Skip to main content

Advertisement

Log in

The effects of indoor and outdoor temperature on metabolic rate and adipose tissue – the Mississippi perspective on the obesity epidemic

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Global warming, primarily caused by emissions of too much carbon dioxide, and climate change is a reality. This will lead to more extreme weather events with heatwaves and flooding. Some studies propose an association between thermal exposures and the prevalence of obesity with an increasing trend towards time spent in the thermal comfort zone. Longterm exposure to the thermal comfort zone can lead to a reduction of brown adipose tissue activity with an impact on energy expenditure and thermogenesis. Reduced seasonal cold exposure in combination with reduced diet-induced thermogenesis by a highly palatable high-fat and high-sugar diet and reduced physical activity contribute to the prevalence of obesity and the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest. 1983;72(3):1150–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355:763–78.

    Article  CAS  PubMed  Google Scholar 

  3. Karpe F, Lindgren CM. Obesity – on or off? N Engl J Med. 2016;374(15):1486–8.

    Article  PubMed  Google Scholar 

  4. Dalgaard K, Landgraf K, Heyne S, Lempradl A, Longinotto J, Gossens K, et al. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell. 2016;164(3):353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G. Cross-talk between adipokines and myokines in fat browning. Acta Physiol (Oxf). 2016. doi:10.111/alpha.12686.

    Google Scholar 

  7. Qiu S, Cai X, Sun Z, Schumann U, Zügel M, Steinacker JM. Chronic exercise training and circulating irisin in adults: a meta-analysis. Sports Med. 2015;45(11):1577–88.

    Article  PubMed  Google Scholar 

  8. Tsuchiya Y, Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015;64(9):1042–50.

    Article  CAS  PubMed  Google Scholar 

  9. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  10. Andresen M, Gazmuri JT, Marín A, Regueira T, Rovegno M. Therapeutic hypothermia for acute brain injuries. Scand J Trauma Resusc Emerg Med. 2015;23:42.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Ballarnd E, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160(1–2):88–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. López M, Diéguez C, Nogueiras R. Hypothalamic GLP-1: the control of BAT thermogenesis and browning of fat. Adipocyte. 2015;4(2):141–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kurylowicz A, Jonas M, Lisik W, Jonas M, Wicik ZA, Wierzbicki Z, et al. Obesity is associated with a decrease in expression but not with the hypermethylation of thermogenesis-related genes in adipose tissue. J Transl Med. 2015;13:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011;19(9):1755–60.

    Article  Google Scholar 

  15. Davis TR. Chamber cold acclimatization in man. Rep US Army Med Res Lab. 1961;19(475):1–8.

    Google Scholar 

  16. Saeki K, Obayashi K, Kurumatani N. Obesity and indoor cold exposure: a cross-sectional analysis of population-based study (The HEIJO-KYO Cohort). Poster 608. Boston: The Endocrine Society Meeting; 2016.

    Google Scholar 

  17. Celi FS, Le TN, Ni B. Physiology and relevance of human adaptive thermogenesis response. Trends Endocrinol Metab. 2015;26(5):238–47.

    Article  CAS  PubMed  Google Scholar 

  18. Bakker LE, Boon MR, van der Linden RA, Arias-Bouda LP, van Klinken JB, Smit F, et al. Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol. 2014;2(3):210–7.

    Article  PubMed  Google Scholar 

  19. Costello JT, Baker PR, Minett GM, Bieuzen F, Stewart IB, Bleakley C. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev. 2015;9, CD01078.

    Google Scholar 

  20. Sommer F, Stahlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. The gut microbiota modulates energy metabolism in the hibernating brown bear ursus arctos. Cell Rep. 2016;14(7):1655–61.

    Article  CAS  PubMed  Google Scholar 

  21. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1(3), e1500183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Martinez Steele E, Baraldi LG, Louzada M, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ. 6(3):e009892.

  23. Yassour M, Lim MY, Yun HS, Tickle TL, Sung J, Song YM, et al. Subclinical detection of gut microbioal biomarkers of obesity and type 2 diabetes. Genome Med. 2016;8(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.

    Article  CAS  PubMed  Google Scholar 

  25. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4.

    Article  CAS  PubMed  Google Scholar 

  26. Seifarth C, Schehleer B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes. 2013;121:27–31.

    CAS  PubMed  Google Scholar 

  27. Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care. 2012;35:731–7.

    Article  CAS  Google Scholar 

  28. Malin SK, Kashvap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes. 2014;21:323–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kern P, Cramp RL, Franklin CE. Physiological responses of ectotherms to daily temperature variation. J Exp Biol. 2015;218(Pt 19):3068–76.

