Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 18, Issue 3, pp 273–283 | Cite as

Shedding new light on female fertility: The role of vitamin D

  • Giovanna MuscogiuriEmail author
  • Barbara Altieri
  • Cristina de Angelis
  • Stefano Palomba
  • Rosario Pivonello
  • Annamaria Colao
  • Francesco Orio
Article

Abstract

In the last decades several studies suggested that vitamin D is involved in the modulation of the reproductive process in women due to the expression of VDR and 1α-hydroxylase in reproductive tissues such as ovary, uterus, placenta, pituitary and hypothalamus. Vitamin D has also a role in the regulation of sex hormone steroidogenesis. Increasing evidence suggests that vitamin D might have a regulatory role in polycystic ovary syndrome (PCOS)-associated symptoms, including ovulatory dysfunction, insulin resistance and hyperandrogenism. Vitamin D deficiency also has been reported to contribute to the pathogenesis of endometriosis due to its immunomodulatory and anti-inflammatory properties. Although most of the studies supported a role of vitamin D in the onset of these diseases, randomized controlled trials to assess the efficacy of vitamin D supplementation have never been performed. In this review we critically discuss the role of vitamin D in female fertility, starting from in vitro and in vivo studies, focusing our attention on the two most frequent causes of female infertility: PCOS and endometriosis.

Keywords

Vitamin D Female fertility PCOS Endometriosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bhan I. Vitamin d binding protein and bone health. Int J Endocrinol. 2014;2014:561214. doi: 10.1155/2014/561214.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Muscogiuri G, Altieri B, Annweiler C, Balercia G, Pal HB, Boucher BJ, et al. Vitamin D and chronic diseases: the current state of the art. Arch Toxicol. 2016; doi: 10.1007/s00204-016-1804-x.Google Scholar
  3. 3.
    Muscogiuri G, Mitri J, Mathieu C, Badenhoop K, Tamer G, Orio F, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol / European Federation of Endocrine Societies. 2014;171(3):R101–10. doi: 10.1530/EJE-14-0158.CrossRefGoogle Scholar
  4. 4.
    D'Aurizio F, Villalta D, Metus P, Doretto P, Tozzoli R. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun Rev. 2015;14(5):363–9. doi: 10.1016/j.autrev.2014.10.008.PubMedCrossRefGoogle Scholar
  5. 5.
    Muscogiuri G, Altieri B, Penna-Martinez M, Badenhoop K. Focus on vitamin D and the adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2015;47(4):239–46. doi: 10.1055/s-0034-1396893.
  6. 6.
    Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5(10):3993–4021. doi: 10.3390/nu5103993.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Altieri B, Grant WB, Casa SD, Orio F, Pontecorvi A, Colao A, et al. Vitamin D and pancreas: the role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr. 2016; doi: 10.1080/10408398.2015.1136922.Google Scholar
  8. 8.
    Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34. doi: 10.1210/jc.2008-1454.PubMedCrossRefGoogle Scholar
  9. 9.
    van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101. doi: 10.1016/j.jsbmb.2005.06.002.PubMedCrossRefGoogle Scholar
  10. 10.
    Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. Eur J Endocrinol / European Federation of Endocrine Societies. 2012;166(5):765–78. doi: 10.1530/EJE-11-0984.CrossRefGoogle Scholar
  11. 11.
    Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract. 2013;67(3):225–35. doi: 10.1111/ijcp.12031.PubMedCrossRefGoogle Scholar
  12. 12.
    Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000;141(4):1317–24. doi: 10.1210/endo.141.4.7403.PubMedCrossRefGoogle Scholar
  13. 13.
    Halhali A, Acker GM, Garabedian M. 1,25-dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J Reprod Fertil. 1991;91(1):59–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Rojansky N, Brzezinski A, Schenker JG. Seasonality in human reproduction: an update. Hum Reprod. 1992;7(6):735–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Thill M, Becker S, Fischer D, Cordes T, Hornemann A, Diedrich K, et al. Expression of prostaglandin metabolising enzymes COX-2 and 15-PGDH and VDR in human granulosa cells. Anticancer Res. 2009;29(9):3611–8.PubMedGoogle Scholar
  16. 16.
    Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2010;42(10):754–7. doi: 10.1055/s-0030-1262837.
  17. 17.
    Weisman Y, Harell A, Edelstein S, David M, Spirer Z, Golander A. 1 alpha, 25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature. 1979;281(5729):317–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanamura A, Nomura S, Kurauchi O, Furui T, Mizutani S, Tomoda Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol (Tokyo 1995). 1995;21(6):631–9.CrossRefGoogle Scholar
  19. 19.
    Agic A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci. 2007;14(5):486–97. doi: 10.1177/1933719107304565.PubMedCrossRefGoogle Scholar
  20. 20.
    Perez-Fernandez R, Alonso M, Segura C, Munoz I, Garcia-Caballero T, Diguez C. Vitamin D receptor gene expression in human pituitary gland. Life Sci. 1997;60(1):35–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Barrera D, Avila E, Hernandez G, Mendez I, Gonzalez L, Halhali A, et al. Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod Biol Endocrinol. 2008;6:3. doi: 10.1186/1477-7827-6-3.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Henry HL, Norman AW. Vitamin D: metabolism and biological actions. Annu Rev Nutr. 1984;4:493–520. doi: 10.1146/annurev.nu.04.070184.002425.PubMedCrossRefGoogle Scholar
  23. 23.
    Vigano P, Lattuada D, Mangioni S, Ermellino L, Vignali M, Caporizzo E, et al. Cycling and early pregnant endometrium as a site of regulated expression of the vitamin D system. J Mol Endocrinol. 2006;36(3):415–24. doi: 10.1677/jme.1.01946.PubMedCrossRefGoogle Scholar
  24. 24.
    Fischer D, Thome M, Becker S, Cordes T, Diedrich K, Friedrich M, et al. 25-hydroxyvitamin D3 1alpha-hydroxylase splice variants in benign and malignant ovarian cell lines and tissue. Anticancer Res. 2009;29(9):3627–33.PubMedGoogle Scholar
  25. 25.
    Stephanou A, Ross R, Handwerger S. Regulation of human placental lactogen expression by 1,25-dihydroxyvitamin D3. Endocrinology. 1994;135(6):2651–6. doi: 10.1210/endo.135.6.7988455.PubMedCrossRefGoogle Scholar
  26. 26.
    Tuan RS, Moore CJ, Brittingham JW, Kirwin JJ, Akins RE, Wong M. In vitro study of placental trophoblast calcium uptake using JEG-3 human choriocarcinoma cells. J Cell Sci. 1991;98(Pt 3):333–42.PubMedGoogle Scholar
  27. 27.
    Belkacemi L, Gariepy G, Mounier C, Simoneau L, Lafond J. Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Biol Reprod. 2003;68(6):1943–50. doi: 10.1095/biolreprod.102.009373.PubMedCrossRefGoogle Scholar
  28. 28.
    Du H, Daftary GS, Lalwani SI, Taylor HS. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol. 2005;19(9):2222–33. doi: 10.1210/me.2004-0336.PubMedCrossRefGoogle Scholar
  29. 29.
    Merhi Z, Doswell A, Krebs K, Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J Clin Endocrinol Metab. 2014;99(6):E1137–45. doi: 10.1210/jc.2013-4161.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Barrera D, Avila E, Hernandez G, Halhali A, Biruete B, Larrea F, et al. Estradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J Steroid Biochem Mol Biol. 2007;103(3–5):529–32. doi: 10.1016/j.jsbmb.2006.12.097.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun T, Zhao Y, Mangelsdorf DJ, Simpson ER. Characterization of a region upstream of exon I.1 of the human CYP19 (aromatase) gene that mediates regulation by retinoids in human choriocarcinoma cells. Endocrinology. 1998;139(4):1684–91. doi: 10.1210/endo.139.4.5959.PubMedCrossRefGoogle Scholar
  32. 32.
    Krishnan AV, Swami S, Peng L, Wang J, Moreno J, Feldman D. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology. 2010;151(1):32–42. doi: 10.1210/en.2009-0855.PubMedCrossRefGoogle Scholar
  33. 33.
