Advertisement

A Genome-Wide Association Study in isolated populations reveals new genes associated to common food likings

  • Nicola Pirastu
  • Maarten Kooyman
  • Michela Traglia
  • Antonietta Robino
  • Sara M. Willems
  • Giorgio Pistis
  • Najaf Amin
  • Cinzia Sala
  • Lennart C. Karssen
  • Cornelia Van Duijn
  • Daniela Toniolo
  • Paolo Gasparini
Article

Abstract

Food preferences are the first factor driving food choice and thus nutrition. They involve numerous different senses such as taste and olfaction as well as various other factors such as personal experiences and hedonistic aspects. Although it is clear that several of these have a genetic basis, up to now studies have focused mostly on the effects of polymorphisms of taste receptor genes. Therefore, we have carried out one of the first large scale (4611 individuals) GWAS on food likings assessed for 20 specific food likings belonging to 4 different categories (vegetables, fatty, dairy and bitter). A two-step meta-analysis using three different isolated populations from Italy for the discovery step and two populations from The Netherlands and Central Asia for replication, revealed 15 independent genome-wide significant loci (p < 5 × 10−8) for 12 different foods. None of the identified genes coded for either taste or olfactory receptors suggesting that genetics impacts in determining food likings in a much broader way than simple differences in taste perception. These results represent a further step in uncovering the genes that underlie liking of common foods that in the end will greatly help understanding the genetics of human nutrition in general.

Keywords

Food preferences Food consumption Food choice GWAS Association study Isolated populations 

Notes

Acknowledgments

We would like to thank all the participants in the various studies for their contribution and support.

The SR study has been founded by the Region Friuli Venezia Giulia grant number 35\09 Linea 2 “Sulle tracce di Marco Polo: geni, gusto e loro implicazioni sulla salute lungo la Via della Seta”.

The INGI-FVG study was founded through the Italian Ministry of health.

We thank the inhabitants and the administrators of the Val Borbera for their participation in the study. A special thanks to Professor Clara Camaschella, Dr Silvia Bione, Dr Laura Crocco, Ms Maria Rosa Biglieri, Dr Diego Sabbi for help with the data collection. We thank Fondazione Compagnia di San Paolo, Torino, Fondazione Cariplo, Milano and Health Ministry (Progetto Finalizzato and Italian Centre for Disease Prevention and Control) for financial support.

The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. Statistical analyses were partly carried out on the Genetic Cluster Computer (http://www.geneticcluster.org) which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003 PI: Posthuma) along with a supplement from the Dutch Brain Foundation and the VU University Amsterdam. This research was financially supported by BBMRI-NL, a Research Infrastructure financed by the Dutch Government (NWO 184.021.007). The work of LCK was partially funded by the FP7 projects MIMOmics (grant no. 305280) and Pain-Omics (grant no. 602736).

Author contribution

Conceived and designed the experiments: NP LN PG. Performed the experiments: NP SMW MT GP LCK AR PDA AD. Analyzed the data: NP MK CS. Contributed reagents/materials/analysis tools: CVD DT PG NA. Wrote the paper: NP MK LCK PG.

Compliance with ethical standards

Ethics statement

Consent forms for clinical and genetic studies were signed by each participant and all research was conducted according to the ethical standards defined by the Helsinki declaration. The INGI-CARL, INGI-FVG and SR studies have been approved by the Institutional Review Board of IRCCS Burlo Garofolo PROT CE/v-78 in Trieste Italy. The INGI-VB study was approved by San Raffaele Hospital and Regione Piemonte ethical committees. The ERF study was approved by the Erasmus institutional medical-ethics committee in Rotterdam, The Netherlands

Conflict of interest

The authors declare no conflict of interest.

Competing financial interests

The author(s) declare no competing financial interests.

Supplementary material

11154_2016_9354_MOESM1_ESM.pdf (42.4 mb)
ESM 1 (PDF 43369 kb)

