Advertisement

Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors

  • Sergio Pedraza-Arévalo
  • Manuel D. Gahete
  • Emilia Alors-Pérez
  • Raúl M. Luque
  • Justo P. Castaño
Article

Abstract

Neuroendocrine tumors (NETs) comprise a complex and highly heterogeneous group of neoplasms that can arise all over the body, originating from neuroendocrine cells. NETs are characterized by a general lack of symptoms until they are in advanced phase, and early biomarkers are not as available and useful as required. Heterogeneity is an intrinsic, pivotal feature of NETs that derives from diverse causes and ultimately shapes tumor fate. The different layers that conform NET heterogeneity include a wide range of distinct characteristics, from the mere location of the tumor to its clinical and functional features, and from its cellular properties, to the core signaling and (epi)genetic components defining the molecular signature of the tumor. The importance of this heterogeneity resides in that it translates into a high variability among tumors and, hence, patients, which hinders a more precise diagnosis and prognosis and more efficacious treatment of these diseases. In this review, we highlight the significance of this heterogeneity as an intrinsic hallmark of NETs, its repercussion on clinical approaches and tumor management, and some of the possible factors associated to such heterogeneity, including epigenetic and genetic elements, post-transcriptional regulation, or splicing alterations. Notwithstanding, heterogeneity can also represent a valuable and actionable feature, towards improving medical approaches based on personalized medicine. We conclude that NETs can no longer be viewed as a single disease entity and that their diagnosis, prognosis and treatment must reflect and incorporate this heterogeneity.

Keywords

Neuroendocrine tumors Heterogeneity Hallmark Cancer Carcinoid Complexity 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare in this work.

References

  1. 1.
    Kloppel G, et al. Siegfried Oberndorfer: a tribute to his work and life between Munich, Kiel, Geneva, and Istanbul. Virchows Arch. 2007;451(Suppl 1):S3–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Modlin IM, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Petersenn S, Koch CA. Neuroendocrine neoplasms - still a challenge despite major advances in clinical care with the development of specialized guidelines. Rev Endocr Metab Disord. 2017;18(4):373–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Fraenkel M, Faggiano A, Valk GD. Epidemiology of neuroendocrine tumors. Front Horm Res. 2015;44:1–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Dasari A, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–42.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Williams ED, Sandler M. The classification of carcinoid tumours. Lancet. 1963;1(7275):238–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Hendifar AE, Marchevsky AM, Tuli R. Neuroendocrine tumors of the lung: current challenges and advances in the diagnosis and management of well-differentiated disease. J Thorac Oncol. 2016;12(3):425–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Wolin EM. Advances in the diagnosis and management of well-differentiated and intermediate-differentiated neuroendocrine tumors of the lung. Chest. 2016;151(5):1141–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Ramirez RA, et al. Management of pulmonary neuroendocrine tumors. Rev Endocr Metab Disord. 2017;18(4):433–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Mandegaran R, David S, Screaton N. Cardiothoracic manifestations of neuroendocrine tumours. Br J Radiol. 2016;89(1060):20150787.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Litvak A, Pietanza MC. Bronchial and thymic carcinoid tumors. Hematol Oncol Clin North Am. 2016;30(1):83–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Phan AT, et al. NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas. 2010;39(6):784–98.PubMedCrossRefGoogle Scholar
  13. 13.
    Weissferdt A, Moran CA. Neuroendocrine differentiation in thymic carcinomas: a diagnostic pitfall: an immunohistochemical analysis of 27 cases. Am J Clin Pathol. 2016;145(3):393–400.PubMedCrossRefGoogle Scholar
  14. 14.
    Oberg K, et al. Neuroendocrine bronchial and thymic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii120–3.PubMedGoogle Scholar
  15. 15.
    Kloppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2011;18(Suppl 1):S1–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Viudez A, et al. Pancreatic neuroendocrine tumors: challenges in an underestimated disease. Crit Rev Oncol Hematol. 2016;101:193–206.PubMedCrossRefGoogle Scholar
  17. 17.
