Dyslipidemia in patients with chronic kidney disease

  • Matthew R. Hager
  • Archana D. Narla
  • Lisa R. Tannock


Chronic kidney disease (CKD) is associated with high risk for cardiovascular disease (CVD). This association is multifactorial, but CKD is often associated with dyslipidemia, which likely contributes. Patients with CKD have dyslipidemia even at early stages of renal dysfunction and dyslipidemia tends to progress with deterioration of kidney function. The dyslipidemia in CKD is largely due to increased triglyceride levels, decreased HDL-C and varying levels of LDL-C. Current management of CKD may also affect lipid levels. Robust clinical trials demonstrate that statins are safe and efficacious in both lipid lowering and prevention of CVD events in pre-end stage CKD and post-transplant. However, there is no evidence of improved CVD outcomes with statin use in dialysis patients. This review will focus on mechanisms underlying dyslipidemia in CKD and clinical trial evidence for lipid lowering therapy in patients with CKD.


Cholesterol Chronic kidney disease Lipids Renal Statins Cardiovascular disease 



This review was supported by grants from the National Institutes of Health RR021954 and Veterans Affairs CX000975.

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.


  1. 1.
    National Institution of Diabetes and Digestive and Kidney Diseases. Kidney disease statistic for the US. https://www.niddk.nih.gov/. Accessed 08 Aug 2016.
  2. 2.
    Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol metabolism in CKD. Am J Kidney Dis. 2015;66(6):1071–82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016;165(7):473–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Tannock L. Dyslipidemia in Chronic Kidney Disease. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM et al., editors. Endotext. South Dartmouth (MA): 2000.Google Scholar
  5. 5.
    Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31(1–3):189–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Mittalhenkle A, Stehman-Breen CO, Shlipak MG, Fried LF, Katz R, Young BA, et al. Cardiovascular risk factors and incident acute renal failure in older adults: the cardiovascular health study. Clin J Am Soc Nephrol. 2008;3(2):450–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsushita K, Ballew SH, Coresh J. Cardiovascular risk prediction in people with chronic kidney disease. Curr Opin Nephrol Hypertens. 2016;25(6):518–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Vaziri ND, Wang XQ, Liang K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am J Phys. 1997;273(6 Pt 2):F925–30.Google Scholar
  9. 9.
    Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996;50(6):1928–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Hirano T, Sakaue T, Misaki A, Murayama S, Takahashi T, Okada K, et al. Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int. 2003;63(6):2171–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Oi K, Hirano T, Sakai S, Kawaguchi Y, Hosoya T. Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. Kidney Int Suppl. 1999;71:S227–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ikewaki K, Schaefer JR, Frischmann ME, Okubo K, Hosoya T, Mochizuki S, et al. Delayed in vivo catabolism of intermediate-density lipoprotein and low-density lipoprotein in hemodialysis patients as potential cause of premature atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(12):2615–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. The atherogenic lipoprotein phenotype: small dense LDL and lipoprotein remnants in nephrotic range proteinuria. Atherosclerosis. 2001;157(1):211–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int. 2003;63(5):1756–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Despres JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B. HDL-cholesterol as a marker of coronary heart disease risk: the Quebec cardiovascular study. Atherosclerosis. 2000;153(2):263–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaysen GA. Lipid and lipoprotein metabolism in chronic kidney disease. J Ren Nutr. 2009;19(1):73–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Vaziri ND, Deng G, Liang K, Hepatic HDL. Receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant. 1999;14(6):1462–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Vaziri ND, Liang K, Parks JS. Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int. 2001;59(6):2192–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Kalra OP, Khaira A, Gambhir JK, Agarwal S, Bhargava SK. Lipoprotein (a) in chronic renal failure: effect of maintenance hemodialysis. Hemodial Int. 2003;7(4):326–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Kronenberg F, Trenkwalder E, Lingenhel A, Friedrich G, Lhotta K, Schober M, et al. Renovascular arteriovenous differences in Lp[a] plasma concentrations suggest removal of Lp[a] from the renal circulation. J Lipid Res. 1997;38(9):1755–63.PubMedGoogle Scholar
  21. 21.
