Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 19, Issue 4, pp 301–309 | Cite as

The increasing prevalence of chronic lymphocytic thyroiditis in papillary microcarcinoma

  • Roberto Vita
  • Antonio Ieni
  • Giovanni Tuccari
  • Salvatore BenvengaEmail author
Article
  • 190 Downloads

Abstract

Although the incidence of some malignancy has decreased over the recent years, this is not the case of papillary thyroid microcarcinoma (PTMC), whose incidence has increased worldwide. Most PTMC are found incidentally after histological examination of specimens from surgery for benign thyroid disease. Hashimoto’s thyroiditis, whose incidence has also increased, coexists in about one in three PTMC patients. Three different mechanisms have been proposed to clarify the association between chronic lymphocytic thyroiditis and PTMC, namely tumor development/growth by: (i) TSH stimulation, (ii) expression of certain proto-oncogenes, (iii) chemokines and other molecules produced by the lymphocytic infiltrate. Whether Hashimoto’s thyroiditis protects against lymph node metastasis is debated. Overall, autommune thyroiditis seems to contribute to the favorable prognosis of PTMC. Major limitations of the studies so far performed include: (i) retrospective design, (ii) limited statistical power, (iii) high risk of selection bias, (iv) and predominant Asian ethnicity of patients. Full genetic profiling of both diseases and identification of environmental factors capable to trigger them, as well as well-powered prospective studies on different ethnical groups, may help understand their causal association and why their frequencies are continuing raising.

Keywords

Papillary thyroid cancer Microcarcinoma Papillary thyroid microcarcinoma Hashimoto’s thyroiditis Autoimmune thyroiditis Chronic lymphocytic thyroiditis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bircan HY, Koc B, Akarsu C, Demiralay E, Demirag A, Adas M, et al. Is Hashimoto's thyroiditis a prognostic factor for thyroid papillary microcarcinoma? Eur Rev Med Pharmacol Sci. 2014;18(13):1910–5.Google Scholar
  2. 2.
    Slijepcevic N, Zivaljevic V, Marinkovic J, Sipetic S, Diklic A, Paunovic I. Retrospective evaluation of the incidental finding of 403 papillary thyroid microcarcinomas in 2466 patients undergoing thyroid surgery for presumed benign thyroid disease. BMC Cancer. 2015;15:330.  https://doi.org/10.1186/s12885-015-1352-4.Google Scholar
  3. 3.
    Rizzo M, Sindoni A, Talamo Rossi R, Bonaffini O, Panetta S, Scisca C, et al. Annual increase in the frequency of papillary thyroid carcinoma as diagnosed by fine-needle aspiration at a cytology unit in Sicily. Hormones. 2013;12(1):46–57.Google Scholar
  4. 4.
    Latina A, Gullo D, Trimarchi F, Benvenga S. Hashimoto's thyroiditis: similar and dissimilar characteristics in neighboring areas. Possible implications for the epidemiology of thyroid cancer. PloS One. 2013;8(3):e55450.  https://doi.org/10.1371/journal.pone.0055450.Google Scholar
  5. 5.
    Hay ID, Hutchinson ME, Gonzalez-Losada T, McIver B, Reinalda ME, Grant CS, et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144(6):980–7; discussion 7–8.  https://doi.org/10.1016/j.surg.2008.08.035.Google Scholar
  6. 6.
    Lin JD, Kuo SF, Chao TC, Hsueh C. Incidental and nonincidental papillary thyroid microcarcinoma. Ann Surg Oncol. 2008;15(8):2287–92.  https://doi.org/10.1245/s10434-008-9958-2.Google Scholar
  7. 7.
    Baser H, Ozdemir D, Cuhaci N, Aydin C, Ersoy R, Kilicarslan A, et al. Hashimoto's thyroiditis does not affect ultrasonographical, cytological, and histopathological features in patients with papillary thyroid carcinoma. Endocr Pathol. 2015;26(4):356–64.  https://doi.org/10.1007/s12022-015-9401-8.Google Scholar
  8. 8.
    Yu XM, Wan Y, Sippel RS, Chen H. Should all papillary thyroid microcarcinomas be aggressively treated? An analysis of 18,445 cases. Ann Surg. 2011;254(4):653–60.  https://doi.org/10.1097/SLA.0b013e318230036d.Google Scholar
  9. 9.
