Reviews in Endocrine and Metabolic Disorders

, Volume 17, Issue 3, pp 305–317 | Cite as

Adipokines in psoriasis: An important link between skin inflammation and metabolic alterations

  • Kerstin Wolk
  • Robert Sabat


Psoriasis is a chronic inflammatory skin disease most common in Europe, North America, and Australia. The etiology and pathomechanisms underlying the evolution and persistence of the skin alterations are increasingly being understood and have led to the development of effective anti-psoriatic therapies. Apart from the skin manifestations, psoriasis is associated with the metabolic syndrome (MetS), known to increase the risk of type 2 diabetes mellitus and cardiovascular disorders. Research of the last years demonstrated a dysregulated adipokine balance as an important link between inflammation, MetS, and consequential disorders. This article describes selected adipokines and their potential role in both metabolic comorbidity and skin inflammation in psoriasis.


Omentin Fetuin-A Chemerin Adiponectin Obesity Psoriasis arthritis 



The authors would like to acknowledge Ellen Witte and Demetrios Christou for kindly proofreading this manuscript. Support of blood biomarker studies was received from the German Federal Ministry of Education and Research (; grant 01ZX1312A to Kerstin Wolk and Robert Sabat).

Compliance with ethical standards

Conflict of interest

The authors state that they have no conflict of interest regarding this manuscript.


  1. 1.
    Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 2014;70:512–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Sabat R, Philipp S, Hoflich C, Kreutzer S, Wallace E, Asadullah K, et al. Immunopathogenesis of psoriasis. Exp Dermatol. 2007;16:779–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolk K, Röwert-Huber HJ, Sabat R. Microscopic skin alterations. In: Sterry W, Sabat R, Philipp S, editors. Psoriasis, diagnosis and management, part II: etiology and pathogenesis. Chichester: Wiley Blackwell; 2014. p. 21–7.Google Scholar
  5. 5.
    Alunno A, Carubbi F, Cafaro G, Pucci G, Battista F, Bartoloni E, et al. Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis. Expert Opin Biol Ther. 2015;15:1727–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Canavese M, Altruda F, Ruzicka T, Schauber J. Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis--a possible target for novel therapies? J Dermatol Sci. 2010;58:171–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Sabat R, Wolk K. Research in practice: IL-22 and IL-20: significance for epithelial homeostasis and psoriasis pathogenesis. J Dtsch Dermatol Ges. 2011;9:518–23.PubMedGoogle Scholar
  8. 8.
    Witte E, Kokolakis G, Witte K, Philipp S, Doecke WD, Babel N, et al. IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol. 2014;134:2757–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Bremmer S, Van Voorhees AS, Hsu S, Korman NJ, Lebwohl MG, Young M, et al. Obesity and psoriasis: from the Medical Board of the National Psoriasis Foundation. J Am Acad Dermatol. 2010;63:1058–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Puig L. Obesity and psoriasis: body weight and body mass index influence the response to biological treatment. J Eur Acad Dermatol Venereol. 2011;25:1007–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Sterry W, Strober BE, Menter A. Obesity in psoriasis: the metabolic, clinical and therapeutic implications. Report of an interdisciplinary conference and review. Br J Dermatol. 2007;157:649–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Alberti KG, Zimmet P, Shaw J, Group IDFETFC. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366:1059–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.Google Scholar
  14. 14.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Armstrong AW, Harskamp CT, Armstrong EJ. Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J Am Acad Dermatol. 2013;68:654–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Al-Mutairi N, Al-Farag S, Al-Mutairi A, Al-Shiltawy M. Comorbidities associated with psoriasis: an experience from the Middle East. J Dermatol. 2010;37:146–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Langan SM, Seminara NM, Shin DB, Troxel AB, Kimmel SE, Mehta NN, et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study in the United Kingdom. J Invest Dermatol. 2012;132:556–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Armstrong AW. Do TNF, inhibitors reduce the risk of myocardial infarction in psoriasis patients? JAMA. 2013;309:2043–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296:1735–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Gelfand JM, Troxel AB, Lewis JD, Kurd SK, Shin DB, Wang X, et al. The risk of mortality in patients with psoriasis: results from a population-based study. Arch Dermatol. 2007;143:1493–9.PubMedGoogle Scholar
  21. 21.
