
    Antonelli A, Ferrari SM, Frascerra S, Galetta F, Franzoni F, Corrado A, et al. Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine. 2011;55:288–93.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48:756–75.CrossRefPubMedGoogle Scholar
  41. 41.
    Gärtner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002;87:1687–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Negro R, Greco G, Mangieri T, Pezzarossa A, Dazzi D, Hassan H. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab. 2007;92:1263–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, Altea MA, Nardi M, Pitz S, Boboridis K, Sivelli P, von Arx G, Mourits MP, Baldeschi L, Bencivelli W, Wiersinga W, European Group on Graves' Orbitopathy. Selenium and the course of mild Graves' orbitopathy. N Engl J Med 2011;364:1920–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Nordio M, Pajalich R. Combined treatment with Myo-inositol and selenium ensures euthyroidism in subclinical hypothyroidism patients with autoimmune thyroiditis. J Thyroid Res. 2013;2013:424163.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Benvenga S, Amato A, Calvani M, Trimarchi F. Effects of carnitine on thyroid hormone action. Ann N Y Acad Sci. 2004;1033:158–67.CrossRefPubMedGoogle Scholar
  46. 46.
    Chee R, Agah R, Vita R, Benvenga S. L-carnitine treatment in a seriously ill cancer patient with severe hyperthyroidism. Hormones (Athens). 2014;13:407–12.Google Scholar
  47. 47.
    Jiang WD, Hu K, Liu Y, Jiang J, Wu P, Zhao J, et al. Dietary myo-inositol modulates immunity through antioxidant activity and the Nrf2 and E2F4/cyclin signalling factors in the head kidney and spleen following infection of juvenile fish with Aeromonas hydrophila. Fish Shellfish Immunol. 2016;49:374–86.Google Scholar
  48. 48.
    Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol. 2014;12:112.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78:803–11.CrossRefPubMedGoogle Scholar
  50. 50.
    World Medical Association Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects. Bulletin of the World Health Organization. 2001:79.Google Scholar
  51. 51.
    Antonelli A, Ferrari SM, Fallahi P, Frascerra S, Santini E, Franceschini SS, et al. Monokine induced by interferon gamma (IFNgamma) (CXCL9) and IFNgamma inducible T-cell alpha-chemoattractant (CXCL11) involvement in Graves' disease and ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab. 2009;94:1803–9.Google Scholar
  52. 52.
    Antonelli A, Rotondi M, Ferrari SM, Fallahi P, Romagnani P, Franceschini SS, et al. Interferon-gamma-inducible alpha-chemokine CXCL10 involvement in Graves' ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab. 2006;91:614–20.Google Scholar
  53. 53.
    Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, et al. Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol. 2000;164:6503–8.Google Scholar
  54. 54.
    Ferrari SM, Fallahi P, La Motta C, Bocci G, Corrado A, Materazzi G, et al. Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer in vitro. Surgery. 2014;156:1167–76.CrossRefPubMedGoogle Scholar
  55. 55.
    Antonelli A, Bocci G, Fallahi P, La Motta C, Ferrari SM, Mancusi C, et al. CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J Clin Endocrinol Metab. 2014;99:E572–81.CrossRefPubMedGoogle Scholar
  56. 56.
    Antonelli A, Bocci G, La Motta C, Ferrari SM, Fallahi P, Fioravanti A, et al. Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral activity in vitro and in vivo in papillary dedifferentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:E288–96.CrossRefPubMedGoogle Scholar
  57. 57.
    Antonelli A, Ferrari SM, Frascerra S, Corrado A, Pupilli C, Bernini G, et al. Peroxisome proliferator-activated receptor α agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease. Exp Cell Res. 2011;317:1527–33.CrossRefPubMedGoogle Scholar
  58. 58.
    Benvenga S, Antonelli A. Inositol(s) in thyroid function, growth and autoimmunity. Rev Endocr Metab Disord. 2016;17:471–84.CrossRefPubMedGoogle Scholar
  59. 59.
    Ohye H, Sugawara M. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med (Maywood). 2010;235:424–33.CrossRefGoogle Scholar
  60. 60.
    Grasberger H, Van Sande J, Hag-Dahood Mahameed A, Tenenbaum-Rakover Y, Refetoff S. A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab. 2007;92:2816–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Fruman DA, Bismuth G. Fine tuning the immune response with PI3K. Immunol Rev. 2009;228:253–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Kashiwada M, Lu P, Rothman PB. PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res. 2007;39:194–224.CrossRefPubMedGoogle Scholar
  63. 63.
    Martino E, Macchia E, Aghini-Lombardi F, Antonelli A, Lenziardi M, Concetti R, et al. Is humoral thyroid autoimmunity relevant in amiodarone iodine-induced thyrotoxicosis (AIIT)? Clin Endocrinol. 1986;24:627–33.CrossRefGoogle Scholar
  64. 64.
    Mazokopakis EE, Papadakis JA, Papadomanolaki MG, Batistakis AG, Giannakopoulos TG, Protopapadakis EE, et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto’s thyroiditis. Thyroid. 2007;17:609–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhu L, Bai X, Teng WP, Shan ZY, Wang WW, Fan CL, et al. Effects of selenium supplementation on antibodies of autoimmune thyroiditis. Zhonghua Yi Xue Za Zhi. 2012;92:2256–60.Google Scholar
  66. 66.
    Nordio M, Basciani S. Myo-inositol plus selenium supplementation restores euthyroid state in Hashimoto's patients with subclinical hypothyroidism. Eur Rev Med Pharmacol Sci. 2017;21(Suppl2):51–9.PubMedGoogle Scholar
  67. 67.
    Ferrari SM, Fallahi P, Di Bari F, Vita R, Benvenga S, Antonelli A. Myo-inositol and selenium reduce the risk of developing overt hypothyroidism in patients with autoimmune thyroiditis. Eur Rev Med Pharmacol Sci. 2017;21(Suppl 2):36–42.PubMedGoogle Scholar
  68. 68.
    Nordio M, Basciani S. Treatment with Myo-inositol and selenium ensures Euthyroidism in patients with autoimmune thyroiditis. Int J Endocrinol. 2017;2017:2549491.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Esposito D, Rotondi M, Accardo G, Vallone G, Conzo G, Docimo G, et al. Influence of short-term selenium supplementation on the natural course of Hashimoto's thyroiditis: clinical results of a blinded placebo-controlled randomized prospective trial. J Endocrinol Investig. 2017;40:83–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Benvenga S, Vicchio T, Di Bari F, Vita R, Fallahi P, Ferrari SM, et al. Favorable effects of myo-inositol, selenomethionine or their combination on the hydrogen peroxide-induced oxidative stress of peripheral mononuclear cells from patients with Hashimoto's thyroiditis: preliminary in vitro studies. Eur Rev Med Pharmacol Sci. 2017;21(Suppl 2):89–101.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Martina Ferrari
    • 1
  • Giusy Elia
    • 1
  • Francesca Ragusa
    • 1
  • Sabrina Rosaria Paparo
    • 1
  • Claudia Caruso
    • 1
  • Salvatore Benvenga
    • 2
    • 3
    • 4
  • Poupak Fallahi
    • 5
  • Alessandro Antonelli
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity of Pisa, School of MedicinePisaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  3. 3.Master Program on Childhood, Adolescent and Women’s Endocrine HealthUniversity of MessinaMessinaItaly
  4. 4.Interdepartmental Program of Molecular and Clinical Endocrinology and Women’s Endocrine HealthAzienda Ospedaliera Universitaria Policlinico ‘G. Martino’MessinaItaly
  5. 5.Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly

Personalised recommendations