Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 17, Issue 4, pp 559–569 | Cite as

Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis

  • Guihong Sun
  • Julia Roediger
  • Yun-Bo Shi
Article

Abstract

Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

Keywords

Thyroid hormone receptor Stem cell Metamorphosis Xenopus laevis and tropicalis Postembryonic development Intestine 

Notes

Acknowledgments

This work was supported by the intramural Research Program of NICHD, NIH and National Natural Science Foundation of China (Grant No. 31370187 and 81572447).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A. The development of the adult intestinal stem cells: insights from studies on thyroid hormone-dependent amphibian metamorphosis. cell biosci. 2011;1(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Sun G, Shi Y-B. Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations. Int J Biol Sci. 2012;8:1217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sun G, Fu L, Shi Y-B. Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell Biosci. 2014;4:73.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sirakov M, Kress E, Nadjar J, Plateroti M. Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology? Cell Mol Life Sci. 2014;71(15):2897–907.PubMedCrossRefGoogle Scholar
  6. 6.
    Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013;154:274–84.PubMedCrossRefGoogle Scholar
  7. 7.
    MacDonald WC, Trier JS, Everett NB. Cell proliferation and migration in the stomach, duodenum, and rectum of man: radioautographic studies. Gastroenterology. 1964;46:405–17.PubMedGoogle Scholar
  8. 8.
    Toner PG, Carr KE, Wyburn GM. The digestive system: an ultrastructural atlas and review. London: Butterworth; 1971.Google Scholar
  9. 9.
    McAvoy JW, Dixon KE. Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool. 1977;202:129–38.CrossRefGoogle Scholar
  10. 10.
    Sancho E, Eduard Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Ann Rev Cell Dev Biol. 2004;20:695–723.CrossRefGoogle Scholar
  11. 11.
    Muncan V, Heijmans J, Krasinski SD, Buller NV, Wildenberg ME, Meisner S, et al. Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun. 2011;2:452.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ. The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci U S A. 2011;108(26):10585–90.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Matsuda H, Shi YB. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development. Stem Cells. 2010;28(11):2073–83.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shi Y-B. Amphibian metamorphosis: from morphology to molecular biology. New York: Wiley; 1999.Google Scholar
  15. 15.
    Tata JR. Gene expression during metamorphosis: an ideal model for post-embryonic development. Bioessays. 1993;15(4):239–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Dodd MHI, Dodd JM. The biology of metamorphosis. In: Lofts B, editor. Physiology of the amphibia. New York: Academic; 1976. p. 467–599.CrossRefGoogle Scholar
  17. 17.
    Kroll KL, Amaya E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development. 1996;122(10):3173–83.PubMedGoogle Scholar
  18. 18.
    Fu L, Buchholz D, Shi YB. Novel double promoter approach for identification of transgenic animals: a tool for in vivo analysis of gene function and development of gene-based therapies. Mol Reprod Dev. 2002;62(4):470–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108(17):7052–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 2012;109:17484–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lei Y, Guo X, Deng Y, Chen Y, Zhao H. Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos. Cell Biosci. 2013;3(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Blitz IL, Biesinger J, Xie X, Cho KW. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis. 2013;51(12):827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis. 2013;51(12):835–43.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5:5560.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shi Z, Wang F, Cui Y, Liu Z, Guo X, Zhang Y, et al. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J. 2015;29:4914–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y. Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci. 2015;5:15.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shi Y-B, Ishizuya-Oka A. Biphasic intestinal development in amphibians: embryogensis and remodeling during metamorphosis. Curr Topics Dev Biol. 1996;32:205–35.CrossRefGoogle Scholar
  28. 28.