    Cameron AJ, Boyko EJ, Sicree RA, Zimmet PZ, Soderberg S, Alberti KG, et al. Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius. Obesity (Silver Spring). 2008;16:2707–16.CrossRefGoogle Scholar
  22. 22.
    Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Weisberg S, Mc Cann D, Desai M, Murphy E, Rosenbaum M, Leibel R, et al. Obesity leads to macrophage accumulation in adipose tissue. Obesity Research. 2003;11:A6–7.Google Scholar
  24. 24.
    Winer S, Winer DA. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance. Immunol Cell Biol. 2012;90:755–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Love TJ, Qureshi AA, Karlson EW, Gelfand JM, Choi HK. Prevalence of the metabolic syndrome in psoriasis: results from the National Health and Nutrition Examination Survey, 2003-2006. Arch Dermatol. 2011;147:419–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Gupta Y, Moller S, Zillikens D, Boehncke WH, Ibrahim SM, Ludwig RJ. Genetic control of psoriasis is relatively distinct from that of metabolic syndrome and coronary artery disease. Exp Dermatol. 2013;22:552–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Famenini S, Sako EY, Wu JJ. Effect of treating psoriasis on cardiovascular co-morbidities: focus on TNF inhibitors. Am J Clin Dermatol. 2014;15:45–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Renzo LD, Saraceno R, Schipani C, Rizzo M, Bianchi A, Noce A, et al. Prospective assessment of body weight and body composition changes in patients with psoriasis receiving anti-TNF-alpha treatment. Dermatol Ther. 2011;24:446–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Saraceno R, Schipani C, Mazzotta A, Esposito M, Di Renzo L, De Lorenzo A, et al. Effect of anti-tumor necrosis factor-alpha therapies on body mass index in patients with psoriasis. Pharmacol Res. 2008;57:290–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Boehncke WH, Gladman DD, Chandran V. Cardiovascular comorbidities in psoriasis and psoriatic arthritis: pathogenesis, consequences for patient management, and future research agenda: a report from the GRAPPA 2009 annual meeting. J Rheumatol. 2011;38:567–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Huerta C, Rivero E, Rodriguez LA. Incidence and risk factors for psoriasis in the general population. Arch Dermatol. 2007;143:1559–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Naldi L, Chatenoud L, Linder D, Belloni Fortina A, Peserico A, Virgili AR, et al. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J Invest Dermatol. 2005;125:61–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Setty AR, Curhan G, Choi HK. Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ Health Study II. Arch Intern Med. 2007;167:1670–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Upala S, Sanguankeo A. Effect of lifestyle weight loss intervention on disease severity in patients with psoriasis: a systematic review and meta-analysis. Int J Obes (Lond). 2015;39:1197–202.CrossRefGoogle Scholar
  35. 35.
    Kanemaru K, Matsuyuki A, Nakamura Y, Fukami K. Obesity exacerbates imiquimod-induced psoriasis-like epidermal hyperplasia and interleukin-17 and interleukin-22 production in mice. Exp Dermatol. 2015;24:436–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282:28175–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology. 2011;152:26–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, et al. Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun. 2007;362:1013–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, et al. Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept. 2009;154:102–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology. 2010;151:2590–602.PubMedCrossRefGoogle Scholar
  42. 42.
    Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 2009;58:2731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med. 2003;198:977–85.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood. 2007;109:3625–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation. 2003;108:736–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Zabel BA, Ohyama T, Zuniga L, Kim JY, Johnston B, Allen SJ, et al. Chemokine-like receptor 1 expression by macrophages in vivo: regulation by TGF-beta and TLR ligands. Exp Hematol. 2006;34:1106–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Bozaoglu K, Curran JE, Stocker CJ, Zaibi MS, Segal D, Konstantopoulos N, et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metab. 2010;95:2476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391:1762–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Cai Y, Wang R, Zhao YF, Jia J, Sun ZJ, Chen XM. Expression of Neuropilin-2 in salivary adenoid cystic carcinoma: its implication in tumor progression and angiogenesis. Pathol Res Pract. 2010;206:793–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Banas M, Zegar A, Kwitniewski M, Zabieglo K, Marczynska J, Kapinska-Mrowiecka M, et al. The expression and regulation of chemerin in the epidermis. PLoS One. 2015;10, e0117830.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gonzalvo-Feo S, Del Prete A, Pruenster M, Salvi V, Wang L, Sironi M, et al. Endothelial cell-derived chemerin promotes dendritic cell transmigration. J Immunol. 2014;192:2366–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Ernst MC, Issa M, Goralski KB, Sinal CJ. Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology. 2010;151:1998–2007.PubMedCrossRefGoogle Scholar
  53. 53.