    Article  PubMed  Google Scholar 

  30. Beaman JE, White CR, Seebacher F. Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol. 2016;31(3):237–49.

    Article  PubMed  Google Scholar 

  31. Sinclair BJ, Stinziano JR, Williams CM, Macmillan HA, Marshall KE, Storey KB. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. J Exp Biol. 2013;216(Pt 2):292–302.

    Article  CAS  PubMed  Google Scholar 

  32. Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting man. Aviat Space Environ Med. 1981;52(5):281–6.

    CAS  PubMed  Google Scholar 

  33. Bates G, Gazey C, Cena K. Factors affecting heat illness when working in conditions of thermal stress. J Hum Ergol (Tokyo). 1996;25(1):13–20.

    CAS  Google Scholar 

  34. Adams JD, Ganio MS, Burchfield JM, Matthews AC, Werner RN, Chokbengboun AJ, et al. Effects of obesity on body temperature in otherwise-healthy females when controlling hydration and heat production during exercise in the heat. Eur J Appl Physiol. 2015;115(1):167–76.

    Article  CAS  PubMed  Google Scholar 

  35. Westerterp-Plantenga MS, van Marken Lichtenbelt WD, Cilissen C, Top S. Energy metabolism in women during short exposure to the thermoneutral zone. Physiol Behav. 2002;75(1–2):227–35.

    Article  CAS  PubMed  Google Scholar 

  36. Valdés S, Maldonado-Araque C, García-Torres F, Goday A, Bosch-Comas A, Bordiú E, et al. Ambient temperature and prevalence of obesity in the Spanish population. The Diabetes study Obesity (Silver Spring). 2014;22(11):2328–32.

    Article  Google Scholar 

  37. Daly M. Association of ambient indoor temperature with body mass index in England. Obesity (Silver Spring). 2014;22(3):626–9.

    Article  Google Scholar 

  38. Tainter ML, Stockton AB, Cutting WC. Dinitrophenol in the treatment of obesity. JAMA. 1935;105:332–7.

    Article  Google Scholar 

  39. Miranda EJ, McIntyre IM, Parker DR, Gary RD, Logan BK. Two deaths attributed to the use of 2,4-dinitrophenol. J Anal Toxicol. 2006;30(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  40. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science. 2015;347(6227):1253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plummer C, Springer PJ, Marotta R, Chin J, Taylor G, Sharpe D, et al. Multiple symmetrical lipomatosis – a mitochondrial disorder of brown fat. Mitochondrion. 2013;13(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  42. Rak M, Bénit P, Chrétien D, Bouchereau J, Schiff M, El-Khoury R, et al. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond). 2016;130(6):393–407.

    Article  Google Scholar 

  43. Kaur S, Sachdev HP, Dwivedi SN, Lakshmy R, Kapil U. Prevalence of overweight and obesity amongst school children in Delhi, India. Asia Pac J Clin Nutr. 2008;17(4):592–6.

    PubMed  Google Scholar 

  44. Rohilla R, Rajput M, Rohilla J, Malik M, Garg D, Verma M. Prevalence and correlates of overweight/obesity among adolescents in an Urban City of North India. Family Med Prim Care. 2014;3(4):404–8.

    Google Scholar 

  45. National Center for Health Statistics. Prevalence of overweight, obesity and extreme obesity among adults: United States, trends 1960–62 through 2005–2006. National health and nutrition examination survey

  46. Mattes RD, Popkin BM. Nonnutritivie sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr. 2009;89:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mintel. Ingredient trends – US – December 2004 – Market research report

  48. Kroger M, Meister K, Kava R. Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf. 2006;5:35–47.

    Article  CAS  Google Scholar 

  49. Yang Q. Gain weight by going diet? Artificial sweeteners and the neurobiology of sugar cravings: neuroscience 2010. Yale J Biol Med. 2010;83(2):101–8.

    PubMed  PubMed Central  Google Scholar 

  50. Rolland-Cachera MF, Scaglioni S. Role of nutrients in promoting adiposity development. In ML Frelut (Ed.), The ECOG’s eBook on child and adolescent obesity. 2015; Retrieved from ebook.ecog-obesity.eu

  51. Asta K, Miller AL, Retzloff L, Rosenblum K, Kaciroti NA, Lumeng JC. Eating in the absence of hunger and weight gain in low-income toddlers. Pediatrics. 2016;137(5), e20153786.

    Article  Google Scholar 

  52. Koch CA. Endocrine hypertension: what is new? Rev Port Endocrinol Diabetes Metab. 2012;7(2):50–9.

    Google Scholar 

  53. Vinik AI, Nevoret M, Casellini C, Parson H. Neurovascular function and sudorimetry in health and disease. Curr Diab Rep. 2013;13(4):517–32.

    Article  PubMed  Google Scholar 

  54. Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62(5):609–21.