    Vortmeyer AO, et al. Non-islet origin of pancreatic islet cell tumors. J Clin Endocrinol Metab. 2004;89(4):1934–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Anlauf M, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol. 2006;30(5):560–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Morita M, et al. Conversion to neuroendocrine carcinoma from squamous cell carcinoma of the esophagus after definitive chemoradiotherapy. Anticancer Res. 2016;36(8):4045–9.PubMedGoogle Scholar
  20. 20.
    Sato Y, et al. Management of gastric and duodenal neuroendocrine tumors. World J Gastroenterol. 2016;22(30):6817–28.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Scherubl H, et al. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy. 2010;42(8):664–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Capelli P, Fassan M, Scarpa A. Pathology - grading and staging of GEP-NETs. Best Pract Res Clin Gastroenterol. 2012;26(6):705–17.PubMedCrossRefGoogle Scholar
  23. 23.
    de Herder WW. GEP-NETS update: functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs). Eur J Endocrinol. 2014;170(5):R173–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Kidd M, et al. Decoding the molecular and mutational ambiguities of gastroenteropancreatic neuroendocrine neoplasm pathobiology. Cell Mol Gastroenterol Hepatol. 2015;1(2):131–53.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rindi G, Wiedenmann B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat Rev Endocrinol. 2011;8(1):54–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Niederle B, et al. ENETS consensus guidelines update for neuroendocrine neoplasms of the jejunum and ileum. Neuroendocrinology. 2016;103(2):125–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Singer J, et al. Ectopic Cushing's syndrome caused by a well differentiated ACTH-secreting neuroendocrine carcinoma of the ileum. Exp Clin Endocrinol Diabetes. 2010;118(8):524–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kojima M, et al. Neuroendocrine tumors of the large intestine: Clinicopathological features and predictive factors of lymph node metastasis. Front Oncol. 2016;6:173.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pape UF, et al. ENETS consensus guidelines for neuroendocrine neoplasms of the appendix (excluding goblet cell carcinomas). Neuroendocrinology. 2016;103(2):144–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Vortmeyer AO, et al. Concordance of genetic alterations in poorly differentiated colorectal neuroendocrine carcinomas and associated adenocarcinomas. J Natl Cancer Inst. 1997;89(19):1448–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Ramage JK, et al. ENETS consensus guidelines update for colorectal neuroendocrine neoplasms. Neuroendocrinology. 2016;103(2):139–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Falkmer UG, et al. Malignant presacral ghrelinoma with long-standing hyperghrelinaemia. Ups J Med Sci. 2015;120(4):299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chauhan A, et al. Transition of a pancreatic neuroendocrine tumor from ghrelinoma to insulinoma: a case report. J Gastrointest Oncol. 2015;6(2):E34–6.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wells SA Jr, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Voss RK, et al. Medullary thyroid carcinoma in MEN2A: ATA moderate- or high-risk RET mutations do not predict disease aggressiveness. J Clin Endocrinol Metab. 2017;102(8):2807–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Raue F, et al. Long-term survivorship in multiple endocrine neoplasia type 2B diagnosed before and in the new millennium. J Clin Endocrinol Metab. 2018;103(1):235–43.PubMedCrossRefGoogle Scholar
  37. 37.
    DeLellis RA, et al. Medullary thyroid carcinoma. In: Lloyd R, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of Tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 108–13.Google Scholar
  38. 38.
    Eloy C, et al. Small cell tumors of the thyroid gland: a review. Int J Surg Pathol. 2014;22(3):197–201.PubMedCrossRefGoogle Scholar
  39. 39.
    Starker LF, et al. Expression and somatic mutations of SDHAF2 (SDH5), a novel endocrine tumor suppressor gene in parathyroid tumors of primary hyperparathyroidism. Endocrine. 2010;38(3):397–401.PubMedCrossRefGoogle Scholar
  40. 40.
    Matias-Guiu X, et al. Paraganglioma and mesenchymal/stromal tumours. In: Lloyd R, Osamura RY, Kloppel G, Rosai J, editors. WHO Classification of Tumours of Endocrine Organs, 4th ed. Lyon: IARC; 2017. p. 127.Google Scholar
  41. 41.