    Becker M, Rabe K, Lebherz C, Zugwurst J, Goke B, Parhofer KG, et al. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes. 2010;59:2898–903.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ernst MC, Haidl ID, Zuniga LA, Dranse HJ, Rourke JL, Zabel BA, et al. Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology. 2012;153:672–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Alfadda AA, Sallam RM, Chishti MA, Moustafa AS, Fatma S, Alomaim WS, et al. Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism. Mol Cells. 2012;33:591–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, et al. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab. 2009;94:3085–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lehrke M, Becker A, Greif M, Stark R, Laubender RP, von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol. 2009;161:339–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Ress C, Tschoner A, Engl J, Klaus A, Tilg H, Ebenbichler CF, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest. 2010;40:277–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2010;95:2892–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a Caucasian population--a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152:217–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Albanesi C, Scarponi C, Pallotta S, Daniele R, Bosisio D, Madonna S, et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med. 2009;206:249–58.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol. 1997;109:91–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Coban M, Tasli L, Turgut S, Ozkan S, Tunc Ata M, Akin F. Association of Adipokines, Insulin Resistance, Hypertension and Dyslipidemia in Patients with Psoriasis Vulgaris. Ann Dermatol. 2016;28:74–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gisondi P, Lora V, Bonauguri C, Russo A, Lippi G, Girolomoni G. Serum chemerin is increased in patients with chronic plaque psoriasis and normalizes following treatment with infliximab. Br J Dermatol. 2013;168:749–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Lora V, Bonaguri C, Gisondi P, Sandei F, Battistelli L, Russo A, et al. Autoantibody induction and adipokine levels in patients with psoriasis treated with infliximab. Immunol Res. 2013;56:382–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakajima H, Nakajima K, Nagano Y, Yamamoto M, Tarutani M, Takahashi M, et al. Circulating level of chemerin is upregulated in psoriasis. J Dermatol Sci. 2010;60:45–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakajima H, Nakajima K, Tarutani M, Morishige R, Sano S. Kinetics of circulating Th17 cytokines and adipokines in psoriasis patients. Arch Dermatol Res. 2011;303:451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S. Resistin, central obesity, and type 2 diabetes. Lancet. 2002;359:46–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Fain JN, Cheema PS, Bahouth SW, Lloyd HM. Resistin release by human adipose tissue explants in primary culture. Biochem Biophys Res Commun. 2003;300:674–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun. 2003;309:286–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Xu W, Yu L, Zhou W, Luo M. Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun. 2006;351:376–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 2003;300:472–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Singhal NS, Patel RT, Qi Y, Lee YS, Ahima RS. Loss of resistin ameliorates hyperlipidemia and hepatic steatosis in leptin-deficient mice. Am J Physiol Endocrinol Metab. 2008;295:E331–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, et al. Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab. 2003;88:5452–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Habib SS. Serum resistin levels in patients with type 2 diabetes mellitus and its relationship with body composition. Saudi Med J. 2012;33:495–9.PubMedGoogle Scholar
  77. 77.
    Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R, et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J Clin Endocrinol Metab. 2003;88:4848–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Luo R, Li X, Jiang R, Gao X, Lu Z, Hua W. Serum concentrations of resistin and adiponectin and their relationship to insulin resistance in subjects with impaired glucose tolerance. J Int Med Res. 2012;40:621–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, Zraika S, et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia. 2005;48:2330–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Valsamakis G, McTernan PG, Chetty R, Al Daghri N, Field A, Hanif W, et al. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism. 2004;53:430–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med. 2010;14:1419–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun. 2005;334:1092–101.PubMedCrossRefGoogle Scholar
  83. 83.
    Johnston A, Arnadottir S, Gudjonsson JE, Aphale A, Sigmarsdottir AA, Gunnarsson SI, et al. Obesity in psoriasis: leptin and resistin as mediators of cutaneous inflammation. Br J Dermatol. 2008;159:342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cho Y, Lee SE, Lee HC, Hur J, Lee S, Youn SW, et al. Adipokine resistin is a key player to modulate monocytes, endothelial cells, and smooth muscle cells, leading to progression of atherosclerosis in rabbit carotid artery. J Am Coll Cardiol. 2011;57:99–109.PubMedCrossRefGoogle Scholar
  85. 85.