    Sterling J, Fu L, Matsuura K, Shi Y-B. Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis. PLoS ONE. 2012;7:e47407. 47401-47410.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Okada M, Wen L, Miller TC, Su D, Shi YB. Molecular and cytological analyses reveal distinct transformations of intestinal epithelial cells during Xenopus metamorphosis. Cell Biosci. 2015;5:74.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wen L, Hasebe T, Miller TC, Ishizuya-Oka A, Shi YB. A requirement for hedgehog signaling in thyroid hormone-induced postembryonic intestinal remodeling. Cell Biosci. 2015;5:13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S. Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling. J Cell Sci. 2003;116(Pt 15):3157–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Ishizuya-Oka A, Hasebe T, Buchholz DR, Kajita M, Fu L, Shi YB. Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. Faseb J. 2009;23:2568–75.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schreiber AM, Cai L, Brown DD. Remodeling of the intestine during metamorphosis of Xenopus laevis. Proc Natl Acad Sci U S A. 2005;102(10):3720–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gilbert LI, Tata JR, Atkinson BG. Metamorphosis: post-embryonic reprogramming of gene expression in amphibian and insect cells. New York: Academic; 1996.Google Scholar
  35. 35.
    Ishizuya-Oka A, Hasebe T. Establishment of intestinal stem cell niche during amphibian metamorphosis. Curr Top Dev Biol. 2013;103:305–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Ishizuya-Oka A, Shi YB. Evolutionary insights into postembryonic development of adult intestinal stem cells. Cell Biosci. 2011;1(1):37.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci. 2013;3(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ishizuya-Oka A, Shimozawa A. Induction of metamorphosis by thyroid hormone in anuran small intestine cultured organotypically in vitro. In Vitro Cell Dev Biol. 1991;27A(11):853–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol. 2008;288(1-2):71–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993;14(2):184–93.PubMedGoogle Scholar
  41. 41.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81(3):1097–142.PubMedGoogle Scholar
  43. 43.
    Davis PJ, Davis FB. Nongenomic actions of thyroid hormone. Thyroid. 1996;6:497–504.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem. 1994;63:451–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Buchholz DR, Paul BD, Fu L, Shi YB. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol. 2006;145(1):1–19.PubMedCrossRefGoogle Scholar
  46. 46.
    Laudet V, Gronemeyer H. The nuclear receptor FactsBook. San Diego: Academic; 2002.Google Scholar
  47. 47.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Wong J, Shi YB, Wolffe AP. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev. 1995;9(21):2696–711.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong J, Shi Y-B, Wolffe AP. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptinal activation. EMBO J. 1997;16:3158–71.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wong J, Patterton D, Imhof D, Guschin D, Shi Y-B, Wolffe AP. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J. 1998;17:520–34.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995;377(6548):397–404.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995;377:454–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Burke LJ, Baniahmad A. Co-repressors 2000. FASEB J. 2000;14(13):1876–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Jones PL, Shi Y-B. N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. In: Workman JL, editor. Current topics in microbiology and immunology: protein complexes that modify chromatin, vol. 274. Berlin: Springer; 2003. p. 237–68.CrossRefGoogle Scholar
  55. 55.
    Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.PubMedGoogle Scholar
  56. 56.
    Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol. 2000;62:439–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Yoon H-G, Chan DW, Huang ZQ, Li J, Fondell JD, Qin J, et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. Embo J. 2003;22:1336–46.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002;9:611–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Ishizuka T, Lazar MA. The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol. 2003;23:5122–31.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes & Devel. 2000;14:1048–57.Google Scholar
  61. 61.