    DeLellis RA, Erickson LA, Thompson LDR. Secondary, mesenchymal and other tumours. In: Lloyd R, Osamura RY, Kloppel G, Rosai J, editors. WHO Classification of Tumours of Endocrine Organs, 4th ed. Lyon: IARC; 2017. p. 159.Google Scholar
  42. 42.
    Strosberg JR. Update on the management of unusual neuroendocrine tumors: pheochromocytoma and paraganglioma, medullary thyroid cancer and adrenocortical carcinoma. Semin Oncol. 2013;40(1):120–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Pacak K, Teila SH. Pheochromocytoma and paraganglioma. In: De Groot LJ, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2018.Google Scholar
  45. 45.
    Kimura N, et al. Tumours of the adrenal medulla and extraadrenal paraganglia. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of Tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 179–206.Google Scholar
  46. 46.
    Tischler AS, de Krijger RR. Phaeochromocytoma. In: Lloyd R, Osamura RY, Kloppel G, Rosai J, editors. WHO Classification of Tumors of Endocrine Organs, 4h ed. Lyon: IARC; 2017. p. 183–9.Google Scholar
  47. 47.
    Kimura N, Capella C. Extraadrenal paraganglioma. In: Lloyd R, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of Tumours of endocrine organs. 4th ed. Lyon: IARC; 2017. p. 190–5.Google Scholar
  48. 48.
    Sood A, Williamson SR, Leavitt DA. Neuroendocrine tumor of the ureter: a zebra among horses. J Endourol Case Rep. 2016;2(1):204–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kouba E, Cheng L. Neuroendocrine tumors of the urinary bladder according to the 2016 World Health Organization classification: molecular and clinical characteristics. Endocr Pathol. 2016;27(3):188–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Priemer DS, et al. Neuroendocrine tumors of the prostate: emerging insights from molecular data and updates to the 2016 World Health Organization classification. Endocr Pathol. 2016;27(2):123–35.PubMedCrossRefGoogle Scholar
  51. 51.
    Kwon YS, Im KS, Choi DI. Ovarian large cell neuroendocrine carcinoma in the youngest woman. Eur J Gynaecol Oncol. 2016;37(2):244–6.PubMedGoogle Scholar
  52. 52.
    Yaghmour G, et al. Genomic alterations in neuroendocrine cancers of the ovary. J Ovarian Res. 2016;9(1):52.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ganesan R, et al. Neuroendocrine carcinoma of the cervix: review of a series of cases and correlation with outcome. Int J Surg Pathol. 2016;24(6):490–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Koch CA, et al. Carcinoid syndrome caused by an atypical carcinoid of the uterine cervix. J Clin Endocrinol Metab. 1999;84(11):4209–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Adams RW, Dyson P, Barthelmes L. Neuroendocrine breast tumours: breast cancer or neuroendocrine cancer presenting in the breast? Breast. 2014;23(2):120–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Asioli S, et al. Working formulation of neuroendocrine tumors of the skin and breast. Endocr Pathol. 2014;25(2):141–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Lubana SS, et al. Primary neuroendocrine tumor (carcinoid tumor) of the testis: a case report with review of literature. Am J Case Rep. 2015;16:328–32.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aung PP, et al. Primary neuroendocrine tumors of the kidney: morphological and molecular alterations of an uncommon malignancy. Hum Pathol. 2013;44(5):873–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamagata K, et al. A rare primary neuroendocrine tumor (typical carcinoid) of the sublingual gland. Case Rep Dent. 2016;7462690:2016.Google Scholar
  60. 60.
    Iype S, et al. Neuroendocrine tumours of the gallbladder: three cases and a review of the literature. Postgrad Med J. 2009;85(1002):213–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Thar YY, et al. An extremely rare case of advanced metastatic small cell neuroendocrine carcinoma of sinonasal tract. Case Rep Oncol Med. 2016;1496916:2016.Google Scholar
  62. 62.