    Reblin T, Donarski N, Fineder L, Brasen JH, Dieplinger H, Thaiss F, et al. Renal handling of human apolipoprotein(a) and its fragments in the rat. Am J Kidney Dis. 2001;38(3):619–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Frischmann ME, Kronenberg F, Trenkwalder E, Schaefer JR, Schweer H, Dieplinger B, et al. Vivo turnover study demonstrates diminished clearance of lipoprotein(a) in hemodialysis patients. Kidney Int. 2007;71(10):1036–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Cain WJ, Millar JS, Himebauch AS, Tietge UJ, Maugeais C, Usher D, et al. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J Lipid Res. 2005;46(12):2681–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Kidney Disease Improving Global Outcomes. http://kdigo.org/home/. Accessed 08 Aug 2016.
  25. 25.
    Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report. J Clin Lipidol. 2015;9(2):129–69.CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian cardiovascular society guidelines for the Management of Dyslipidemia for the prevention of cardiovascular disease in the adult. The Canadian journal of cardiology. 2016;32(11):1263–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Moberly JB, Attman PO, Samuelsson O, Johansson AC, Knight-Gibson C, Alaupovic P. Alterations in lipoprotein composition in peritoneal dialysis patients. Perit Dial Int. 2002;22(2):220–8.PubMedGoogle Scholar
  28. 28.
    Piperi C, Kalofoutis C, Tzivras M, Troupis T, Skenderis A, Kalofoutis A. Effects of hemodialysis on serum lipids and phospholipids of end-stage renal failure patients. Mol Cell Biochem. 2004;265(1–2):57–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Rathi TK, Dhrolia MF, Imtiaz S. More hostile dyslipidaemia in chronic kidney disease patients on maintenance haemodialysis than on conservative management. J Pak Med Assoc. 2016;66(8):928–31.PubMedGoogle Scholar
  30. 30.
    Blankestijn PJ, Vos PF, Rabelink TJ, van Rijn HJ, Jansen H, Koomans HA. High-flux dialysis membranes improve lipid profile in chronic hemodialysis patients. J Am Soc Nephrol. 1995;5(9):1703–8.PubMedGoogle Scholar
  31. 31.
    Jung K, Scheifler A, Schulze BD, Scholz M. Lower serum high-density lipoprotein-cholesterol concentration in patients undergoing maintenance hemodialysis with acetate than with bicarbonate. Am J Kidney Dis. 1995;25(4):584–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Kilpatrick RD, McAllister CJ, Kovesdy CP, Derose SF, Kopple JD, Kalantar-Zadeh K. Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol. 2007;18(1):293–303.CrossRefPubMedGoogle Scholar
  33. 33.
    Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Hricik DE, Bartucci MR, Mayes JT, Schulak JA. The effects of steroid withdrawal on the lipoprotein profiles of cyclosporine-treated kidney and kidney-pancreas transplant recipients. Transplantation. 1992;54(5):868–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Hricik DE, Mayes JT, Schulak JA. Independent effects of cyclosporine and prednisone on posttransplant hypercholesterolemia. Am J Kidney Dis. 1991;18(3):353–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Kuster GM, Drexel H, Bleisch JA, Rentsch K, Pei P, Binswanger U, et al. Relation of cyclosporine blood levels to adverse effects on lipoproteins. Transplantation. 1994;57(10):1479–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Kronenberg F, Konig P, Lhotta K, Ofner D, Sandholzer C, Margreiter R, et al. Apolipoprotein(a) phenotype-associated decrease in lipoprotein(a) plasma concentrations after renal transplantation. Arterioscler Thromb. 1994;14(9):1399–404.CrossRefPubMedGoogle Scholar
  38. 38.
    Mak RH. Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol. 1999;13(9):891–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Perez-Granados AM, Navas-Carretero S, Schoppen S, Vaquero MP. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J Nutr Biochem. 2010;21(10):948–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Allegra V, Martimbianco L, Vasile A. Lipid and apolipoprotein patterns during erythropoietin therapy: roles of erythropoietin, route of administration, and diet. Nephrol Dial Transplant. 1997;12(5):924–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Pollock CA, Wyndham R, Collett PV, Elder G, Field MJ, Kalowski S, et al. Effects of erythropoietin therapy on the lipid profile in end-stage renal failure. Kidney Int. 1994;45(3):897–902.CrossRefPubMedGoogle Scholar
  42. 42.
    Alnahal AA, Tahan M, Fathy A, Fathy T. Effect of deferoxamine therapy on insulin resistance in end-stage renal disease patients with iron overload. Saudi J Kidney Dis Transpl. 2014;25(4):808–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang Y, Lu H, Huang Z, Lin H, Lei Z, Chen X, et al. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta. Biochem Biophys Res Commun. 2014;450(1):788–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Pitt B. The potential use of angiotensin-converting enzyme inhibitors in patients with hyperlipidemia. Am J Cardiol. 1997;79(5A):24–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Chertow GM, Burke SK, Raggi P. Treat to goal working G. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62(1):245–52.CrossRefPubMedGoogle Scholar
  46. 46.
    Shantouf R, Budoff MJ, Ahmadi N, Tiano J, Flores F, Kalantar-Zadeh K. Effects of sevelamer and calcium-based phosphate binders on lipid and inflammatory markers in hemodialysis patients. Am J Nephrol. 2008;28(2):275–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Katopodis KP, Andrikos EK, Gouva CD, Bairaktari ET, Nikolopoulos PM, Takouli LK, et al. Sevelamer hydrochloride versus aluminum hydroxide: effect on serum phosphorus and lipids in CAPD patients. Perit Dial Int. 2006;26(3):320–7.PubMedGoogle Scholar