    Article  CAS  PubMed  Google Scholar 

  55. Colberg SR, Vinik AI. Exercising with peripheral or autonomic neuropathy: what health care providers and diabetic patients need to know. Phys Sportsmed. 2014;42(1):15–23.

    Article  PubMed  Google Scholar 

  56. Johnson F, Mavrogianni A, Ucci M, Vidal-Puig A, Wardle J. Could increased time spent in a thermal comfort zone contribute to population increases in obesity? Obes Rev. 2011;12(7):543–51.

    Article  CAS  PubMed  Google Scholar 

  57. Mavrogianni A, Johnson F, Ucci M, Marmot A, Wardle J, Oreszczyn T, et al. Historic variations in winter indoor domestic temperatures and potential implications for body weight gain. Indoor Built Environ. 2013;22(2):360–75.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, Forrester TE, et al. Constrained total energy expenditure and metabolic adaptation to physical activity in adult humans. Curr Biol. 2016;26(3):410–7.

    Article  CAS  PubMed  Google Scholar 

  59. Hamann A, Muenzberg H, Tafel J, Ziegler R. Some may feel hot: significance of thermogenesis for energy metabolism and the treatment of obesity. Dtsch Med Wochenschr. 2001;126(9):241–6.

    Article  CAS  PubMed  Google Scholar 

  60. Greco-Perotto R, Zaninetti D, Assimacopoulos-Jeannet F, Bobbioni E, Jeanrenaud B. Stimulatory effect of cold adaptation on glucose utilization by brown adipose tissue. Relationship with changes in the glucose transporter system. J Biol Chem. 1987;262(16):7732–6.

    CAS  PubMed  Google Scholar 

  61. Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123(8):3404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouillaud F, Combes-George M, Ricquier D. Mitochondria of adult human brown adipose tissue contain a 32 000-Mr uncoupling protein. Biosci Rep. 1983;3:775–80.

    Article  CAS  PubMed  Google Scholar 

  66. Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, et al. High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab. 2011;96:2450–5.

    Article  CAS  PubMed  Google Scholar 

  67. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.

    Article  CAS  PubMed  Google Scholar 

  68. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  69. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  70. Wu J, Bostr MP, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013;5:1196–203.

    Article  CAS  PubMed  Google Scholar 

  72. Lee P, Swarbrick MM, Ho KK. Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev. 2013;34:413–38.

    Article  CAS  PubMed  Google Scholar 

  73. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  74. Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne). 2012;2:85.

    Google Scholar 

  75. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits humanbrown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue asan antiobesity agent in humans. J Clin Invest. 2013;123:3404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulder NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8.

    Article  PubMed  Google Scholar 

  78. Huttunen P, Hirvonen J, Kinnula V. The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol. 1981;46:339–45.

    Article  CAS  PubMed  Google Scholar 

  79. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes. 2009;58:2583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohade C, Mourtzikos KA, Wahl RL. USA-Fat’: prevalence is related to ambient outdoor temperature-evaluation with 18 F-FDG PET/CT. J Nucl Med. 2003;44:1267–70.

    PubMed  Google Scholar 

  81. van Ooijen AM, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav. 2004;82:545–53.

    Article  PubMed  CAS  Google Scholar 

  82. Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat. 2009;214:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Collins S. β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol (Lausanne). 2012;2:102.

    Google Scholar 

  85. Asano A, Morimatsu M, Nikami H, Yoshida T, Saito M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochem J. 1997;328:179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tonello C, Giordano A, Cozzi V, Cinti S, Stock MJ, Carruba MO, et al. Role of sympathetic activity in controlling the expression of vascular endothelial growth factor in brown fat cells of lean and genetically obese rats. FEBS Lett. 1999;442(2–3):167–72.

    Article  CAS  PubMed  Google Scholar 

  87. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3:333–41.

    Article  CAS  PubMed  Google Scholar 

  88. Leone TC, Lehman JJ, Fink BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3, e101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wulf A, Harneit A, Kroger M, Kebenko M, Wetzel MG, Weitzel JM. T3-mediated expression of PGC-1α via a far upstream located thyroid hormone response element. Mol Cell Endocrinol. 2008;287:90–5.

    Article  CAS  PubMed  Google Scholar 

  90. Hondares E, Mora O, Yubero P, de la Concepcion RM, Iglesias R, Giralt M, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology. 2006;147:2829–38.

    Article  CAS  PubMed  Google Scholar 

  91. Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med. 2011;17:736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hondares E, Iglesias R, Giralt A, Gonzales FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63(11):3686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15:659–67.

    Article  CAS  PubMed  Google Scholar 

  95. Allard M, Leblanc J. Effects of cold acclimation, cold exposure, and palatability on postprandial thermogenesis in rats. Int J Obes. 1988;12:169–78.