    Malloy PJ, Peng L, Wang J, Feldman D. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology. 2009;150(4):1580–7. doi: 10.1210/en.2008-1555.PubMedCrossRefGoogle Scholar
  34. 34.
    Merhi ZO, Seifer DB, Weedon J, Adeyemi O, Holman S, Anastos K, et al. Circulating vitamin D correlates with serum antimullerian hormone levels in late-reproductive-aged women: Women's interagency HIV study. Fertil Steril. 2012;98(1):228–34. doi: 10.1016/j.fertnstert.2012.03.029.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jamil Z, Fatima SS, Ahmed K, Malik R. Anti-Mullerian hormone: above and beyond conventional ovarian reserve markers. Dis Markers. 2016;2016:5246217. doi: 10.1155/2016/5246217.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206. doi: 10.1530/rep.1.01074.PubMedCrossRefGoogle Scholar
  37. 37.
    Parry JP, Moran T, Koch CA. Ovarian reserve testing. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2016.Google Scholar
  38. 38.
    Krishnan AV, Moreno J, Nonn L, Malloy P, Swami S, Peng L, et al. Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J Steroid Biochem Mol Biol. 2007;103(3–5):694–702. doi: 10.1016/j.jsbmb.2006.12.051.PubMedCrossRefGoogle Scholar
  39. 39.
    Dennis NA, Houghton LA, Jones GT, van Rij AM, Morgan K, McLennan IS. The level of serum anti-Mullerian hormone correlates with vitamin D status in men and women but not in boys. J Clin Endocrinol Metab. 2012;97(7):2450–5. doi: 10.1210/jc.2012-1213.PubMedCrossRefGoogle Scholar
  40. 40.
    Jukic AM, Steiner AZ, Baird DD. Association between serum 25-hydroxyvitamin D and ovarian reserve in premenopausal women. Menopause. 2015;22(3):312–6. doi: 10.1097/GME.0000000000000312.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kwiecinksi GG, Petrie GI, DeLuca HF. 1,25-dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am J Phys. 1989;256(4 Pt 1):E483–7.Google Scholar
  42. 42.
    Halloran BP, DeLuca HF. Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr. 1980;110(8):1573–80.PubMedGoogle Scholar
  43. 43.
    Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16(4):391–6. doi: 10.1038/ng0897-391.PubMedCrossRefGoogle Scholar
  44. 44.
    Sun W, Xie H, Ji J, Zhou X, Goltzman D, Miao D. Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus. Am J Physiol Endocrinol Metab. 2010;299(6):E928–35. doi: 10.1152/ajpendo.00378.2010.PubMedCrossRefGoogle Scholar
  45. 45.
    Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci U S A. 2001;98(13):7498–503. doi: 10.1073/pnas.131029498.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Johnson LE, DeLuca HF. Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J Nutr. 2001;131(6):1787–91.PubMedGoogle Scholar
  47. 47.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76. doi: 10.1210/er.2008-0004.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89(6):2745–9. doi: 10.1210/jc.2003-032046.PubMedCrossRefGoogle Scholar
  49. 49.
    March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51. doi: 10.1093/humrep/dep399.PubMedCrossRefGoogle Scholar
  50. 50.
    Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and Pcos Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome--Part 1. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2015;21(11):1291–300. doi: 10.4158/EP15748.DSC.
  51. 51.
    Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81(3):942–7. doi: 10.1210/jcem.81.3.8772555.PubMedGoogle Scholar
  52. 52.
    Talbott EO, Zborowskii JV, Boudraux MY. Do women with polycystic ovary syndrome have an increased risk of cardiovascular disease? Review of the evidence Minerva Ginecol. 2004;56(1):27–39.PubMedGoogle Scholar
  53. 53.
    Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol. 2012;77(3):343–50. doi: 10.1111/j.1365-2265.2012.04434.x.CrossRefGoogle Scholar
  54. 54.