    Coriat R, et al. Gastroenteropancreatic well-differentiated grade 3 neuroendocrine tumors: review and position statement. Oncologist. 2016;21(10):1191–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    de Mestier L, et al. Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology. 2017;105(4):412–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Scoazec JY, Couvelard A. Classification of pancreatic neuroendocrine tumours: changes made in the 2017 WHO classification of tumours of endocrine organs and perspectives for the future. Ann Pathol. 2017;37(6):444–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Travis WD, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Caplin ME, et al. Pulmonary neuroendocrine (carcinoid) tumors: European neuroendocrine tumor society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604–20.PubMedCrossRefGoogle Scholar
  67. 67.
    Inzani F, et al. Cyto-histology in NET: what is necessary today and what is the future? Rev Endocr Metab Disord. 2017;18(4):381–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Nunez-Valdovinos B, et al. Neuroendocrine tumor heterogeneity adds uncertainty to the World Health Organization 2010 classification: real-world data from the Spanish tumor registry (R-GETNE). Oncologist. 2018;23(4):422–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Trantakis C, et al. Acromegaly caused by a thoracic neuroendocrine tumor. Exp Clin Endocrinol Diabetes. 2005:113–58.Google Scholar
  70. 70.
    Koch CA. Cushing's syndrome and glucocorticoid excess. In: Berbari AE, Mancia G, editors. Disorders of blood pressure regulation. New York: Springer; 2018. p. 481–512.CrossRefGoogle Scholar
  71. 71.
    Falconi M, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 2016;103(2):153–71.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vinik A. Diffuse hormonal systems. In: De Groot LJ, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2017.Google Scholar
  73. 73.
    Vinik A, et al. Carcinoid tumors. In: De Groot LJ, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2018.Google Scholar
  74. 74.
    Amin S, Kim MK. Islet cell tumors of the pancreas. Gastroenterol Clin N Am. 2016;45(1):83–100.CrossRefGoogle Scholar
  75. 75.
    Cloyd JM, Poultsides GA. Non-functional neuroendocrine tumors of the pancreas: advances in diagnosis and management. World J Gastroenterol. 2015;21(32):9512–25.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Boutzios G, Kaltsas G. Clinical syndromes related to gastrointestinal neuroendocrine neoplasms. Front Horm Res. 2015;44:40–57.PubMedCrossRefGoogle Scholar
  77. 77.
    Dimitriadis GK, et al. Medical management of secretory syndromes related to gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2016;23(9):R423–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Verbeek WH, Korse CM, Tesselaar ME. GEP-NETs UPDATE: Secreting gastro-enteropancreatic neuroendocrine tumours and biomarkers. Eur J Endocrinol. 2016;174(1):R1–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Luis SA, Pellikka PA. Carcinoid heart disease: diagnosis and management. Best Pract Res Clin Endocrinol Metab. 2016;30(1):149–58.PubMedCrossRefGoogle Scholar
  80. 80.
    Halperin DM, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol. 2017;18(4):525–34.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Granberg D. Biochemical testing in patients with neuroendocrine tumors. Front Horm Res. 2015;44:24–39.PubMedCrossRefGoogle Scholar
  82. 82.
    Skrabanek P, et al. Substance P secretion by carcinoid tumours. Ir J Med Sci. 1978;147(2):47–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Wardlaw R, Smith JW. Gastric carcinoid tumors. Ochsner J. 2008;8(4):191–6.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Chan J, Kulke M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options in Oncol. 2014;15(3):365–79.CrossRefGoogle Scholar
  85. 85.
    Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.PubMedCrossRefGoogle Scholar
  86. 86.
    Starker LF, Carling T. Molecular genetics of gastroenteropancreatic neuroendocrine tumors. Curr Opin Oncol. 2009;21(1):29–33.PubMedCrossRefGoogle Scholar
  87. 87.