    Melone M, Wilsie L, Palyha O, Strack A, Rashid S. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol. 2012;59:1697–705.PubMedCrossRefGoogle Scholar
  86. 86.
    Rae C, Graham A. Human resistin promotes macrophage lipid accumulation. Diabetologia. 2006;49:1112–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Gencer B, Auer R, de Rekeneire N, Butler J, Kalogeropoulos A, Bauer DC, et al. Association between resistin levels and cardiovascular disease events in older adults: The health, aging and body composition study. Atherosclerosis. 2016;245:181–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111:932–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Tang NP, Wang LS, Yang L, Zhou B, Gu HJ, Sun QM, et al. A polymorphism in the resistin gene promoter and the risk of coronary artery disease in a Chinese population. Clin Endocrinol (Oxf). 2008;68:82–7.CrossRefGoogle Scholar
  90. 90.
    Prugger C, Luc G, Haas B, Arveiler D, Machez E, Ferrieres J, et al. Adipocytokines and the risk of ischemic stroke: the PRIME Study. Ann Neurol. 2012;71:478–86.PubMedCrossRefGoogle Scholar
  91. 91.
    Jung HS, Park KH, Cho YM, Chung SS, Cho HJ, Cho SY, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res. 2006;69:76–85.PubMedCrossRefGoogle Scholar
  92. 92.
    Boehncke S, Salgo R, Garbaraviciene J, Beschmann H, Hardt K, Diehl S, et al. Effective continuous systemic therapy of severe plaque-type psoriasis is accompanied by amelioration of biomarkers of cardiovascular risk: results of a prospective longitudinal observational study. J Eur Acad Dermatol Venereol. 2011;25:1187–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Boehncke S, Thaci D, Beschmann H, Ludwig RJ, Ackermann H, Badenhoop K, et al. Psoriasis patients show signs of insulin resistance. Br J Dermatol. 2007;157:1249–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Coimbra S, Oliveira H, Reis F, Belo L, Rocha S, Quintanilha A, et al. Circulating levels of adiponectin, oxidized LDL and C-reactive protein in Portuguese patients with psoriasis vulgaris, according to body mass index, severity and duration of the disease. J Dermatol Sci. 2009;55:202–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Corbetta S, Angioni R, Cattaneo A, Beck-Peccoz P, Spada A. Effects of retinoid therapy on insulin sensitivity, lipid profile and circulating adipocytokines. Eur J Endocrinol. 2006;154:83–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Rajappa M, Rathika S, Munisamy M, Chandrashekar L, Thappa DM. Effect of treatment with methotrexate and coal tar on adipokine levels and indices of insulin resistance and sensitivity in patients with psoriasis vulgaris. J Eur Acad Dermatol Venereol. 2015;29:69–76.PubMedCrossRefGoogle Scholar
  97. 97.
    Robati RM, Partovi-Kia M, Haghighatkhah HR, Younespour S, Abdollahimajd F. Increased serum leptin and resistin levels and increased carotid intima-media wall thickness in patients with psoriasis: is psoriasis associated with atherosclerosis? J Am Acad Dermatol. 2014;71:642–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Huang H, Shen E, Tang S, Tan X, Guo X, Wang Q, et al. Increased serum resistin levels correlate with psoriasis: a meta-analysis. Lipids Health Dis. 2015;14:44.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chatterjee P, Seal S, Mukherjee S, Kundu R, Mukherjee S, Ray S, et al. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem. 2013;288:28324–30.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jialal I, Devaraj S, Bettaieb A, Haj F, Adams-Huet B. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis. 2015;241:130–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang XQ, Hung BS, Kempf M, Liu PY, Dalley AJ, Saunders NA, et al. Fetuin-A promotes primary keratinocyte migration: independent of epidermal growth factor receptor signalling. Exp Dermatol. 2010;19:e289–92.PubMedCrossRefGoogle Scholar
  102. 102.
    Denecke B, Graber S, Schafer C, Heiss A, Woltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J. 2003;376:135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Triffitt JT, Gebauer U, Ashton BA, Owen ME, Reynolds JJ. Origin of plasma alpha2HS-glycoprotein and its accumulation in bone. Nature. 1976;262:226–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Dasgupta S, Bhattacharya S, Biswas A, Majumdar SS, Mukhopadhyay S, Ray S. NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J. 2010;429:451–62.PubMedCrossRefGoogle Scholar
  105. 105.