    He C, Lin Z, Robb SW, Ezeamama AE. Serum vitamin D levels and polycystic ovary syndrome: a systematic review and meta-analysis. Nutrients. 2015;7(6):4555–77. doi: 10.3390/nu7064555.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol. 1996;105(1):7–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Wojtusik J, Johnson PA. Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol Reprod. 2012;86(3):91. doi: 10.1095/biolreprod.111.094110.PubMedCrossRefGoogle Scholar
  57. 57.
    Chang HM, Klausen C, Leung PC. Antimullerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril. 2013;100(2):585–92. e1 doi: 10.1016/j.fertnstert.2013.04.019.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee CT, Wang JY, Chou KY, Hsu MI. 1,25-dihydroxyvitamin D3 increases testosterone-induced 17beta-estradiol secretion and reverses testosterone-reduced connexin 43 in rat granulosa cells. Reprod Biol Endocrinol: RB&E. 2014;12:90. doi: 10.1186/1477-7827-12-90.CrossRefGoogle Scholar
  59. 59.
    Van Belle TL, Gysemans C, Mathieu C. Vitamin D and diabetes: the odd couple. Trends Endocrinol Metab: TEM. 2013;24(11):561–8. doi: 10.1016/j.tem.2013.07.002.PubMedCrossRefGoogle Scholar
  60. 60.
    Sung CC, Liao MT, Lu KC, Wu CC. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012:634195. doi: 10.1155/2012/634195.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Shahrokhi SZ, Ghaffari F, Kazerouni F. Role of vitamin D in female reproduction. Clinica chimica acta; Int J Clin Chem. 2016;455:33–8. doi: 10.1016/j.cca.2015.12.040.CrossRefGoogle Scholar
  62. 62.
    Colonese F, Lagana AS, Colonese E, Sofo V, Salmeri FM, Granese R, et al. The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: an overview on a hot topic. Biomed Res Int. 2015;2015:986281. doi: 10.1155/2015/986281.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Maestro B, Campion J, Davila N, Calle C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J. 2000;47(4):383–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Leal MA, Aller P, Mas A, Calle C. The effect of 1,25-dihydroxyvitamin D3 on insulin binding, insulin receptor mRNA levels, and isotype RNA pattern in U-937 human promonocytic cells. Exp Cell Res. 1995;217(2):189–94. doi: 10.1006/excr.1995.1078.PubMedCrossRefGoogle Scholar
  65. 65.
    Maestro B, Molero S, Bajo S, Davila N, Calle C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct. 2002;20(3):227–32. doi: 10.1002/cbf.951.PubMedCrossRefGoogle Scholar
  66. 66.
    Maestro B, Davila N, Carranza MC, Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol. 2003;84(2–3):223–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Dunlop TW, Vaisanen S, Frank C, Molnar F, Sinkkonen L, Carlberg C. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor. J Mol Biol. 2005;349(2):248–60. doi: 10.1016/j.jmb.2005.03.060.PubMedCrossRefGoogle Scholar
  68. 68.
    Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc. 2004;63(2):275–8. doi: 10.1079/PNS2004339.PubMedCrossRefGoogle Scholar
  69. 69.
    Draznin B, Sussman K, Kao M, Lewis D, Sherman N. The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J Biol Chem. 1987;262(30):14385–8.PubMedGoogle Scholar
  70. 70.
    Draznin B, Lewis D, Houlder N, Sherman N, Adamo M, Garvey WT, et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology. 1989;125(5):2341–9. doi: 10.1210/endo-125-5-2341.PubMedCrossRefGoogle Scholar
  71. 71.
    Reusch JE, Begum N, Sussman KE, Draznin B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology. 1991;129(6):3269–73. doi: 10.1210/endo-129-6-3269.PubMedCrossRefGoogle Scholar
  72. 72.
    Calle C, Maestro B, Garcia-Arencibia M. Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol. 2008;9:65. doi: 10.1186/1471-2199-9-65.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wehr E, Trummer O, Giuliani A, Gruber HJ, Pieber TR, Obermayer-Pietsch B. Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol / European Federation of Endocrine Societies. 2011;164(5):741–9. doi: 10.1530/EJE-11-0134.CrossRefGoogle Scholar
  74. 74.