    Perren A, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol. 2000;157(4):1097–103.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Crabtree JS, Singleton CS, Miele L. Notch signaling in neuroendocrine tumors. Front Oncol. 2016;6:94.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sunaga N, et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol Cancer Ther. 2011;10(2):336–46.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lea IA, et al. Genetic pathways and mutation profiles of human cancers: site- and exposure-specific patterns. Carcinogenesis. 2007;28(9):1851–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ohashi K, et al. Characteristics of lung cancers harboring NRAS mutations. Clin Cancer Res. 2013;19(9):2584–91.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    George J, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dorantes-Heredia R, Ruiz-Morales JM, Cano-Garcia F. Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors. Transl Lung Cancer Res. 2016;5(4):401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Crona J, Skogseid B. GEP- NETS UPDATE: genetics of neuroendocrine tumors. Eur J Endocrinol. 2016;174(6):R275–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Yates CJ, Newey PJ, Thakker RV. Challenges and controversies in management of pancreatic neuroendocrine tumours in patients with MEN1. Lancet Diabetes Endocrinol. 2015;3(11):895–905.PubMedCrossRefGoogle Scholar
  96. 96.
    Wells SA Jr, et al. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab. 2013;98(8):3149–64.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Brauer VF, et al. RET germline mutation in codon 791 in a family representing 3 generations from age 5 to age 70 years: should thyroidectomy be performed? Endocr Pract. 2004;10(1):5–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Koch CA. Molecular pathogenesis of MEN2-associated tumors. Familial Cancer. 2005;4(1):3–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Uccella S, et al. Immunohistochemical biomarkers of gastrointestinal, pancreatic, pulmonary, and thymic neuroendocrine neoplasms. Endocr Pathol. 2018;29(2):150–68.PubMedCrossRefGoogle Scholar
  100. 100.
    Delle Fave G, et al. ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology. 2016;103(2):119–24.PubMedCrossRefGoogle Scholar
  101. 101.
    Garcia-Carbonero R, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103(2):186–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Chan DL, et al. Prognostic and predictive biomarkers in neuroendocrine tumours. Crit Rev Oncol Hematol. 2017;113:268–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Moreira RK, Washington K. Pathology of gastrointestinal neuroendocrine tumors: an update. Surg Pathol Clin. 2010;3(2):327–47.PubMedCrossRefGoogle Scholar
  104. 104.
    Auernhammer CJ, et al. Advanced neuroendocrine tumours of the small intestine and pancreas: clinical developments, controversies, and future strategies. Lancet Diabetes Endocrinol. 2018;6(5):404–15.PubMedCrossRefGoogle Scholar
  105. 105.
    Oberg K, et al. ENETS consensus guidelines for standard of care in neuroendocrine tumours: biochemical markers. Neuroendocrinology. 2017;105(3):201–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Mafficini A, Scarpa A. Genomic landscape of pancreatic neuroendocrine tumours: the international cancer genome consortium. J Endocrinol. 2018;236(3):R161–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Heaphy CM, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jiao Y, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Scarpa A, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71.PubMedCrossRefGoogle Scholar
  110. 110.
    Fishbein L, et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun. 2015;6:6140.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dreijerink KMA, Timmers HTM, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer. 2017;24(10):T135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Capdevila J, et al. Translational research in neuroendocrine tumors: pitfalls and opportunities. Oncogene. 2016;36(14):1899–907.PubMedCrossRefGoogle Scholar
  113. 113.
    Francis JM, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013;45(12):1483–6.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Else T. 15 YEARS OF PARAGANGLIOMA: Pheochromocytoma, paraganglioma and genetic syndromes: a historical perspective. Endocr Relat Cancer. 2015;22(4):T147–59.PubMedCrossRefGoogle Scholar
  115. 115.
    Comino-Mendez I, et al. ATRX driver mutation in a composite malignant pheochromocytoma. Cancer Genet. 2016;209(6):272–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology. Epigenomics. 2016;8(2):271–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Karpathakis A, Dibra H, Thirlwell C. Neuroendocrine tumours: cracking the epigenetic code. Endocr Relat Cancer. 2013;20(3):R65–82.PubMedCrossRefGoogle Scholar
  118. 118.
    House MG, et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg. 2003;238(3):423–31 discussion 431-2.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Pizzi S, et al. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol. 2005;206(4):409–16.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu L, et al. Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform a and p16 genes are associated with metastasis. Mod Pathol. 2005;18(12):1632–40.PubMedCrossRefGoogle Scholar
  121. 121.