    Gejyo F, Chang JL, Burgi W, Schmid K, Offner GD, Troxler RF, et al. Characterization of the B-chain of human plasma alpha 2HS-glycoprotein. The complete amino acid sequence and primary structure of its heteroglycan. J Biol Chem. 1983;258:4966–71.PubMedGoogle Scholar
  106. 106.
    Jahnen-Dechent W, Trindl A, Godovac-Zimmermann J, Muller-Esterl W. Posttranslational processing of human alpha 2-HS glycoprotein (human fetuin). Evidence for the production of a phosphorylated single-chain form by hepatoma cells. Eur J Biochem. 1994;226:59–69.PubMedCrossRefGoogle Scholar
  107. 107.
    Kellermann J, Haupt H, Auerswald EA, Muller-Ester W. The arrangement of disulfide loops in human alpha 2-HS glycoprotein. Similarity to the disulfide bridge structures of cystatins and kininogens. J Biol Chem. 1989;264:14121–8.PubMedGoogle Scholar
  108. 108.
    Lee CC, Bowman BH, Yang FM. Human alpha 2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript. Proc Natl Acad Sci U S A. 1987;84:4403–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yoshioka Y, Gejyo F, Marti T, Rickli EE, Burgi W, Offner GD, et al. The complete amino acid sequence of the A-chain of human plasma alpha 2HS-glycoprotein. J Biol Chem. 1986;261:1665–76.PubMedGoogle Scholar
  110. 110.
    Haglund AC, Ek B, Ek P. Phosphorylation of human plasma alpha2-Heremans-Schmid glycoprotein (human fetuin) in vivo. Biochem J. 2001;357:437–45.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Auberger P, Falquerho L, Contreres JO, Pages G, Le Cam G, Rossi B, et al. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell. 1989;58:631–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Mathews ST, Chellam N, Srinivas PR, Cintron VJ, Leon MA, Goustin AS, et al. Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol. 2000;164:87–98.PubMedCrossRefGoogle Scholar
  113. 113.
    Srinivas PR, Wagner AS, Reddy LV, Deutsch DD, Leon MA, Goustin AS, et al. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol. 1993;7:1445–55.PubMedGoogle Scholar
  114. 114.
    Srinivas PR, Goustin AS, Grunberger G. Baculoviral expression of a natural inhibitor of the human insulin receptor tyrosine kinase. Biochem Biophys Res Commun. 1995;208:879–85.PubMedCrossRefGoogle Scholar
  115. 115.
    Hennige AM, Staiger H, Wicke C, Machicao F, Fritsche A, Haring HU, et al. Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One. 2008;3, e1765.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jahnen-Dechent W, Heiss A, Schafer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res. 2011;108:1494–509.PubMedCrossRefGoogle Scholar
  117. 117.
    Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS, et al. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes. 2002;51:2450–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Ix JH, Biggs ML, Mukamal KJ, Kizer JR, Zieman SJ, Siscovick DS, et al. Association of fetuin-a with incident diabetes mellitus in community-living older adults: the cardiovascular health study. Circulation. 2012;125:2316–22.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ix JH, Wassel CL, Kanaya AM, Vittinghoff E, Johnson KC, Koster A, et al. Fetuin-A and incident diabetes mellitus in older persons. JAMA. 2008;300:182–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, et al. Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care. 2006;29:468.PubMedCrossRefGoogle Scholar
  121. 121.
    Stefan N, Fritsche A, Weikert C, Boeing H, Joost HG, Haring HU, et al. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes. 2008;57:2762–7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Krober SM, et al. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care. 2006;29:853–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Brix JM, Stingl H, Hollerl F, Schernthaner GH, Kopp HP, Schernthaner G. Elevated Fetuin-A concentrations in morbid obesity decrease after dramatic weight loss. J Clin Endocrinol Metab. 2010;95:4877–81.PubMedCrossRefGoogle Scholar
  124. 124.
    Erdmann J, Salmhofer H, Knauss A, Mayr M, Wagenpfeil S, Sypchenko O, et al. Relationship of fetuin-A levels to weight-dependent insulin resistance and type 2 diabetes mellitus. Regul Pept. 2012;178:6–10.PubMedCrossRefGoogle Scholar
  125. 125.