    Zadeh-Vakili A, Ramezani Tehrani F, Daneshpour MS, Zarkesh M, Saadat N, Azizi F. Genetic polymorphism of vitamin D receptor gene affects the phenotype of PCOS. Gene. 2013;515(1):193–6. doi: 10.1016/j.gene.2012.11.049.PubMedCrossRefGoogle Scholar
  75. 75.
    Jedrzejuk D, Laczmanski L, Milewicz A, Kuliczkowska-Plaksej J, Lenarcik-Kabza A, Hirnle L, et al. Classic PCOS phenotype is not associated with deficiency of endogenous vitamin D and VDR gene polymorphisms rs731236 (TaqI), rs7975232 (ApaI), rs1544410 (BsmI), rs10735810 (FokI): a case-control study of lower Silesian women. Gynecol Endocrinol. 2015;31(12):976–9. doi: 10.3109/09513590.2015.1062865.PubMedCrossRefGoogle Scholar
  76. 76.
    Mahmoudi T, Majidzadeh AK, Farahani H, Mirakhorli M, Dabiri R, Nobakht H, et al. Association of vitamin D receptor gene variants with polycystic ovary syndrome: a case control study. Int J Reprod Biomed (Yazd). 2015;13(12):793–800.Google Scholar
  77. 77.
    Lin MW, Tsai SJ, Chou PY, Huang MF, Sun HS, Wu MH. Vitamin D receptor 1a promotor −1521 G/C and −1012 a/G polymorphisms in polycystic ovary syndrome. Taiwan J Obstet Gynecol. 2012;51(4):565–71. doi: 10.1016/j.tjog.2012.09.011.PubMedCrossRefGoogle Scholar
  78. 78.
    Li HW, Brereton RE, Anderson RA, Wallace AM, Ho CK. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism. 2011;60(10):1475–81. doi: 10.1016/j.metabol.2011.03.002.PubMedCrossRefGoogle Scholar
  79. 79.
    Mishra S, Das AK, Das S. Hypovitaminosis D and associated cardiometabolic risk in women with PCOS. J Clin Diagn Res. 2016;10(5):BC01–4. doi: 10.7860/JCDR/2016/19407.7771.Google Scholar
  80. 80.
    Jia XZ, Wang YM, Zhang N, Guo LN, Zhen XL, Li H, et al. Effect of vitamin D on clinical and biochemical parameters in polycystic ovary syndrome women: a meta-analysis. J Obstet Gynaecol Res. 2015;41(11):1791–802. doi: 10.1111/jog.12793.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsakova AD, Gateva AT, Kamenov ZA. 25(OH) vitamin D levels in premenopausal women with polycystic ovary syndrome and/or obesity. Int J Vitam Nutr Res. 2012;82(6):399–404. doi: 10.1024/0300-9831/a000137.PubMedCrossRefGoogle Scholar
  82. 82.
    Velija-Asimi Z. Evaluation of the association of vitamin D deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome. Med Glas (Zenica). 2014;11(1):170–6.Google Scholar
  83. 83.
    Muscogiuri G, Policola C, Prioletta A, Sorice G, Mezza T, Lassandro A, et al. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin Nutr. 2012;31(4):476–80. doi: 10.1016/j.clnu.2011.12.010.PubMedCrossRefGoogle Scholar
  84. 84.
    Joham AE, Teede HJ, Cassar S, Stepto NK, Strauss BJ, Harrison CL, et al. Vitamin D in polycystic ovary syndrome: relationship to obesity and insulin resistance. Mol Nutr Food Res. 2016;60(1):110–8. doi: 10.1002/mnfr.201500259.PubMedCrossRefGoogle Scholar
  85. 85.
    Mahmoudi T, Gourabi H, Ashrafi M, Yazdi RS, Ezabadi Z. Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil Steril. 2010;93(4):1208–14. doi: 10.1016/j.fertnstert.2008.11.031.PubMedCrossRefGoogle Scholar
  86. 86.
    Hahn S, Haselhorst U, Tan S, Quadbeck B, Schmidt M, Roesler S et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2006;114(10):577–83. doi: 10.1055/s-2006-948308.
  87. 87.