    Lin JD. Increased incidence of papillary thyroid microcarcinoma with decreased tumor size of thyroid cancer. Med Oncol. 2010;27(2):510–8.  https://doi.org/10.1007/s12032-009-9242-8.Google Scholar
  10. 10.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.  https://doi.org/10.1001/jama.295.18.2164.Google Scholar
  11. 11.
    Londero SC, Krogdahl A, Bastholt L, Overgaard J, Trolle W, Pedersen HB, et al. Papillary thyroid microcarcinoma in Denmark 1996–2008: a national study of epidemiology and clinical significance. Thyroid : official journal of the American Thyroid Association. 2013;23(9):1159–64.  https://doi.org/10.1089/thy.2012.0595.Google Scholar
  12. 12.
    Du L, Wang Y, Sun X, Li H, Geng X, Ge M, et al. Thyroid cancer: trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China. BMC Cancer. 2018;18(1):291.  https://doi.org/10.1186/s12885-018-4081-7.Google Scholar
  13. 13.
    Benvenga S, Trimarchi F. Changed presentation of Hashimoto's thyroiditis in North-Eastern Sicily and Calabria (Southern Italy) based on a 31-year experience. Thyroid : official journal of the American Thyroid Association. 2008;18(4):429–41.  https://doi.org/10.1089/thy.2007.0234.Google Scholar
  14. 14.
    Rizzo M, Rossi RT, Bonaffini O, Scisca C, Altavilla G, Calbo L, et al. Increased annual frequency of Hashimoto's thyroiditis between years 1988 and 2007 at a cytological unit of Sicily. Ann Endocrinol. 2010;71(6):525–34.  https://doi.org/10.1016/j.ando.2010.06.006.Google Scholar
  15. 15.
    Liu Y, Li C, Zhao W, Wang Y. Hashimoto's thyroiditis is an important risk factor of papillary thyroid microcarcinoma in younger adults. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2017;49(10):732–8.  https://doi.org/10.1055/s-0043-117892.Google Scholar
  16. 16.
    Chen YK, Lin CL, Cheng FT, Sung FC, Kao CH. Cancer risk in patients with Hashimoto's thyroiditis: a nationwide cohort study. Br J Cancer. 2013;109(9):2496–501.  https://doi.org/10.1038/bjc.2013.597.Google Scholar
  17. 17.
    Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol. 2010;321(1):94–102.  https://doi.org/10.1016/j.mce.2009.10.003.Google Scholar
  18. 18.
    Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP. Coexistent Hashimoto's thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery. 1999;126(6):1070–6 discussion 6–7.Google Scholar
  19. 19.
    Resende de Paiva C, Gronhoj C, Feldt-Rasmussen U, von Buchwald C. Association between Hashimoto's thyroiditis and thyroid cancer in 64,628 patients. Front Oncol. 2017;7:53.  https://doi.org/10.3389/fonc.2017.00053.Google Scholar
  20. 20.
    Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA Arch Surg. 1955;70(2):291–7.Google Scholar
  21. 21.
    Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. Int J Surg Pathol. 2002;10(2):141–6.  https://doi.org/10.1177/106689690201000207.Google Scholar
  22. 22.
    Melcescu E, Horton WB, Pitman KT, Vijayakumar V, Koch CA. Euthyroid Graves' orbitopathy and incidental papillary thyroid microcarcinoma. Hormones. 2013;12(2):298–304.Google Scholar
  23. 23.
    Ieni A, Vita R, Magliolo E, Santarpia M, Di Bari F, Benvenga S, et al. One-third of an archivial series of papillary thyroid cancer (years 2007–2015) has coexistent chronic lymphocytic thyroiditis, which is associated with a more favorable tumor-node-metastasis staging. Front Endocrinol. 2017;8:337.  https://doi.org/10.3389/fendo.2017.00337.Google Scholar
  24. 24.
    Akin S, Yazgan Aksoy D, Akin S, Kilic M, Yetisir F, Bayraktar M. Prediction of central lymph node metastasis in patientswith thyroid papillary microcarcinoma. Turk J Med Sci. 2017;47(6):1723–7.  https://doi.org/10.3906/sag-1702-99.Google Scholar
  25. 25.
    Lim JY, Hong SW, Lee YS, Kim BW, Park CS, Chang HS, et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid : official journal of the American Thyroid Association. 2013;23(11):1423–30.  https://doi.org/10.1089/thy.2013.0036.Google Scholar
  26. 26.