    Haukeland JW, Dahl TB, Yndestad A, Gladhaug IP, Loberg EM, Haaland T, et al. Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies. Eur J Endocrinol. 2012;166:503–10.Google Scholar
  126. 126.
    Reinehr T, Roth CL. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab. 2008;93:4479–85.PubMedCrossRefGoogle Scholar
  127. 127.
    Andersen G, Burgdorf KS, Sparso T, Borch-Johnsen K, Jorgensen T, Hansen T, et al. AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: studies of metabolic traits in 7,683 white Danish subjects. Diabetes. 2008;57:1427–32.PubMedCrossRefGoogle Scholar
  128. 128.
    Dahlman I, Eriksson P, Kaaman M, Jiao H, Lindgren CM, Kere J, et al. alpha2-Heremans-Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia. 2004;47:1974–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Lavebratt C, Wahlqvist S, Nordfors L, Hoffstedt J, Arner P. AHSG gene variant is associated with leanness among Swedish men. Hum Genet. 2005;117:54–60.PubMedCrossRefGoogle Scholar
  130. 130.
    Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F. A synonymous coding polymorphism in the alpha2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes. 2005;54:2477–81.PubMedCrossRefGoogle Scholar
  131. 131.
    Mori K, Ikari Y, Jono S, Emoto M, Shioi A, Koyama H, et al. Fetuin-A is associated with calcified coronary artery disease. Coron Artery Dis. 2010;21:281–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Uysal S, Yilmaz FM, Karatoprak K, Artuz F, Cumbul NU. The levels of serum pentraxin3, CRP, fetuin-A, and insulin in patients with psoriasis. Eur Rev Med Pharmacol Sci. 2014;18:3453–8.PubMedGoogle Scholar
  133. 133.
    Gerdes S, Osadtschy S, Buhles N, Baurecht H, Mrowietz U. Cardiovascular biomarkers in patients with psoriasis. Exp Dermatol. 2014;23:322–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Uyar B, Akyildiz M, Solak A, Genc B, Saklamaz A. Relationship between serum fetuin-A levels and carotid intima-media thickness in Turkish patients with mild to moderate psoriasis. A case-control study. Acta Dermatovenerol Croat. 2015;23:171–7.PubMedGoogle Scholar
  135. 135.
    Buerger C, Richter B, Woth K, Salgo R, Malisiewicz B, Diehl S, et al. Interleukin-1beta interferes with epidermal homeostasis through induction of insulin resistance: implications for psoriasis pathogenesis. J Invest Dermatol. 2012;132:2206–14.PubMedCrossRefGoogle Scholar
  136. 136.
    Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271:10697–703.PubMedCrossRefGoogle Scholar
  137. 137.
    Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996;221:286–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290:1084–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29:1357–62.PubMedCrossRefGoogle Scholar
  141. 141.
    Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52:1779–85.PubMedCrossRefGoogle Scholar
  142. 142.
    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013;17:185–96.PubMedCrossRefGoogle Scholar
  144. 144.
    Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947–53.PubMedCrossRefGoogle Scholar
  145. 145.
    Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48:132–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A. 2002;99:16309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.PubMedCrossRefGoogle Scholar
  148. 148.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98:2005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Bauche IB, El Mkadem SA, Pottier AM, Senou M, Many MC, Rezsohazy R, et al. Overexpression of adiponectin targeted to adipose tissue in transgenic mice: impaired adipocyte differentiation. Endocrinology. 2007;148:1539–49.PubMedCrossRefGoogle Scholar
  151. 151.
    Otabe S, Yuan X, Fukutani T, Wada N, Hashinaga T, Nakayama H, et al. Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am J Physiol Endocrinol Metab. 2007;293:E210–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277:25863–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8:731–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51:536–40.PubMedCrossRefGoogle Scholar
  156. 156.
    Yu Z, Han S, Cao X, Zhu C, Wang X, Guo X. Genetic polymorphisms in adipokine genes and the risk of obesity: a systematic review and meta-analysis. Obesity (Silver Spring). 2012;20:396–406.CrossRefGoogle Scholar
  157. 157.
    Akbarzadeh S, Nabipour I, Assadi M, Movahed A, Jafari SM, Motamed N, et al. The normoglycemic first-degree relatives of patients with type 2 diabetes mellitus have low circulating omentin-1 and adiponectin levels. Cytokine. 2012;58:295–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361:226–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285:6153–60.PubMedCrossRefGoogle Scholar
  161. 161.
    Ge Q, Ryken L, Noel L, Maury E, Brichard SM. Adipokines identified as new downstream targets for adiponectin: lessons from adiponectin-overexpressing or -deficient mice. Am J Physiol Endocrinol Metab. 2011;301:E326–35.PubMedCrossRefGoogle Scholar
  162. 162.
    Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278:2461–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Liu YS, Lu Y, Liu W, Xie H, Luo XH, Wu XP, et al. Connective tissue growth factor is a downstream mediator for preptin-induced proliferation and differentiation in human osteoblasts. Amino Acids. 2010;38:763–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Shibata S, Tada Y, Hau CS, Mitsui A, Kamata M, Asano Y, et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from gammadelta-T cells. Nat Commun. 2015;6:7687.PubMedCrossRefGoogle Scholar
  166. 166.
    Shibata S, Tada Y, Asano Y, Hau CS, Kato T, Saeki H, et al. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J Immunol. 2012;189:3231–41.PubMedCrossRefGoogle Scholar
  167. 167.
    Brown JE, Conner AC, Digby JE, Ward KL, Ramanjaneya M, Randeva HS, et al. Regulation of beta-cell viability and gene expression by distinct agonist fragments of adiponectin. Peptides. 2010;31:944–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia. 2004;47:249–58.PubMedCrossRefGoogle Scholar
  169. 169.
    Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285:33623–31.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11:1096–103.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Baran A, Flisiak I, Jaroszewicz J, Swiderska M. Serum adiponectin and leptin levels in psoriatic patients according to topical treatment. J Dermatolog Treat. 2015;26:134–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Coimbra S, Oliveira H, Reis F, Belo L, Rocha S, Quintanilha A, et al. Circulating adipokine levels in Portuguese patients with psoriasis vulgaris according to body mass index, severity and therapy. J Eur Acad Dermatol Venereol. 2010;24:1386–94.PubMedCrossRefGoogle Scholar
  173. 173.
    Shibata S, Saeki H, Tada Y, Karakawa M, Komine M, Tamaki K. Serum high molecular weight adiponectin levels are decreased in psoriasis patients. J Dermatol Sci. 2009;55:62–3.PubMedCrossRefGoogle Scholar
  174. 174.
    Warnecke C, Manousaridis I, Herr R, Terris DD, Goebeler M, Goerdt S, et al. Cardiovascular and metabolic risk profile in German patients with moderate and severe psoriasis: a case control study. Eur J Dermatol. 2011;21:761–70.PubMedGoogle Scholar
  175. 175.
    Xue Y, Jiang L, Cheng Q, Chen H, Yu Y, Lin Y, et al. Adipokines in psoriatic arthritis patients: the correlations with osteoclast precursors and bone erosions. PLoS One. 2012;7, e46740.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Schmieder A, Poppe M, Hametner C, Meyer-Schraml H, Schaarschmidt ML, Findeisen P, et al. Impact of fumaric acid esters on cardiovascular risk factors and depression in psoriasis: a prospective pilot study. Arch Dermatol Res. 2015;307:413–24.PubMedCrossRefGoogle Scholar
  177. 177.
    Shibata S, Tada Y, Hau C, Tatsuta A, Yamamoto M, Kamata M, et al. Adiponectin as an anti-inflammatory factor in the pathogenesis of psoriasis: induction of elevated serum adiponectin levels following therapy. Br J Dermatol. 2011;164:667–70.PubMedGoogle Scholar
  178. 178.
    Fain JN, Sacks HS, Buehrer B, Bahouth SW, Garrett E, Wolf RY, et al. Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int J Obes (Lond). 2008;32:810–5.CrossRefGoogle Scholar
  179. 179.
    Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006;290:E1253–61.PubMedCrossRefGoogle Scholar
  180. 180.
    Lee JK, Schnee J, Pang M, Wolfert M, Baum LG, Moremen KW, et al. Human homologs of the Xenopus oocyte cortical granule lectin XL35. Glycobiology. 2001;11:65–73.PubMedCrossRefGoogle Scholar
  181. 181.
    Tsuji S, Uehori J, Matsumoto M, Suzuki Y, Matsuhisa A, Toyoshima K, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem. 2001;276:23456–63.PubMedCrossRefGoogle Scholar
  182. 182.
    de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56:1655–61.PubMedCrossRefGoogle Scholar
  183. 183.
    Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta. 1732;2005:96–102.Google Scholar
  184. 184.
    Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88:29–33.PubMedCrossRefGoogle Scholar
  185. 185.
    Moreno-Navarrete JM, Catalan V, Ortega F, Gomez-Ambrosi J, Ricart W, Fruhbeck G, et al. Circulating omentin concentration increases after weight loss. Nutr Metab (Lond). 2010;7:27.CrossRefGoogle Scholar
  186. 186.
    Liu R, Wang X, Bu P. Omentin-1 is associated with carotid atherosclerosis in patients with metabolic syndrome. Diabetes Res Clin Pract. 2011;93:21–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Shang FJ, Wang JP, Liu XT, Zheng QS, Xue YS, Wang B, et al. Serum omentin-1 levels are inversely associated with the presence and severity of coronary artery disease in patients with metabolic syndrome. Biomarkers. 2011;16:657–62.PubMedCrossRefGoogle Scholar
  188. 188.
    Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y, et al. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011;219:811–4.PubMedCrossRefGoogle Scholar
  189. 189.
    Shibata R, Takahashi R, Kataoka Y, Ohashi K, Ikeda N, Kihara S, et al. Association of a fat-derived plasma protein omentin with carotid artery intima-media thickness in apparently healthy men. Hypertens Res. 2011;34:1309–12.PubMedCrossRefGoogle Scholar
  190. 190.
    Menzel J, di Giuseppe R, Biemann R, Wittenbecher C, Aleksandrova K, Pischon T, Fritsche A, Schulze MB, Boeing H, Isermann B, Weikert C. Omentin-1 and risk of myocardial infarction and stroke: results from the EPIC-Potsdam cohort study. Atherosclerosis. 2016; doi:  10.1016/j.atherosclerosis.2016.06.003
  191. 191.
    Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011;408:339–43.PubMedCrossRefGoogle Scholar
  192. 192.
    Maruyama S, Shibata R, Kikuchi R, Izumiya Y, Rokutanda T, Araki S, et al. Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J Biol Chem. 2012;287:408–17.PubMedCrossRefGoogle Scholar
  193. 193.
    Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 2010;393:668–72.PubMedCrossRefGoogle Scholar
  194. 194.
    Kazama K, Usui T, Okada M, Hara Y, Yamawaki H. Omentin plays an anti-inflammatory role through inhibition of TNF-alpha-induced superoxide production in vascular smooth muscle cells. Eur J Pharmacol. 2012;686:116–23.PubMedCrossRefGoogle Scholar
  195. 195.
    Duan XY, Xie PL, Ma YL, Tang SY. Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids. 2011;41:1223–31.PubMedCrossRefGoogle Scholar
  196. 196.
    Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, Yuan LQ, et al. Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res. 2011;92:296–306.PubMedCrossRefGoogle Scholar
  197. 197.
    Tsuji S, Yamashita M, Hoffman DR, Nishiyama A, Shinohara T, Ohtsu T, et al. Capture of heat-killed Mycobacterium bovis bacillus Calmette-Guerin by intelectin-1 deposited on cell surfaces. Glycobiology. 2009;19:518–26.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Ismail SA, Mohamed SA. Serum levels of visfatin and omentin-1 in patients with psoriasis and their relation to disease severity. Br J Dermatol. 2012;167:436–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Takahashi H, Tsuji H, Honma M, Ishida-Yamamoto A, Iizuka H. Increased plasma resistin and decreased omentin levels in Japanese patients with psoriasis. Arch Dermatol Res. 2013;305:113–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Turan H, Yaykasli KO, Soguktas H, Yaykasli E, Aliagaoglu C, Erdem T, et al. Omentin serum levels and omentin gene Val109Asp polymorphism in patients with psoriasis. Int J Dermatol. 2014;53:601–5.PubMedCrossRefGoogle Scholar
  201. 201.
    Zhang C, Zhu KJ, Liu JL, Xu GX, Liu W, Jiang FX, et al. Omentin-1 plasma levels and omentin-1 expression are decreased in psoriatic lesions of psoriasis patients. Arch Dermatol Res. 2015;307:455–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Psoriasis Research and Treatment Center, Department of Dermatology and Allergy & Institute of Medical ImmunologyUniversity Medicine CharitéBerlinGermany
  2. 2.Berlin-Brandenburg Center of Regenerative TherapiesUniversity Medicine CharitéBerlinGermany
  3. 3.Research Center ImmunosciencesUniversity Medicine CharitéBerlinGermany

Personalised recommendations