  48. 48.
    Khajehdehi P, Taheri S. Effect of oral calcitriol pulse therapy on the lipid, calcium, and glucose homeostasis of hemodialysis-patients: its safety in a combination with oral calcium carbonate. J Ren Nutr. 2003;13(2):78–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Wehmeier K, Beers A, Haas MJ, Wong NC, Steinmeyer A, Zugel U, et al. Inhibition of apolipoprotein AI gene expression by 1, 25-dihydroxyvitamin D3. Biochim Biophys Acta. 2005;1737(1):16–26.CrossRefPubMedGoogle Scholar
  50. 50.
    Shapiro MD, Fazio S. From lipids to inflammation: new approaches to reducing atherosclerotic risk. Circ Res. 2016;118(4):732–49.CrossRefPubMedGoogle Scholar
  51. 51.
    Sudhop T, Lutjohann D, Kodal A, Igel M, Tribble DL, Shah S, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106(15):1943–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Morita T, Morimoto S, Nakano C, Kubo R, Okuno Y, Seo M, et al. Renal and vascular protective effects of ezetimibe in chronic kidney disease. Intern Med. 2014;53(4):307–14.CrossRefPubMedGoogle Scholar
  53. 53.
    He YM, Feng L, Huo DM, Yang ZH, Liao YH. Benefits and harm of niacin and its analog for renal dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol. 2014;46(2):433–42.CrossRefPubMedGoogle Scholar
  54. 54.
    Knopp RH, Ginsberg J, Albers JJ, Hoff C, Ogilvie JT, Warnick GR, et al. Contrasting effects of unmodified and time-release forms of niacin on lipoproteins in hyperlipidemic subjects: clues to mechanism of action of niacin. Metabolism. 1985;34(7):642–50.CrossRefPubMedGoogle Scholar
  55. 55.
    Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.CrossRefPubMedGoogle Scholar
  56. 56.
    Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.CrossRefGoogle Scholar
  57. 57.
    Highlights of Prescribing Information (database on the Internet). Available from http://www.rxabbvie.com/pdf/niaspan.pdf. Accessed 18 Aug 2016.
  58. 58.
    Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol. 2012;11:140.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.CrossRefPubMedGoogle Scholar
  60. 60.
    Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(20):2061–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Davis TM, Ting R. Best JD, Donoghoe MW, Drury PL, Sullivan DR et al. effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetologia. 2011;54(2):280–90.CrossRefPubMedGoogle Scholar
  62. 62.
    Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol. 2009;136(1):4–16.CrossRefPubMedGoogle Scholar
  63. 63.
    Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1):19–30.CrossRefPubMedGoogle Scholar
  64. 64.
    Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308(10):1024–33.CrossRefPubMedGoogle Scholar
  65. 65.
    Lauretani F, Maggio M, Pizzarelli F, Michelassi S, Ruggiero C, Ceda GP, et al. Omega-3 and renal function in older adults. Curr Pharm Des. 2009;15(36):4149–56.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sando KR, Knight M. Nonstatin therapies for management of dyslipidemia: a review. Clin Ther. 2015;37(10):2153–79.CrossRefPubMedGoogle Scholar
  67. 67.
    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.CrossRefPubMedGoogle Scholar
  68. 68.
    KDOQI. KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. http://www2.kidney.org/professional/kdoqi/guidelines_lipids/iii.htm. Accessed 30 Aug 2016.
  69. 69.
    Page MM. Watts GF. PCSK9 inhibitors - mechanisms of action. Aust Prescr. 2016;39(5):164–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Baigent C, Landray M, Leaper C, Altmann P, Armitage J, Baxter A, et al. First United Kingdom heart and renal protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis. 2005;45(3):473–84.CrossRefPubMedGoogle Scholar
  71. 71.
    Landray M, Baigent C, Leaper C, Adu D, Altmann P, Armitage J, et al. The second United Kingdom heart and renal protection (UK-HARP-II) study: a randomized controlled study of the biochemical safety and efficacy of adding ezetimibe to simvastatin as initial therapy among patients with CKD. Am J Kidney Dis. 2006;47(3):385–95.CrossRefPubMedGoogle Scholar
  72. 72.
    Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (study of heart and renal protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353(3):238–48.CrossRefPubMedGoogle Scholar
  74. 74.
    Fellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360(14):1395–407.CrossRefPubMedGoogle Scholar
  75. 75.
    Holdaas H, Fellstrom B, Holme I, Nyberg G, Fauchald P, Jardine A, et al. Effects of fluvastatin on cardiac events in renal transplant patients: ALERT (assessment of Lescol in renal transplantation) study design and baseline data. J Cardiovasc Risk. 2001;8(2):63–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Holdaas H, Fellstrom B, Cole E, Nyberg G, Olsson AG, Pedersen TR, et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant. 2005;5(12):2929–36.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • Matthew R. Hager
    • 1
  • Archana D. Narla
    • 2
  • Lisa R. Tannock
    • 2
    • 3
    • 4
  1. 1.Department of Internal Medicine University of KentuckyLexingtonUSA
  2. 2.Division of Endocrinology and Molecular MedicineUniversity of KentuckyLexingtonUSA
  3. 3.Department of Veterans AffairsLexingtonUSA
  4. 4.University of KentuckyLexingtonUSA

Personalised recommendations