    Qu N, Zhang L, Lin DZ, Ji QH, Zhu YX, Wang Y. The impact of coexistent Hashimoto's thyroiditis on lymph node metastasis and prognosis in papillary thyroid microcarcinoma. Tumour Biol : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(6):7685–92.  https://doi.org/10.1007/s13277-015-4534-4.Google Scholar
  27. 27.
    Zhang LY, Liu ZW, Liu YW, Gao WS, Zheng CJ. Risk factors for nodal metastasis in cN0 papillary thyroid microcarcinoma. Asian Pac J Cancer Prev : APJCP. 2015;16(8):3361–3.Google Scholar
  28. 28.
    Yang Y, Chen C, Chen Z, Jiang J, Chen Y, Jin L, et al. Prediction of central compartment lymph node metastasis in papillary thyroid microcarcinoma. Clin Endocrinol. 2014;81(2):282–8.  https://doi.org/10.1111/cen.12417.Google Scholar
  29. 29.
    Li M, Zhu XY, Lv J, Lu K, Shen MP, Xu ZL, et al. Risk factors for predicting central lymph node metastasis in papillary thyroid microcarcinoma (CN0): a study of 273 resections. Eur Rev Med Pharmacol Sci. 2017;21(17):3801–7.Google Scholar
  30. 30.
    Choi SY, Park H, Kang MK, Lee DK, Lee KD, Lee HS, et al. The relationship between the BRAF(V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. World J Surg Oncol. 2013;11:291.  https://doi.org/10.1186/1477-7819-11-291.Google Scholar
  31. 31.
    Kim HS, Choi YJ, Yun JS. Features of papillary thyroid microcarcinoma in the presence and absence of lymphocytic thyroiditis. Endocr Pathol. 2010;21(3):149–53.  https://doi.org/10.1007/s12022-010-9124-9.Google Scholar
  32. 32.
    Lai X, Zhang B, Jiang Y, Li J, Zhao R, Yang X, et al. Sonographic and clinical features of papillary thyroid microcarcinoma less than or equal to five millimeters: a retrospective study. PloS One. 2016;11(2):e0148567.  https://doi.org/10.1371/journal.pone.0148567.Google Scholar
  33. 33.
    Giordano D, Gradoni P, Oretti G, Molina E, Ferri T. Treatment and prognostic factors of papillary thyroid microcarcinoma. Clin Otolaryngol : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery. 2010;35(2):118–24.  https://doi.org/10.1111/j.1749-4486.2010.02085.x.Google Scholar
  34. 34.
    Fu X, Lou S, Shi H, Liu Q, Chen Z, Zhou Y. Clinicopathologic analysis of 254 cases of papillary thyroid microcarcinoma. Zhonghua bing li xue za zhi = Chin J Pathol. 2015;44(4):258–61.Google Scholar
  35. 35.
    Kim SK, Park I, Woo JW, Lee JH, Choe JH, Kim JH, et al. Predictive Factors for Lymph Node Metastasis in Papillary Thyroid Microcarcinoma. Ann Surg Oncol. 2016;23(9):2866–73.  https://doi.org/10.1245/s10434-016-5225-0.Google Scholar
  36. 36.
    Noguchi S, Yamashita H, Uchino S, Watanabe S. Papillary microcarcinoma. World J Surg. 2008;32(5):747–53.  https://doi.org/10.1007/s00268-007-9453-0.Google Scholar
  37. 37.
    Ferrari SM, Elia G, Virili C, Centanni M, Antonelli A, Fallahi P. Systemic lupus erythematosus and thyroid autoimmunity. Front Endocrinol. 2017;8:138.  https://doi.org/10.3389/fendo.2017.00138.Google Scholar
  38. 38.
    Antonelli A, Ferri C, Ferrari SM, Di Domenicantonio A, Giuggioli D, Galleri D, et al. Increased risk of papillary thyroid cancer in systemic sclerosis associated with autoimmune thyroiditis. Rheumatology. 2016;55(3):480–4.  https://doi.org/10.1093/rheumatology/kev358.Google Scholar
  39. 39.
    Fallahi P, Ruffilli I, Giuggioli D, Colaci M, Ferrari SM, Antonelli A, et al. Associations between systemic sclerosis and thyroid diseases. Front Endocrinol. 2017;8:266.  https://doi.org/10.3389/fendo.2017.00266.Google Scholar
  40. 40.