    CAS  PubMed  Google Scholar 

  96. Rothwell NJ, Saville ME, Stock MJ. Factors influencing the acute effect of food on oxygen consumption in the rat. Int J Obes. 1982;6:53–9.

    CAS  PubMed  Google Scholar 

  97. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322:1477–82.

    Article  CAS  PubMed  Google Scholar 

  98. Joosen AM, Bakker AH, Westerterp KR. Metabolic efficiency and energy expenditure during short-term overfeeding. Physiol Behav. 2005;85:593–7.

    Article  CAS  PubMed  Google Scholar 

  99. Nagai N, Sakane N, Ueno LM, Hamada T, Moritani T. The −3826 A–G variant of the uncoupling protein-1 gene diminishes postprandial thermogenesis after a high fat meal in healthy boys. J Clin Endocrinol Metab. 2003;88:5661–7.

    Article  CAS  PubMed  Google Scholar 

  100. Sramkova D, Krejbichova S, Vcelak J, Vankova M, Samalikova P, Hill M, et al. The UCP1 gene polymorphism A-3826G in relation to DM2 and body composition in Czech population. Exp Clin Endocrinol Diabetes. 2007;115:303–7.

    Article  CAS  PubMed  Google Scholar 

  101. Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee Jr RE, Westgate PM, et al. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab. 2014;99:E2772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US Energy Information Administration. Residential energy consumption survey. EIA 2010; [WWW document]. URL http://www.eia.doe.gov/emeu/recs/contents.html. Accessed 21st September 2010.

  103. Hunt DRG, Gidman MI. A national field survey of house temperatures. Build Environ. 1982;17:107–24.

    Article  Google Scholar 

  104. Department for the Environment Transport and the Regions (DETR). English house condition survey 1996. UK.

  105. Chappells H, Shove E. Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment. Build Res Inf. 2005;33:32–40.

    Article  Google Scholar 

  106. Healy S. Air-conditioning and the ‘homogenization’ of people and built environments. Build Res Inf. 2008;36:32–41.

    Article  Google Scholar 

  107. Besnard P. Lipids and obesity: also a matter of taste? Rev Endocr Metab Disord. 2016; in press

  108. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuity and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907.

    Article  CAS  PubMed  Google Scholar 

  109. Reed HL, Silverman ED, Shakir KM, Dons R, Burman KD, O’Brian JT. Changes in serum triiodothyronine (T3) kinetics after prolonged Antarctic residence: the polar T3 syndrome. J Clin Endocrinol Metab. 1990;70(4):965–74.

    Article  CAS  PubMed  Google Scholar 

  110. Hanefeld M, Pistrosch F, Bornstein SR, Birkenfeld AL. The metabolic vascular syndrome – guide to an individualized treatment. Rev Endocr Metab Disord. 2016

  111. Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nat Geosci. 2008;1:221–7.

    Article  CAS  Google Scholar 

  112. The Lancet. The perfect storm: climate change and its health consequences. Lancet. 2016;387(10026):1348. doi:10.1016/S0140-6736(16)30117-9.

    Google Scholar 

  113. Darviri C, Alexopoulos EC, Artemiadis AK, Tigani X, Kraniotou C, Darvyri P, et al. The healthy lifestyle and personal control questionnaire (HLPCQ): a novel tool for assessing self-empowerment through a constellation of daily activities. BMC Public Health. 2014;14:995.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Karatzi K, Moschonis G, Barouti AA, Lionis C, Chrousos GP, Manios Y. Healthy growth study group. Dietary patterns and breakfast consumption in relation to insulin resistance in children. The healthy growth study. Public Health Nutr. 2014;17(12):2790–7.

    Article  PubMed  Google Scholar 

  115. Mennella JA, Bobowski NK, Reed DR. The development of sweet taste: from biology to hedonics. Rev Endocr Metab Disord 2016; in press

  116. Markou A, Sertedaki A, Kaltsas G, Androulakis II, Marakaki C, Pappa T, et al. Stress-induced aldosterone hypersecretion in a substantial subset of patients with essential hypertension. J Clin Endocrinol Metab. 2015;100(8):2857–64.

    Article  CAS  PubMed  Google Scholar 

  117. Endocrine Hypertension (editors: Koch CA & Chrousos GP), Contemporary endocrinology series, Springer, New York, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Koch.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts related to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, J.B., Kumar, A. & Koch, C.A. The effects of indoor and outdoor temperature on metabolic rate and adipose tissue – the Mississippi perspective on the obesity epidemic. Rev Endocr Metab Disord 17, 61–71 (2016). https://doi.org/10.1007/s11154-016-9358-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9358-z

Keywords

Navigation