    Dejeux E, et al. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer. 2009;16(3):939–52.PubMedCrossRefGoogle Scholar
  122. 122.
    Chan AO, et al. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene. 2003;22(6):924–34.PubMedCrossRefGoogle Scholar
  123. 123.
    Mapelli P, et al. Epigenetic changes in gastroenteropancreatic neuroendocrine tumours. Oncogene. 2015;34(34):4439–47.PubMedCrossRefGoogle Scholar
  124. 124.
    Pelosi G, et al. Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung. Anticancer Res. 2010;30(10):4269–81.PubMedGoogle Scholar
  125. 125.
    How-Kit A, et al. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics. 2015;7(8):1245–58.PubMedCrossRefGoogle Scholar
  126. 126.
    Modlin IM, Bodei L, Kidd M. Neuroendocrine tumor biomarkers: from monoanalytes to transcripts and algorithms. Best Pract Res Clin Endocrinol Metab. 2016;30(1):59–77.PubMedCrossRefGoogle Scholar
  127. 127.
    Vicentini C, et al. Clinical application of microRNA testing in neuroendocrine tumors of the gastrointestinal tract. Molecules. 2014;19(2):2458–68.PubMedCrossRefGoogle Scholar
  128. 128.
    Roldo C, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Ruebel K, et al. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod Pathol. 2010;23(3):367–75.PubMedCrossRefGoogle Scholar
  130. 130.
    Amaral T, Leiter U, Garbe C. Merkel cell carcinoma: epidemiology, pathogenesis, diagnosis and therapy. Rev Endocr Metab Disord. 2017;18(4):517–32.PubMedCrossRefGoogle Scholar
  131. 131.
    Li SC, et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26(5):685–96.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mairinger FD, et al. Different micro-RNA expression profiles distinguish subtypes of neuroendocrine tumors of the lung: results of a profiling study. Mod Pathol. 2014;27(12):1632–40.PubMedCrossRefGoogle Scholar
  133. 133.
    Modali SD, et al. Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol. 2015;29(2):224–37.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15(2):108–21.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Braunschweig U, et al. Dynamic integration of splicing within gene regulatory pathways. Cell. 2013;152(6):1252–69.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kelemen O, et al. Function of alternative splicing. Gene. 2013;514(1):1–30.CrossRefGoogle Scholar
  137. 137.
    Zhou HL, et al. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res. 2014;42(2):701–13.PubMedCrossRefGoogle Scholar
  138. 138.
    Bechara EG, et al. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell. 2013;52(5):720–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Babic I, et al. EGFR mutation-induced alternative splicing of max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013;17(6):1000–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Alsafadi S, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7:10615.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Luque RM, et al. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: evidence from clinical, cellular and molecular parameters. Oncotarget. 2015;6(23):19619–33.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sampedro-Nunez M, et al. Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors. Oncotarget. 2016;7(6):6593–608.PubMedCrossRefGoogle Scholar
  143. 143.
    Chaudhry A, et al. Different splice variants of CD44 are expressed in gastrinomas but not in other subtypes of endocrine pancreatic tumors. Cancer Res. 1994;54(4):981–6.PubMedGoogle Scholar
  144. 144.
    Terris B, et al. Increased expression of CD44v6 in endocrine pancreatic tumours but not in midgut carcinoid tumours. Clin Mol Pathol. 1996;49(4):M203–8.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Miyanaga A, et al. Diagnostic and prognostic significance of the alternatively spliced ACTN4 variant in high-grade neuroendocrine pulmonary tumours. Ann Oncol. 2013;24(1):84–90.PubMedCrossRefGoogle Scholar
  146. 146.
    Edmond V, et al. A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors. Cell Cycle. 2013;12(8):1267–78.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Cives M, Soares HP, Strosberg J. Will clinical heterogeneity of neuroendocrine tumors impact their management in the future? Lessons from recent trials. Curr Opin Oncol. 2016;28(4):359–66.PubMedCrossRefGoogle Scholar
  148. 148.