    Ferri C, Colaci M, Fallahi P, Ferrari SM, Antonelli A, Giuggioli D. Thyroid involvement in hepatitis C virus-infected patients with/without mixed cryoglobulinemia. Front Endocrinol. 2017;8:159.  https://doi.org/10.3389/fendo.2017.00159.Google Scholar
  41. 41.
    Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174–80.  https://doi.org/10.1016/j.autrev.2014.10.016.Google Scholar
  42. 42.
    Burikhanov R, Coulonval K, Pirson I, Lamy F, Dumont JE, Roger PP. Thyrotropin via cyclic AMP induces insulin receptor expression and insulin Co-stimulation of growth and amplifies insulin and insulin-like growth factor signaling pathways in dog thyroid epithelial cells. J Biol Chem. 1996;271(46):29400–6.Google Scholar
  43. 43.
    Westermark K, Karlsson FA, Westermark B. Thyrotropin modulates EGF receptor function in porcine thyroid follicle cells. Mol Cell Endocrinol. 1985;40(1):17–23.Google Scholar
  44. 44.
    Boelaert K. The association between serum TSH concentration and thyroid cancer. Endocr Relat Cancer. 2009;16(4):1065–72.  https://doi.org/10.1677/ERC-09-0150.Google Scholar
  45. 45.
    Tam AA, Ozdemir D, Aydin C, Bestepe N, Ulusoy S, Sungu N, et al. Association between preoperative thyrotrophin and clinicopathological and aggressive features of papillary thyroid cancer. Endocrine. 2018;59(3):565–72.  https://doi.org/10.1007/s12020-018-1523-6.Google Scholar
  46. 46.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid : official journal of the American Thyroid Association. 2016;26(1):1–133.  https://doi.org/10.1089/thy.2015.0020.Google Scholar
  47. 47.
    Shi RL, Liao T, Qu N, Liang F, Chen JY, Ji QH. The usefulness of preoperative thyroid-stimulating hormone for predicting differentiated thyroid microcarcinoma. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2016;154(2):256–62.  https://doi.org/10.1177/0194599815618388.Google Scholar
  48. 48.
    Zheng J, Li C, Lu W, Wang C, Ai Z. Quantitative assessment of preoperative serum thyrotropin level and thyroid cancer. Oncotarget. 2016;7(23):34918–29.  https://doi.org/10.18632/oncotarget.9201.Google Scholar
  49. 49.
    McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab. 2012;97(8):2682–92.  https://doi.org/10.1210/jc.2012-1083.Google Scholar
  50. 50.
    Negro R, Valcavi R, Riganti F, Toulis KA, Colosimo E, Bongiovanni M, et al. Thyrotropin values in patients with micropapillary thyroid cancer versus benign nodular disease. Endocr Pract : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2013;19(4):651–5.  https://doi.org/10.4158/EP12385.OR.Google Scholar
  51. 51.
    Shi L, Li Y, Guan H, Li C, Shi L, Shan Z, et al. Usefulness of serum thyrotropin for risk prediction of differentiated thyroid cancers does not apply to microcarcinomas: results of 1,870 Chinese patients with thyroid nodules. Endocr J. 2012;59(11):973–80.Google Scholar
  52. 52.
    Choi JS, Nam CM, Kim EK, Moon HJ, Han KH, Kwak JY. Evaluation of serum thyroid-stimulating hormone as indicator for fine-needle aspiration in patients with thyroid nodules. Head Neck. 2015;37(4):498–504.  https://doi.org/10.1002/hed.23616.Google Scholar
  53. 53.
    Fiore E, Rago T, Provenzale MA, Scutari M, Ugolini C, Basolo F, et al. Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role. Endocr Relat Cancer. 2009;16(4):1251–60.  https://doi.org/10.1677/ERC-09-0036.Google Scholar
  54. 54.
    Golbert L, de Cristo AP, Faccin CS, Farenzena M, Folgierini H, Graudenz MS, et al. Serum TSH levels as a predictor of malignancy in thyroid nodules: A prospective study. PloS One. 2017;12(11):e0188123.  https://doi.org/10.1371/journal.pone.0188123.Google Scholar
  55. 55.
    Moon SS, Lee YS, Lee IK, Kim JG. Serum thyrotropin as a risk factor for thyroid malignancy in euthyroid subjects with thyroid micronodule. Head Neck. 2012;34(7):949–52.  https://doi.org/10.1002/hed.21828.Google Scholar
  56. 56.