    Li J, Wang J, Wang J, Nawaz Z, Liu JM, Qin J, et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. Embo J. 2000;19:4342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 2010;11:109–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Stewart D, Tomita A, Shi YB, Wong J. Chromatin immunoprecipitation for studying transcriptional regulation in Xenopus oocytes and tadpoles. Methods Mol Biol. 2006;322:165–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Stewart MD, Li J, Wong J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol. 2005;25(7):2525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li J, Lin Q, Yoon HG, Huang ZQ, Strahl BD, Allis CD, et al. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor. Mol Cell Biol. 2002;22:5688–97.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jones PL, Sachs LM, Rouse N, Wade PA, Shi YB. Multiple N-CoR complexes contain distinct histone deacetylases. J Biol Chem. 2001;276(12):8807–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Tomita A, Buchholz DR, Shi Y-B. Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Biol. 2004;24:3337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Heimeier RA, Hsia VS-C, Shi Y-B. Participation of BAF57 and BRG1-containing chromatin remodeling complexes in thyroid hormone-dependent gene activation during vertebrate development. Mol Endocrinol. 2008;22:1065–77.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Huang Z-Q, Li J, Sachs LM, Cole PA, Wong J. A role for cofactor–cofactor and cofactor–histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003;22:2146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McKenna NJ, O’Malley BW. Nuclear receptors, coregulators, ligands, and selective receptor modulators: making sense of the patchwork quilt. Ann N Y Acad Sci. 2001;949:3–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Rachez C, Freedman LP. Mediator complexes and transcription. Curr Opin Cell Biol. 2001;13(3):274–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Ito M, Roeder RG. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab. 2001;12(3):127–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM. Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1. Mol Cell Biol. 2001;21:39–50.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90:569–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 2002;415:549–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270(5240):1354–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Li J, O’Malley BW, Wong J. p300 requires its histone acetyltransferase activity and SRC-1 interaction domain to facilitate thyroid hormone receptor activation in chromatin. Mol And Cell Biol. 2000;20(6):2031–42.CrossRefGoogle Scholar
  78. 78.
    Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997;387:677–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, et al. Regulation of transcription by a protein methyltransferase. Science. 1999;284:2174–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Koh SS, Chen DG, Lee YH, Stallcup MR. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem. 2001;276:1089–98.PubMedCrossRefGoogle Scholar
  81. 81.
    Matsuda H, Paul BD, Choi CY, Hasebe T, Shi Y-B. Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol. 2009;29:745–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Matsuda H, Paul BD, Choi CY, Shi Y-B. Contrasting effects of two alternative splicing forms of coactivator-associated arginine methyltransferase 1 on thyroid hormone receptor-mediated transcription in Xenopus laevis. Mol Endocrinol. 2007;21(5):1082–94.PubMedCrossRefGoogle Scholar
  83. 83.
    O’Malley BW, Malovannaya A, Qin J. Minireview: nuclear receptor and coregulator proteomics--2012 and beyond. Mol Endocrinol. 2012;26(10):1646–50.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bulynko YA, O’Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry. 2011;50(3):313–28.PubMedCrossRefGoogle Scholar
  85. 85.
    McKenna NJ, Cooney AJ, DeMayo FJ, Downes M, Glass CK, Lanz RB, et al. Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Mol Endocrinol. 2009;23(6):740–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Havis E, Sachs LM, Demeneix BA. Metamorphic T3-response genes have specific co-regulator requirements. EMBO Rep. 2003;4:883–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Paul BD, Fu L, Buchholz DR, Shi Y-B. Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol. 2005;25:5712–24.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Paul BD, Buchholz DR, Fu L, Shi Y-B. Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. J Biol Chem. 2005;280:27165–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Paul BD, Buchholz DR, Fu L, Shi Y-B. SRC-p300 coactivator complex is required for thyroid hormone induced amphibian metamorphosis. J Biol Chem. 2007;282:7472–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Sachs LM, Shi Y-B. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. PNAS. 2000;97:13138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang X, Matsuda H, Shi Y-B. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology. 2008;149:5610–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sachs LM, Jones PL, Havis E, Rouse N, Demeneix BA, Shi Y-B. N-CoR recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol Cell Biol. 2002;22:8527–38.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bilesimo P, Jolivet P, Alfama G, Buisine N, Le Mevel S, Havis E, et al. Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses. Mol Endocrinol. 2011;25:225–37.PubMedCrossRefGoogle Scholar
  94. 94.
    Matsuura K, Fujimoto K, Fu L, Shi Y-B. Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development. Endocrinology. 2012;153:961–72.PubMedCrossRefGoogle Scholar
  95. 95.
    Sachs LM, Amano T, Shi YB. An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. Int J Mol Med. 2001;8(6):595–601.PubMedGoogle Scholar
  96. 96.
    Sachs LM, Amano T, Rouse N, Shi YB. Involvement of histone deacetylase at two distinct steps in gene regulation during intestinal development in Xenopus laevis. Dev Dyn. 2001;222(2):280–91.PubMedCrossRefGoogle Scholar
  97. 97.