    Rickman DS, et al. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med. 2017;23(6):1–10.PubMedCrossRefGoogle Scholar
  149. 149.
    Cwikla JB, et al. Circulating transcript analysis (NETest) in GEP-NETs treated with somatostatin analogs defines therapy. J Clin Endocrinol Metab. 2015;100(11):E1437–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Bowden M, et al. Profiling of metastatic small intestine neuroendocrine tumors reveals characteristic miRNAs detectable in plasma. Oncotarget. 2017;8(33):54331–44.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kim ST, et al. Genomic profiling of metastatic gastroenteropancreatic neuroendocrine tumor (GEP-NET) patients in the personalized-medicine era. J Cancer. 2016;7(9):1044–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Young K, et al. Pancreatic neuroendocrine tumors: a review. Future Oncol. 2015;11(5):853–64.PubMedCrossRefGoogle Scholar
  153. 153.
    Li TT, et al. Classification, clinicopathologic features and treatment of gastric neuroendocrine tumors. World J Gastroenterol. 2014;20(1):118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Pavel M, de Herder WW. ENETS consensus guidelines for the standard of care in neuroendocrine tumors. Neuroendocrinology. 2017;105(3):193–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Kulke MH, et al. Neuroendocrine tumors. J Natl Compr Cancer Netw. 2012;10(6):724–64.CrossRefGoogle Scholar
  156. 156.
    Pavel ME, Sers C. Women in cancer thematic review: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr Relat Cancer. 2016;23(11):T135–54.PubMedCrossRefGoogle Scholar
  157. 157.
    Pavel M, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.PubMedCrossRefGoogle Scholar
  158. 158.
    Modlin IM, et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010;31(2):169–88.PubMedGoogle Scholar
  159. 159.
    Berardi R, et al. Gastrointestinal neuroendocrine tumors: searching the optimal treatment strategy--a literature review. Crit Rev Oncol Hematol. 2016;98:264–74.PubMedCrossRefGoogle Scholar
  160. 160.
    Kim SJ, et al. The efficacy of (177)Lu-labelled peptide receptor radionuclide therapy in patients with neuroendocrine tumours: a meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42(13):1964–70.PubMedCrossRefGoogle Scholar
  161. 161.
    Parghane RV, et al. Clinical response profile of metastatic/advanced pulmonary neuroendocrine tumors to peptide receptor radionuclide therapy with 177Lu-DOTATATE. Clin Nucl Med. 2017;42(6):428–35.PubMedCrossRefGoogle Scholar
  162. 162.
    Castaño JP, et al. Gastrointestinal neuroendocrine tumors (NETs): new diagnostic and therapeutic challenges. Cancer Metastasis Rev. 2014;33(1):353–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci. 2013;34(12):676–88.PubMedCrossRefGoogle Scholar
  164. 164.
    Herrera-Martinez AD, et al. The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features. Lung Cancer. 2017;109:128–36.PubMedCrossRefGoogle Scholar
  165. 165.
    Herrera-Martinez AD, et al. Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine. 2018;59(2):426–37.PubMedCrossRefGoogle Scholar
  166. 166.
    Mangano A, et al. New horizons for targeted treatment of neuroendocrine tumors. Future Oncol. 2016;12(8):1059–65.PubMedCrossRefGoogle Scholar
  167. 167.
    Oberg K, et al. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res. 2013;19(11):2842–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Hasskarl J. Everolimus. Recent Results Cancer Res. 2014;201:373–92.PubMedCrossRefGoogle Scholar
  169. 169.
    Raymond E, et al. Sunitinib in pancreatic neuroendocrine tumors. Target Oncol. 2012;7(2):117–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)CórdobaSpain
  2. 2.Department of Cell Biology, Physiology, and ImmunologyUniversidad de CórdobaCórdobaSpain
  3. 3.Reina Sofia University HospitalCórdobaSpain
  4. 4.CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
  5. 5.Agrifood Campus of International Excellence (ceiA3)CórdobaSpain

Personalised recommendations