    Arscott PL, Stokes T, Myc A, Giordano TJ, Thompson NW, Baker JR Jr. Fas (CD95) expression is up-regulated on papillary thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(11):4246–52.  https://doi.org/10.1210/jcem.84.11.6139.Google Scholar
  57. 57.
    Kimura H, Yamashita S, Namba H, Tominaga T, Tsuruta M, Yokoyama N, et al. Interleukin-1 inhibits human thyroid carcinoma cell growth. J Clin Endocrinol Metab. 1992;75(2):596–602.  https://doi.org/10.1210/jcem.75.2.1322431.Google Scholar
  58. 58.
    Boi F, Minerba L, Lai ML, Marziani B, Figus B, Spanu F, et al. Both thyroid autoimmunity and increased serum TSH are independent risk factors for malignancy in patients with thyroid nodules. J Endocrinol Investig. 2013;36(5):313–20.  https://doi.org/10.3275/8579.Google Scholar
  59. 59.
    Koch CA. How can environmental factors contribute to the incidence of thyroid cancer? Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2017;49(3):229–31.  https://doi.org/10.1055/s-0043-103572.Google Scholar
  60. 60.
    Koch CA, Diamanti-Kandarakis E. Introduction to endocrine disrupting chemicals--is it time to act? Rev Endocr Metab Disord. 2015;16(4):269–70.  https://doi.org/10.1007/s11154-016-9338-3.Google Scholar
  61. 61.
    Lewis J, Hoover J, MacKenzie D. Mining and environmental health disparities in native american communities. Curr Environ Health Rep. 2017;4(2):130–41.  https://doi.org/10.1007/s40572-017-0140-5.Google Scholar
  62. 62.
    Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord. 2015;16(4):311–8.  https://doi.org/10.1007/s11154-016-9331-x.Google Scholar
  63. 63.
    Franco AT, Malaguarnera R, Refetoff S, Liao XH, Lundsmith E, Kimura S, et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci U S A. 2011;108(4):1615–20.  https://doi.org/10.1073/pnas.1015557108.Google Scholar
  64. 64.
    Virk RK, Van Dyke AL, Finkelstein A, Prasad A, Gibson J, Hui P, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a genotype-phenotype correlation. Mod Pathol : an official journal of the United States and Canadian Academy of Pathology, Inc. 2013;26(1):62–70.  https://doi.org/10.1038/modpathol.2012.152.Google Scholar
  65. 65.
    Sheu SY, Schwertheim S, Worm K, Grabellus F, Schmid KW. Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol : an official journal of the United States and Canadian Academy of Pathology, Inc. 2007;20(7):779–87.  https://doi.org/10.1038/modpathol.3800797.Google Scholar
  66. 66.
    Lin KL, Wang OC, Zhang XH, Dai XX, Hu XQ, Qu JM. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol. 2010;17(12):3294–300.  https://doi.org/10.1245/s10434-010-1129-6.Google Scholar
  67. 67.
    Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA Jr, Sigurdson AJ, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99(2):E276–85.  https://doi.org/10.1210/jc.2013-2503.Google Scholar
  68. 68.
    Shi CL, Guo Y, Lyu YC, Nanding Z, Gao WC, Shi TF, et al. Clinical pathological characteristics of resectable papillary thyroid microcarcinoma. Zhonghua zhong liu za zhi [Chin J Oncol]. 2017;39(5):361–6.  https://doi.org/10.3760/cma.j.issn.0253-3766.2017.05.008.Google Scholar
  69. 69.
    Marotta V, Guerra A, Zatelli MC, Uberti ED, Di Stasi V, Faggiano A, et al. BRAF mutation positive papillary thyroid carcinoma is less advanced when Hashimoto's thyroiditis lymphocytic infiltration is present. Clin Endocrinol. 2013;79(5):733–8.  https://doi.org/10.1111/cen.12194.Google Scholar
  70. 70.
    Ma YJ, Deng XL, Li HQ. BRAF(V(6)(0)(0)E) mutation and its association with clinicopathological features of papillary thyroid microcarcinoma: A meta-analysis. J Huazhong Univ Sci Technolog Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2015;35(4):591–9.  https://doi.org/10.1007/s11596-015-1476-4.Google Scholar
  71. 71.
    Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148(3):936–41.  https://doi.org/10.1210/en.2006-0921.Google Scholar
  72. 72.
    Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res : an official journal of the American Association for Cancer Research. 1998;4(2):287–94.Google Scholar
  73. 73.
    Su X, He C, Ma J, Tang T, Zhang X, Ye Z, et al. RET/PTC rearrangements are associated with elevated postoperative TSH levels and multifocal lesions in papillary thyroid cancer without concomitant thyroid benign disease. PloS One. 2016;11(11):e0165596.  https://doi.org/10.1371/journal.pone.0165596.Google Scholar
  74. 74.
    Rodrigues AC, Penna G, Rodrigues E, Castro P, Sobrinho-Simoes M, Soares P. The genetics of papillary microcarcinomas of the thyroid: diagnostic and prognostic implications. Curr Genomics. 2017;18(3):244–54.  https://doi.org/10.2174/1389202918666170105094459.Google Scholar
  75. 75.
    Kuo EJ, Goffredo P, Sosa JA, Roman SA. Aggressive variants of papillary thyroid microcarcinoma are associated with extrathyroidal spread and lymph-node metastases: a population-level analysis. Thyroid : official journal of the American Thyroid Association. 2013;23(10):1305–11.  https://doi.org/10.1089/thy.2012.0563.Google Scholar
  76. 76.
    Benvenga S, Koch CA. Molecular pathways associated with aggressiveness of papillary thyroid cancer. Curr Genomics. 2014;15(3):162–70.  https://doi.org/10.2174/1389202915999140404100958.Google Scholar
  77. 77.
    Kang DY, Kim KH, Kim JM, Kim SH, Kim JY, Baik HW, et al. High prevalence of RET, RAS, and ERK expression in Hashimoto's thyroiditis and in papillary thyroid carcinoma in the Korean population. Thyroid : official journal of the American Thyroid Association. 2007;17(11):1031–8.  https://doi.org/10.1089/thy.2007.0035.Google Scholar
  78. 78.
    Khoo ML, Ezzat S, Freeman JL, Asa SL. Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J Clin Endocrinol Metab. 2002;87(4):1810–3.  https://doi.org/10.1210/jcem.87.4.8352.Google Scholar
  79. 79.
    Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, et al. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto's thyroiditis. Int J Clin Exp Pathol. 2014;7(11):7999–8007.Google Scholar
  80. 80.
    Chui MH, Cassol CA, Asa SL, Mete O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Arch : an international journal of pathology. 2013;462(5):557–63.  https://doi.org/10.1007/s00428-013-1397-1.Google Scholar
  81. 81.
    Singh S, Singh A, Khanna AK. Thyroid incidentaloma. Indian J Surg Oncol. 2012;3(3):173–81.  https://doi.org/10.1007/s13193-011-0098-y.Google Scholar
  82. 82.
    Sakorafas GH, Giotakis J, Stafyla V. Papillary thyroid microcarcinoma: a surgical perspective. Cancer Treat Rev. 2005;31(6):423–38.  https://doi.org/10.1016/j.ctrv.2005.04.009.Google Scholar
  83. 83.
    Sciuto R, Romano L, Rea S, Marandino F, Sperduti I, Maini CL. Natural history and clinical outcome of differentiated thyroid carcinoma: a retrospective analysis of 1503 patients treated at a single institution. Ann Oncol : official journal of the European Society for Medical Oncology. 2009;20(10):1728–35.  https://doi.org/10.1093/annonc/mdp050.Google Scholar
  84. 84.
    Slijepcevic N, Zivaljevic V, Diklic A, Jovanovic M, Oluic B, Paunovic I. Risk factors associated with intrathyroid extension of thyroid microcarcinomas. Langenbeck's Arch Surg. 2018.  https://doi.org/10.1007/s00423-018-1680-3.
  85. 85.
    Kwak JY, Kim EK, Youk JH, Kim MJ, Son EJ, Choi SH, et al. Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid : official journal of the American Thyroid Association. 2008;18(6):609–14.  https://doi.org/10.1089/thy.2007.0345.Google Scholar
  86. 86.
    Yu X, Song X, Sun W, Zhao S, Zhao J, Wang YG. Independent risk factors predicting central lymph node metastasis in papillary thyroid microcarcinoma. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2017;49(3):201–7.  https://doi.org/10.1055/s-0043-101917.Google Scholar
  87. 87.
    Qu H, Sun GR, Liu Y, He QS. Clinical risk factors for central lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol. 2015;83(1):124–32.  https://doi.org/10.1111/cen.12583.Google Scholar
  88. 88.