References

  1. 1.
    Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. [Internet]. 2003 [cited 2014 Jun 2];916:i—viii, 1–149, backcover. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12768890.
  2. 2.
    Story M, Neumark-Sztainer D, French S. Individual and environmental influences on adolescent eating behaviors. J Am Diet Assoc. 2002;102:S40–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11902388.CrossRefPubMedGoogle Scholar
  3. 3.
    Tanaka T, Ngwa JS, van Rooij FJA, Zillikens MC, Wojczynski MK, Frazier-Wood AC. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr. 2013;97:1395–402. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3652928&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schatzkin A, Kipnis V, Carroll RJ, Midthune D, Subar AF, Bingham S. A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol. 2003;32:1054–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14681273.CrossRefPubMedGoogle Scholar
  5. 5.
    International Food Information Council Foundation. The 2015 food & health survey: consumer attitudes toward food safety, nutrition & health. Washington, D.C.; 2015.Google Scholar
  6. 6.
    Duffy VB, Hayes JE, Sullivan BS, Faghri P. Surveying food and beverage liking: a tool for epidemiological studies to connect chemosensation with health outcomes. Ann N Y Acad Sci. 2009;1170:558–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19686193.CrossRefPubMedGoogle Scholar
  7. 7.
    Pallister T, Sharafi M, Lachance G, Pirastu N, Mohney RP, MacGregor A, et al. Food preference patterns in a UK Twin Cohort. Twin Res Hum Genet. 2015.Google Scholar
  8. 8.
    Sharafi M, Peracchio H, Scarmo S, Huedo-Medina TB, Mayne ST, Cartmel B. Preschool-Adapted Liking Survey (PALS): a brief and valid method to assess dietary quality of preschoolers. Child Obes. 2015;11:530–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26322657.CrossRefPubMedGoogle Scholar
  9. 9.
    Keskitalo K, Tuorila H, Spector TD, Cherkas LF, Knaapila A, Silventoinen K. Same genetic components underlie different measures of sweet taste preference. Am J Clin Nutr. 2007;86:1663–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18065584.PubMedGoogle Scholar
  10. 10.
    Duffy VB, Hayes JE, Davidson AC, Kidd JR, Kidd KK, Bartoshuk LM. Vegetable intake in college-aged adults is explained by oral sensory phenotypes and TAS2R38 genotype. Chemosens Percept. 2010;3:137–48. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3000691&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses. 2011;36:311–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3038275&tool=pmcentrez&rendertype=abstract.CrossRefPubMedGoogle Scholar
  12. 12.
    Pirastu N, Robino A, Lanzara C, Athanasakis E, Esposito L, Tepper BJ, et al. Genetics of food preferences: a first view from silk road populations. J Food Sci. 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22888812.
  13. 13.
    Colares-Bento FCJ, Souza VC, Toledo JO, Moraes CF, Alho CS, Lima RM. Implication of the G145C polymorphism (rs713598) of the TAS2r38 gene on food consumption by Brazilian older women. Arch Gerontol Geriatr. 2016;54:e13–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21763010.CrossRefGoogle Scholar
  14. 14.
    Hayes JE, Feeney EL, Allen AL. Do polymorphisms in chemosensory genes matter for human ingestive behavior? Food Qual Prefer. 2013;30:202–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23878414.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, Pistis G. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking. PLoS One Publ Lib Sci. 2014;9:e92065.CrossRefGoogle Scholar
  16. 16.
    Sandell M, Hoppu U, Mikkilä V, Mononen N, Kähönen M, Männistö S. Genetic variation in the hTAS2R38 taste receptor and food consumption among Finnish adults. Genes Nutr. 2014;9:433. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4235829&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hayes JE, Feeney EL, Nolden AA, McGeary JE. Quinine bitterness and grapefruit liking associate with allelic variants in TAS2R31. Chem Senses. 2015;40:437–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26024668.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jones LV, Peryam DR, Thurstone LL. development of a scale for measuring soldiers’food preferences b. J Food Sci. 1955;20:512–20. Available from: http://doi.wiley.com/10.1111/j.1365-2621.1955.tb16862.x.CrossRefGoogle Scholar
  19. 19.
    Coetzee H, Taylor JRN. The use and adaptation of the paired-comparison method in the sensory evaluation of hamburger-type patties by illiterate/semi-literate consumers. Food Qual Prefer. 1996;7:81–5. Available from: http://www.sciencedirect.com/science/article/pii/0950329395000399.CrossRefGoogle Scholar
  20. 20.
    Colman AM, Norris CE. PCC. comparing rating scales of different lengths: equivalence of scores from 5-point and 7-point scales. Psychol Rep. 1997;80:355–62.CrossRefGoogle Scholar
  21. 21.
    Preston CC, Colman AM. Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychol (Amst). 2000;104:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10769936.CrossRefGoogle Scholar
  22. 22.
    J.G. D. Five point vs. eleven point scales: does it make a difference to data characteristics? Australas. J Mark Res. 2002;10:39–47.Google Scholar
  23. 23.
    Aulchenko YS, Heutink P, Mackay I, Bertoli-Avella AM, Pullen J, Vaessen N. Linkage disequilibrium in young genetically isolated Dutch population. Eur J Hum Genet. 2004;12:527–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15054401.CrossRefPubMedGoogle Scholar
  24. 24.
    Pardo LM, MacKay I, Oostra B, van Duijn CM, Aulchenko YS. The effect of genetic drift in a young genetically isolated population. Ann Hum Genet. 2005;69:288–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15845033.CrossRefPubMedGoogle Scholar
  25. 25.
    Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23269371.CrossRefPubMedGoogle Scholar