    Grimaldi A, Buisine N, Miller T, Shi YB, Sachs LM. Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies. Biochim Biophys Acta. 2013;1830(7):3882–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: the roles of histone modification and chromatin disruption. Cell Biosci. 2012;2(1):42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Schreiber AM, Das B, Huang H, Marsh-Armstrong N, Brown DD. Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. PNAS. 2001;98:10739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Brown DD, Cai L. Amphibian metamorphosis. Dev Biol. 2007;306(1):20–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Buchholz DR, Hsia VS-C, Fu L, Shi Y-B. A dominant negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol Cell Biol. 2003;23:6750–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Buchholz DR, Tomita A, Fu L, Paul BD, Shi Y-B. Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol. 2004;24:9026–37.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Shi Y-B. Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid. 2009;19:987–99.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nakajima K, Yaoita Y. Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn. 2003;227:246–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Denver RJ, Hu F, Scanlan TS, Furlow JD. Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Dev Biol. 2009;326(1):155–68.PubMedCrossRefGoogle Scholar
  106. 106.
    Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ. A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta. J Biol Chem. 2008;283:2275–85.PubMedCrossRefGoogle Scholar
  107. 107.
    Schreiber AM, Mukhi S, Brown DD. Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. Dev Biol. 2009;331(1):89–98.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Sachs LM, Damjanovski S, Jones PL, Li Q, Amano T, Ueda S, et al. Dual functions of thyroid hormone receptors during Xenopus development. Comp Biochem Physiol B: Biochem Mol Biol. 2000;126(2):199–211.CrossRefGoogle Scholar
  109. 109.
    Shi Y-B. Molecular biology of amphibian metamorphosis: a new approach to an old problem. Trends Endocrinol Metab. 1994;5:14–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Yen PM. Unliganded TRs regulate growth and developmental timing during early embryogenesis: evidence for a dual function mechanism of TR action. Cell Biosci. 2015;5:8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wen L, Shi YB. Unliganded thyroid hormone receptor alpha controls developmental timing in Xenopus tropicalis. Endocrinology. 2015;156:721–34.PubMedCrossRefGoogle Scholar
  112. 112.
    Choi J, Suzuki KI, Sakuma T, Shewade L, Yamamoto T, Buchholz DR. Unliganded thyroid hormone receptor alpha regulates developmental timing via gene repression as revealed by gene disruption in Xenopus tropicalis. Endocrinology. 2015;156:735–44.PubMedCrossRefGoogle Scholar
  113. 113.
    Hasebe T, Buchholz DR, Shi YB, Ishizuya-Oka A. Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells. 2011;29(1):154–61.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ishizuya-Oka A, Shimozawa A. Connective tissue is involved in adult epithelial development of the small intestine during anuran metamorphosis in vitro. Roux’s Arch Dev Biol. 1992;201:322–9.CrossRefGoogle Scholar
  115. 115.
    Luu N, Wen L, Fu L, Fujimoto K, Shi YB, Sun G. Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells. Cell Biosci. 2013;3(1):43.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sun G, Heimeier RA, Fu L, Hasebe T, Das B, Ishizuya-Oka A, et al. Expression profiling of intestinal tissues implicates tissue-specific genes and pathways essential for thyroid hormone-induced adult stem cell development. Endocrinology. 2013;154(11):4396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Miller TC, Sun G, Hasebe T, Fu L, Heimeier RA, Das B, et al. Tissue-specific upregulation of MDS/EVI gene transcripts in the intestine by thyroid hormone during Xenopus metamorphosis. PLoS ONE. 2013;8(1):e55585.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sun G, Fu L, Wen L, Shi YB. Activation of sox3 gene by thyroid hormone in the developing adult intestinal stem cell during Xenopus metamorphosis. Endocrinology. 2014;155(12):5024–32.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ishizuya-Oka A, Ueda S, Inokuchi T, Amano T, Damjanovski S, Stolow M, et al. Thyroid hormone-induced expression of Sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation. 2001;69:27–37.PubMedCrossRefGoogle Scholar
  120. 120.