    Yildizhan R, Kurdoglu M, Adali E, Kolusari A, Yildizhan B, Sahin HG, et al. Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet. 2009;280(4):559–63. doi: 10.1007/s00404-009-0958-7.PubMedCrossRefGoogle Scholar
  88. 88.
    Wehr E, Pilz S, Schweighofer N, Giuliani A, Kopera D, Pieber TR, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol / European Federation of Endocrine Societies. 2009;161(4):575–82. doi: 10.1530/EJE-09-0432.CrossRefGoogle Scholar
  89. 89.
    Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63. doi: 10.1093/humupd/dmq001.PubMedCrossRefGoogle Scholar
  90. 90.
    Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152(5):307–14. doi: 10.7326/0003-4819-152-5-201003020-00009.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Boulman N, Levy Y, Leiba R, Shachar S, Linn R, Zinder O, et al. Increased C-reactive protein levels in the polycystic ovary syndrome: a marker of cardiovascular disease. J Clin Endocrinol Metab. 2004;89(5):2160–5. doi: 10.1210/jc.2003-031096.PubMedCrossRefGoogle Scholar
  92. 92.
    Sahin S, Eroglu M, Selcuk S, Turkgeldi L, Kozali S, Davutoglu S, et al. Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2014;18(19):2851–6.PubMedGoogle Scholar
  93. 93.
    Ganie MA, Marwaha RK, Nisar S, Farooqi KJ, Jan RA, Wani SA, et al. Impact of hypovitaminosis D on clinical, hormonal and insulin sensitivity parameters in normal body mass index polycystic ovary syndrome women. J Obstet Gynaecol. 2016;36(4):508–12. doi: 10.3109/01443615.2015.1103715.PubMedCrossRefGoogle Scholar
  94. 94.
    Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol. 2005;62(1):37–43. doi: 10.1111/j.1365-2265.2004.02170.x.CrossRefGoogle Scholar
  95. 95.
    Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, et al. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol. 2007;127(6):581–9. doi: 10.1007/s00418-006-0265-3.PubMedCrossRefGoogle Scholar
  96. 96.
    Irani M, Minkoff H, Seifer DB, Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab. 2014;99(5):E886–90. doi: 10.1210/jc.2013-4374.PubMedCrossRefGoogle Scholar
  97. 97.
    Selimoglu H, Duran C, Kiyici S, Ersoy C, Guclu M, Ozkaya G, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Investig. 2010;33(4):234–8. doi: 10.3275/6560.CrossRefGoogle Scholar
  98. 98.
    Wehr E, Pieber TR, Obermayer-Pietsch B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Investig. 2011;34(10):757–63. doi: 10.3275/7748.Google Scholar
  99. 99.
    Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res. 2012;32(3):195–201. doi: 10.1016/j.nutres.2012.02.001.PubMedCrossRefGoogle Scholar
  100. 100.
    Raja-Khan N, Shah J, Stetter CM, Lott ME, Kunselman AR, Dodson WC, et al. High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: a randomized, controlled pilot trial. Fertil Steril. 2014;101(6):1740–6. doi: 10.1016/j.fertnstert.2014.02.021.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bonakdaran S, Mazloom Khorasani Z, Davachi B, Mazloom KJ. The effects of calcitriol on improvement of insulin resistance, ovulation and comparison with metformin therapy in PCOS patients: a randomized placebo- controlled clinical trial. Iran J Reprod Med. 2012;10(5):465–72.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Dravecka I, Figurova J, Javorsky M, Petrikova J, Valkova M, Lazurova I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome - a preliminary study. Physiol Res. 2016;23;65(5):815–22.Google Scholar
  103. 103.
    Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:179515. doi: 10.1155/2014/179515.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Miyashita M, Koga K, Izumi G, Sue F, Makabe T, Taguchi A, et al. Effects of 1,25-Dihydroxy vitamin D3 on endometriosis. J Clin Endocrinol Metab. 2016;101(6):2371–9. doi: 10.1210/jc.2016-1515.PubMedCrossRefGoogle Scholar
  105. 105.
    Mariani M, Vigano P, Gentilini D, Camisa B, Caporizzo E, Di Lucia P, et al. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation. Hum Reprod. 2012;27(7):2010–9. doi: 10.1093/humrep/des150.PubMedCrossRefGoogle Scholar
  106. 106.
    Abbas MA, Taha MO, Disi AM, Shomaf M. Regression of endometrial implants treated with vitamin D3 in a rat model of endometriosis. Eur J Pharmacol. 2013;715(1–3):72–5. doi: 10.1016/j.ejphar.2013.06.016.PubMedCrossRefGoogle Scholar
  107. 107.
    Yildirim B, Guler T, Akbulut M, Oztekin O, Sariiz G. 1-alpha,25-dihydroxyvitamin D3 regresses endometriotic implants in rats by inhibiting neovascularization and altering regulation of matrix metalloproteinase. Postgrad Med. 2014;126(1):104–10. doi: 10.3810/pgm.2014.01.2730.PubMedCrossRefGoogle Scholar
  108. 108.
    Vilarino FL, Bianco B, Lerner TG, Teles JS, Mafra FA, Christofolini DM, et al. Analysis of vitamin D receptor gene polymorphisms in women with and without endometriosis. Hum Immunol. 2011;72(4):359–63. doi: 10.1016/j.humimm.2011.01.006.PubMedCrossRefGoogle Scholar
  109. 109.
    Hartwell D, Rodbro P, Jensen SB, Thomsen K, Christiansen C. Vitamin D metabolites--relation to age, menopause and endometriosis. Scand J Clin Lab Invest. 1990;50(2):115–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Somigliana E, Panina-Bordignon P, Murone S, Di Lucia P, Vercellini P, Vigano P. Vitamin D reserve is higher in women with endometriosis. Hum Reprod. 2007;22(8):2273–8. doi: 10.1093/humrep/dem142.PubMedCrossRefGoogle Scholar
  111. 111.
    Ferrero S, Gillott DJ, Anserini P, Remorgida V, Price KM, Ragni N, et al. Vitamin D binding protein in endometriosis. J Soc Gynecol Investig. 2005;12(4):272–7. doi: 10.1016/j.jsgi.2005.01.027.PubMedCrossRefGoogle Scholar
  112. 112.
    Faserl K, Golderer G, Kremser L, Lindner H, Sarg B, Wildt L, et al. Polymorphism in vitamin D-binding protein as a genetic risk factor in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2011;96(1):E233–41. doi: 10.1210/jc.2010-1532.PubMedCrossRefGoogle Scholar
  113. 113.
    Hwang JH, Wang T, Lee KS, Joo JK, Lee HG. Vitamin D binding protein plays an important role in the progression of endometriosis. Int J Mol Med. 2013;32(6):1394–400. doi: 10.3892/ijmm.2013.1506.PubMedGoogle Scholar
  114. 114.
    Borkowski J, Gmyrek GB, Madej JP, Nowacki W, Goluda M, Gabrys M et al. Serum and peritoneal evaluation of vitamin D-binding protein in women with endometriosis. Postepy Hig Med Dosw (Online). 2008;62:103–9.Google Scholar
  115. 115.
    Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266–281. doi: 10.1056/NEJMra070553.
  116. 116.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. doi: 10.1210/jc.2011-0385.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Giovanna Muscogiuri
    • 1
    Email author
  • Barbara Altieri
    • 2
  • Cristina de Angelis
    • 1
  • Stefano Palomba
    • 3
  • Rosario Pivonello
    • 4
  • Annamaria Colao
    • 4
  • Francesco Orio
    • 5
  1. 1.Ios and Coleman Medicina Futura Medical Center, Department of Clinical Medicine and Surgery, Section of EndocrinologyUniversity “Federico II”NaplesItaly
  2. 2.Division of Endocrinology and Metabolic Diseases, Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
  3. 3.Department of Obstetrics and GynecologyArcispedale Santa Maria Nuova-IRCCSReggio EmiliaItaly
  4. 4.Department of Clinical Medicine and SurgeryUniversity “Federico II”NaplesItaly
  5. 5.Department of Sports Science and Wellness“Parthenope” University NaplesNaplesItaly

Personalised recommendations