  26. 26.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3498066&tool=pmcentrez&rendertype=abstract.CrossRefPubMedGoogle Scholar
  27. 27.
    Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22820512.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Belonogova NM, Svishcheva GR, van Duijn CM, Aulchenko YS, Axenovich TI. Region-based association analysis of human quantitative traits in related individuals. PLoS One. 2013;8:e65395. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3684601&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17384015.CrossRefPubMedGoogle Scholar
  30. 30.
    González JR, Carrasco JL, Dudbridge F, Armengol L, Estivill X, Moreno V. Maximizing association statistics over genetic models. Genet Epidemiol. 2008;32:246–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18228557.CrossRefPubMedGoogle Scholar
  31. 31.
    Lettre G, Lange C, Hirschhorn JN. Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol. 2007;31:358–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17352422.CrossRefPubMedGoogle Scholar
  32. 32.
    Spiegelberg BD, Xiong JP, Smith JJ, Gu RF, York JD. Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3′-nucleotidase inhibited by inositol 1,4-bisphosphate. J Biol Chem. 1999;274:13619–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10224133.CrossRefPubMedGoogle Scholar
  33. 33.
    Marchese G, Scheggi S, Secci ME, De Montis MG, Gambarana C. Anti-anhedonic activity of long-term lithium treatment in rats exposed to repeated unavoidable stress. Int J Neuropsychopharmacol. 2013;16:1611–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23363811.CrossRefPubMedGoogle Scholar
  34. 34.
    Green E, Jacobson A, Haase L, Murphy C. Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Res. 2011;1386:109–17. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3086067&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang Q, Kathiresan S, Lin J-P, Tofler GH, O’Donnell CJ. Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1995619&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S17. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1995614&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nakabayashi K, Komaki G, Tajima A, Ando T, Ishikawa M, Nomoto J. Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet. 2009;54:531–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19680270.CrossRefPubMedGoogle Scholar
  38. 38.
    Bayrak F, Kömürcü-Bayrak E, Mutlu B, Kahveci G, Erginel-Unaltuna N. Genetic analysis of the Irx4 gene in hypertrophic cardiomyopathy. Türk Kardiyol Derneği arşivi Türk Kardiyol Derneğinin yayın organıdır. 2008;36:90–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18497553.Google Scholar
  39. 39.
    Cheng Z, Wang J, Su D, Pan H, Huang G, Li X. Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet. 2011;130:657–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21544582.CrossRefPubMedGoogle Scholar
  40. 40.
    Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24646999.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Scheid JL, Carr KA, Lin H, Fletcher KD, Sucheston L, Singh PK. FTO polymorphisms moderate the association of food reinforcement with energy intake. Physiol Behav. 2014;132:51–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24768648.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stice E, Burger KS, Yokum S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am J Clin Nutr. 2013;98:1377–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24132980.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. R GP. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969–76. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3303194&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  44. 44.
    Nock NL, Wang X, Thompson CL, Song Y, Baechle D, Raska P. Defining genetic determinants of the Metabolic Syndrome in the Framingham Heart Study using association and structural equation modeling methods. BMC Proc. 2009;3 Suppl 7:S50. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2795950&tool=pmcentrez&rendertype=abstract.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rose EJ, Morris DW, Hargreaves A, Fahey C, Greene C, Garavan H. Neural effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:530–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23839771.CrossRefPubMedGoogle Scholar
  46. 46.
    Van den Eynde F, Giampietro V, Simmons A, Uher R, Andrew CM, Harvey P-O. Brain responses to body image stimuli but not food are altered in women with bulimia nervosa. BMC Psychiatr. 2013;13:302. Available from: http://www.biomedcentral.com/1471-244X/13/302.CrossRefGoogle Scholar
  47. 47.
    Zhou DH, Yan QZ, Yan XM, Li CB, Fang H, Zheng YL. The study of BDNF Val66Met polymorphism in Chinese schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:930–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20420877.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen H, Zhu J. C677T polymorphism of methylenetetrahydrofolate reductase may contribute to cervical cancer risk in complete over-dominant model. Med Hypotheses. 2013;80:679–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23490201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nicola Pirastu
    • 1
    • 2
  • Maarten Kooyman
    • 3
  • Michela Traglia
    • 5
  • Antonietta Robino
    • 1
  • Sara M. Willems
    • 3
  • Giorgio Pistis
    • 5
  • Najaf Amin
    • 3
  • Cinzia Sala
    • 5
  • Lennart C. Karssen
    • 3
    • 6
  • Cornelia Van Duijn
    • 3
    • 4
  • Daniela Toniolo
    • 5
  • Paolo Gasparini
    • 1
    • 2
  1. 1.Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”TriesteItaly
  2. 2.University of TriesteTriesteItaly
  3. 3.Genetic Epidemiology Unit, Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  4. 4.Centre for Medical Systems BiologyLeiden University Medical CenterLeidenThe Netherlands
  5. 5.Division of Genetics and Cell BiologySan Raffaele Scientific InstituteMilanoItaly
  6. 6.PolyOmicaGroningenThe Netherlands

Personalised recommendations