    Liu LS, Liang J, Li JH, Liu X, Jiang L, Long JX, et al. The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: a meta-analysis. Eur Arch Otorhinolaryngol : official journal of the European Federation of Oto-Rhino-Laryngological Societies. 2017;274(3):1327–38.  https://doi.org/10.1007/s00405-016-4302-0.Google Scholar
  89. 89.
    Sun W, Lan X, Zhang H, Dong W, Wang Z, He L, et al. Risk factors for central lymph node metastasis in CN0 papillary thyroid carcinoma: a systematic review and meta-analysis. PloS One. 2015;10(10):e0139021.  https://doi.org/10.1371/journal.pone.0139021.Google Scholar
  90. 90.
    Bradley NL, Wiseman SM. Papillary thyroid microcarcinoma: the significance of high risk features. BMC Cancer. 2017;17(1):142.  https://doi.org/10.1186/s12885-017-3120-0.Google Scholar
  91. 91.
    Pisanu A, Saba A, Podda M, Reccia I, Uccheddu A. Nodal metastasis and recurrence in papillary thyroid microcarcinoma. Endocrine. 2015;48(2):575–81.  https://doi.org/10.1007/s12020-014-0350-7.Google Scholar
  92. 92.
    Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17(4):485–98.  https://doi.org/10.1007/s11154-016-9363-2.Google Scholar
  93. 93.
    Miccoli P, Miccoli M, Antonelli A, Minuto MN. Clinicopathologic and molecular disease prognostication for papillary thyroid cancer. Expert Rev Anticancer Ther. 2009;9(9):1261–75.  https://doi.org/10.1586/era.09.92.Google Scholar
  94. 94.
    Koibuchi H, Omoto K, Fukushima N, Toyotsuji T, Taniguchi N, Kawano M. Coexistence of papillary thyroid cancer and Hashimoto thyroiditis in children: report of 3 cases. J Ultrasound Med : official journal of the American Institute of Ultrasound in Medicine. 2014;33(7):1299–303.  https://doi.org/10.7863/ultra.33.7.1299.Google Scholar
  95. 95.
    Li Y, Wang Y, Wu Q, Hu B. Papillary thyroid microcarcinoma co-exists with Hashimoto's thyroiditis: Is strain elastography still useful? Ultrasonics. 2016;68:127–33.  https://doi.org/10.1016/j.ultras.2016.02.013.Google Scholar
  96. 96.
    Soares P, Celestino R, Gaspar da Rocha A, Sobrinho-Simoes M. Papillary thyroid microcarcinoma: how to diagnose and manage this epidemic? Int J Surg Pathol. 2014;22(2):113–9.  https://doi.org/10.1177/1066896913517394.Google Scholar
  97. 97.
    Choi YJ, Yun JS, Kook SH, Jung EC, Park YL. Clinical and imaging assessment of cervical lymph node metastasis in papillary thyroid carcinomas. World J Surg. 2010;34(7):1494–9.  https://doi.org/10.1007/s00268-010-0541-1.Google Scholar
  98. 98.
    Wu ZG, Yan XQ, Su RS, Ma ZS, Xie BJ, Cao FL. How many contralateral carcinomas in patients with unilateral papillary thyroid microcarcinoma are preoperatively misdiagnosed as benign? World J Surg. 2017;41(1):129–35.  https://doi.org/10.1007/s00268-016-3701-0.Google Scholar
  99. 99.
    Kim D, Park JW. Clinical implications of preoperative thyrotropin serum concentrations in patients who underwent thyroidectomy for nonfunctioning nodule(s). J Korean Surg Soc. 2013;85(1):15–9.  https://doi.org/10.4174/jkss.2013.85.1.15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Vita
    • 1
  • Antonio Ieni
    • 2
  • Giovanni Tuccari
    • 2
  • Salvatore Benvenga
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  2. 2.Department of Human Pathology of Adult and Evolutive Age “Gaetano Barresi”—Section of Pathological AnatomyUniversity of MessinaMessinaItaly
  3. 3.Master Program on Childhood, Adolescent and Women’s Endocrine HealthUniversity of MessinaMessinaItaly
  4. 4.Interdepartmental Program of Molecular & Clinical Endocrinology and Women’s Endocrine HealthUniversity HospitalMessinaItaly

Personalised recommendations