    Hasebe T, Kajita M, Fu L, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced sonic hedgehog signal up-regulates its own pathway in a paracrine manner in the Xenopus laevis intestine during metamorphosis. Dev Dyn. 2012;241(2):403–14.PubMedCrossRefGoogle Scholar
  121. 121.
    Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 2001;11(12):996–1000.PubMedCrossRefGoogle Scholar
  122. 122.
    Plateroti M, Gauthier K, Domon-Dell C, Freund JN, Samarut J, Chassande O. Functional interference between thyroid hormone receptor alpha (TRalpha) and natural truncated TRDeltaalpha isoforms in the control of intestine development. Mol Cell Biol. 2001;21(14):4761–72.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Flamant F, Poguet AL, Plateroti M, Chassande O, Gauthier K, Streichenberger N, et al. Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol. 2002;16(1):24–32.PubMedGoogle Scholar
  124. 124.
    Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M. The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine. J Biol Chem. 2009;284(2):1234–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, et al. Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology. 1999;116(6):1367–78.PubMedCrossRefGoogle Scholar
  126. 126.
    Plateroti M, Kress E, Mori JI, Samarut J. Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol. 2006;26(8):3204–14.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Brown DD. The role of thyroid hormone in zebrafish and axoloft development. Proc Natl Acad Sci U S A. 1997;94:13011–6.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Friedrichsen S, Christ S, Heuer H, Schäfer MKH, Mansouri A, Bauer K, et al. Regulation of iodothyronine deiodinases in the Pax8-/- mouse model of congenital hypothyroidism. Endocrinology. 2003;144:777–84.PubMedCrossRefGoogle Scholar
  129. 129.
    Mould AW, Morgan MA, Nelson AC, Bikoff EK, Robertson EJ. Blimp1/Prdm1 functions in opposition to Irf1 to maintain neonatal tolerance during postnatal intestinal maturation. PLoS Genet. 2015;11(7):e1005375.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Franklyn JA, Gammage MD. Thyroid disease: effects on cardiovascular function. TEM. 1996;7:50–4.PubMedGoogle Scholar
  131. 131.
    Silva JE. Thyroid hormone control of thermogenesis and energy balance. Thyroid. 1995;5(6):481–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Freake HC, Oppenheimer JH. Thermogenesis and thyroid function. Annu Rev Nutr. 1995;15:263–91.PubMedCrossRefGoogle Scholar
  133. 133.
    Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, et al. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest. 2010;120(11):4021–30.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, et al. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 2014;20(6):1038–48.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Milanesi A, Lee JW, Kim NH, Liu YY, Yang A, Sedrakyan S, et al. Thyroid hormone receptor alpha plays an essential role in male skeletal muscle myoblast proliferation, differentiation, and response to injury. Endocrinology. 2016;157(1):4–15.PubMedCrossRefGoogle Scholar
  136. 136.
    Lemkine GF, Raj A, Alfama G, Turque N, Hassani Z, Alegria-Prevot O, et al. Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J. 2005;19(7):863–5.PubMedGoogle Scholar
  137. 137.
    Lopez-Juarez A, Remaud S, Hassani Z, Jolivet P, Pierre Simons J, Sontag T, et al. Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell. 2012;10(5):531–43.PubMedCrossRefGoogle Scholar
  138. 138.
    Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocrinol Rev. 1993;14:348–99.Google Scholar
  139. 139.
    van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, et al. Clinical phenotype and mutant TRalpha1. N Engl J Med. 2012;366(15):1451–3.PubMedCrossRefGoogle Scholar
  140. 140.
    Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med. 2012;366(3):243–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Moran C, Chatterjee K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract Res Clin Endocrinol Metab. 2015;29(4):647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yakut M, Üstün Y, Kabacan G, Soykan I. Thyroid disorders in patients with inflammatory bowel diseases. Int J Clin Med. 2011;2(89–92).Google Scholar
  143. 143.
    Ebert C. The thyroid and the gut. J Clin Gastroenterol. 2010;44:402–6.PubMedGoogle Scholar
  144. 144.
    Maser C, Toset A, Roman S. Gastrointestinal manifestations of endocrine disease. World J Gastroenterol. 2006;12:3174–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kress E, Skah S, Sirakov M, Nadjar J, Gadot N, Scoazec JY, et al. Cooperation between the thyroid hormone receptor TRalpha1 and the WNT pathway in the induction of intestinal tumorigenesis. Gastroenterology. 2010;138(5):1863–74.PubMedCrossRefGoogle Scholar
  146. 146.
    Sirakov M, Plateroti M. The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta. 2011;1812(8):938–46.PubMedCrossRefGoogle Scholar
  147. 147.
    Modica S, Gofflot F, Murzilli S, D’Orazio A, Salvatore L, Pellegrini F, et al. The intestinal nuclear receptor signature with epithelial localization patterns and expression modulation in tumors. Gastroenterology. 2010;138(2):636–48. 648 e631-612.PubMedCrossRefGoogle Scholar
  148. 148.
    Markowitz S, Haut M, Stellato T, Gerbic C, Molkentin K. Expression of the ErbA-beta class of thyroid hormone receptors is selectively lost in human colon carcinoma. J Clin Invest. 1989;84(5):1683–7.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Horkko TT, Tuppurainen K, George SM, Jernvall P, Karttunen TJ, Makinen MJ. Thyroid hormone receptor beta1 in normal colon and colorectal cancer-association with differentiation, polypoid growth type and K-ras mutations. Int J Cancer. 2006;118(7):1653–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15(6):692–705.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457(7229):603–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.PubMedCrossRefGoogle Scholar
  153. 153.
    Skah S, Nadjar J, Sirakov M, Plateroti M. The secreted Frizzled-related protein 2 modulates cell fate and the Wnt pathway in the murine intestinal epithelium. Exp Cell Res. 2015;330(1):56–65.PubMedCrossRefGoogle Scholar
  154. 154.
    Sirakov M, Boussouar A, Kress E, Frau C, Lone IN, Nadjar J, et al. The thyroid hormone nuclear receptor TRalpha1 controls the Notch signaling pathway and cell fate in murine intestine. Development. 2015;142(16):2764–74.PubMedCrossRefGoogle Scholar
  155. 155.
    Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13(1):37–50.PubMedCrossRefGoogle Scholar
  156. 156.
    Yoshimatsu M, Toyokawa G, Hayami S, Unoki M, Tsunoda T, Field HI, et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer. 2011;128(3):562–73.PubMedCrossRefGoogle Scholar
  157. 157.
    Wu TT, Tsai TW, Shen YT, Hsu JD, Yang LC, Li C. Analyses of PRMT1 proteins in human colon tissues from Hirschsprung disease patients. Neurogastroenterol Motil. 2010;2:984–90.CrossRefGoogle Scholar
  158. 158.
    Wu Y, Wang Y, Zhang Y, Chen LP, Wang JY. [Effect of matrine on NO and ADMA metabolism pathways in serum and tissues of mice with lipopolysaccharide-induced intestine tissue inflammation]. Zhongguo Zhong Yao Za Zhi. 2014;39(12):2318–21.PubMedGoogle Scholar
  159. 159.
    Casula S, Bianco A. Thyroid hormone deiodinases and cancer. Front Endocrinol. 2012; 3(74).Google Scholar
  160. 160.
    Dentice M, Luongo C, Ambrosio R, Sibilio A, Casillo A, Iaccarino A, et al. Salvatore D: beta-Catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterology. 2012;143(4):1037–47.PubMedCrossRefGoogle Scholar
  161. 161.
    Gereben B, Zeold A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci. 2008;65(4):570–90.PubMedCrossRefGoogle Scholar
  162. 162.
    Catalano V, Dentice M, Ambrosio R, Luongo C, Carollo R, Benfante A, et al. Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Res. 2016;76(5):1237–44.PubMedCrossRefGoogle Scholar
  163. 163.
    Shi YB. Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Curr Top Dev Biol. 2013;105:275–97.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  1. 1.School of Basic Medical SciencesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM)Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations