Reviews in Endocrine and Metabolic Disorders

, Volume 16, Issue 4, pp 341–357 | Cite as

Environmental endocrine disruptors: Effects on the human male reproductive system

  • M. F. Sweeney
  • N. Hasan
  • A. M. Soto
  • C. SonnenscheinEmail author


Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically “endocrine disruptors,” that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.


Endocrine disruption Developmental origins of adult disease Carcinogenesis Male reproduction Prostate cancer Testicular cancer Male breast cancer Tissue organization field theory 



Anogenital distance


Androgen receptor


Bisphenol A


Benign prostatic hyperplasia


Carcinoma in situ


Dibutyl phthalate






Diethylhexyl phthalate




Endocrine disrupting chemical


Estrogen receptor


Insulin-like growth factor 3


Male breast cancer


Mono(2-ethylhexyl) phthalate


Mammary gland




Non-monotonic dose response


Prostate cancer


Polychlorinated biphenyls




Primordial germ cells


Somatic mutation theory of carcinogenesis


Testicular cancer






Testicular dysgenesis syndrome


Testicular germ cell tumors


Tissue organization field theory of carcinogenesis



This work was supported by Award Number R01ES08314 from the National Institute of Environmental Health Sciences. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to Lucia Speroni and Cheryl Schaeberle for their critical reading of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Global cancer facts & figures 3rd edn. Am. Cancer Soc Atlanta. 2015.Google Scholar
  2. 2.
    Paulozzi LJ. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect. 1999;107(4):297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Swan SH, Elkin EP, Fenster L. The question of declining sperm density revisited: An analysis of 101 studies published 1934–1996. Environ Health Perspect. 2000;108(10):961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sharpe RM, Skakkebaek NE. Are Oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993;341(8857):1392–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Colborn T, Clement C. Chemically-induced alterations in sexual and functional development: the wildlife/human connection. Princeton: Princeton Scientific Publishing; 1992. p. 1–8.Google Scholar
  6. 6.
    Colborn T, Vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from the endocrine society. Endocrinology. 2012;153(9):4097–110.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001;81(3):1269–304.PubMedGoogle Scholar
  9. 9.
    Rouiller-Fabre V, Guerquin MJ, N’Tumba-Byn T, Muczynski V, Moison D, Tourpin S, et al. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: A gapped landscape. Front Endocrinol (Lausanne). 2015;6:58.Google Scholar
  10. 10.
    Rouiller-Fabre V, Habert R, Livera G. Effects of endocrine disruptors on the human fetal testis. Ann Endocrinol (Paris). 2014;75(2):54–7.CrossRefGoogle Scholar
  11. 11.
    Latini G, Scoditti E, Verrotti A, De Felice C, Massaro M. Peroxisome proliferator-activated receptors as mediators of phthalate-induced effects in the male and female reproductive tract: Epidemiological and experimental evidence. PPAR Res. 2008;2008:359267.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite p, p’-DDE is a potent androgen receptor antagonist. Nature. 1995;375(6532):581–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol a as an antagonist. J Clin Endocrinol Metab. 2002;87(11):5185–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Wetherill YB, Fisher NL, Staubach A, Danielsen M, de Vere White RW, Knudsen KE. Xenoestrogen action in prostate cancer: Pleiotropic effects dependent on androgen receptor status. Cancer Res. 2005;65(1):54–65.PubMedGoogle Scholar
  15. 15.
    Silva E, Rajapakse N, Kortenkamp A. Something from “nothing”--eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol. 2002;36(8):1751–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Nagel SC, Vom Saal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997;105(1):70–6.Google Scholar
  17. 17.
    Soto AM, Brisken C, Schaeberle C, Sonnenschein C. Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia. 2013;18(2):199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: Structural diversity of ligands. Toxicol Sci. 2000;54(1):138–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Usmani KA, Rose RL, Hodgson E. Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metab Dispos. 2003;31(4):384–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Usmani KA, Cho TM, Rose RL, Hodgson E. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metab Dispos. 2006;34(9):1606–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol. 2011;31(3):337–43.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Martinez-Arguelles DB, Culty M, Zirkin BR, Papadopoulos V. In utero exposure to di-(2-ethylhexyl) phthalate decreases mineralocorticoid receptor expression in the adult testis. Endocrinology. 2009;150(12):5575–85.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Prins GS, Tang WY, Belmonte J, Ho SM. Perinatal exposure to oestradiol and bisphenol a alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clin Pharmacol Toxicol. 2008;102(2):134–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pelch KE, Tokar EJ, Merrick BA, Waalkes MP. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium. Toxicol Appl Pharmacol. 2015;286(3):159–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010;5(9):e13100.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wu S, Zhu J, Li Y, Lin T, Gan L, Yuan X, et al. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol. 2010;106(2):118–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson AM, Carter KW, Anderson D, Wise MJ. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: Implications for endocrine disruptor modes of action. PLoS One. 2012;7(4):e34158.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Clement TM, Savenkova MI, Settles M, Anway MD, Skinner MK. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure. Reprod Toxicol. 2010;30(3):353–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lopez-Casas PP, Mizrak SC, Lopez-Fernandez LA, Paz M, de Rooij DG, del Mazo J. The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis. Reprod Toxicol. 2012;33(1):106–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Stouder C, Paoloni-Giacobino A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction. 2010;139(2):373–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Stouder C, Paoloni-Giacobino A. Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction. 2011;141(2):207–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Del-Mazo J, Brieno-Enriquez MA, Garcia-Lopez J, Lopez-Fernandez LA, De-Felici M. Endocrine disruptors, gene deregulation and male germ cell tumors. Int J Dev Biol. 2013;57(2–4):225–39.PubMedCrossRefGoogle Scholar
  33. 33.
    Choi JS, Oh JH, Park HJ, Choi MS, Park SM, Kang SJ, et al. MiRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol. Reprod Biol Endocrinol. 2011;9:126.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Watson CJ, Khaled WT. Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development. 2008;135(6):995–1003.PubMedCrossRefGoogle Scholar
  35. 35.
    Singh M, Jha R, Melamed J, Shapiro E, Hayward SW, Lee P. Stromal androgen receptor in prostate development and cancer. Am J Pathol. 2014;184(10):2598–607.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):46–54.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci. 2004;117(Pt 8):1495–502.PubMedCrossRefGoogle Scholar
  38. 38.
    Grossfeld GD, Hayward SW, TLsty TD, Cunha GR. The role of stroma in prostatic carcinogenesis. Endocr Relat Cancer. 1998;5:253–70.CrossRefGoogle Scholar
  39. 39.
    Ramos JG, Varayoud J, Sonnenschein C, Soto AM, De Toro Munoz M, Luque EH. Prenatal exposure to low doses of bisphenol A alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol Reprod. 2001;65(4):1271–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-a alters development of the fetal mouse mammary gland. Endocrinology. 2007;148(1):116–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wadia PR, Cabaton NJ, Borrero MD, Rubin BS, Sonnenschein C, Shioda T, et al. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One. 2013;8(5):e63902.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Markey CM, Luque EH, De Toro Munoz M, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod. 2001;65(4):1215–23.PubMedGoogle Scholar
  43. 43.
    Ko K, Moore RW, Peterson RE. Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 2004;196(1):149–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Lew BJ, Manickam R, Lawrence BP. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol Reprod. 2011;84(6):1094–102.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hendry 3rd WJ, Weaver BP, Naccarato TR, Khan SA. Differential progression of neonatal diethylstilbestrol-induced disruption of the hamster testis and seminal vesicle. Reprod Toxicol. 2006;21(3):225–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Mao Y, Baum B. Tug of war--the influence of opposing physical forces on epithelial cell morphology. Dev Biol. 2015;401(1):92–102.PubMedCrossRefGoogle Scholar
  47. 47.
    Kim HY, Varner VD, Nelson CM. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development. 2013;140(15):3146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gjorevski N, Nelson CM. Branch formation during organ development. Wiley Interdiscip Rev Syst Biol Med. 2010;2(6):734–41.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Latacha KS, Remond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA. Role of actin polymerization in bending of the early heart tube. Dev Dyn. 2005;233(4):1272–86.PubMedCrossRefGoogle Scholar
  50. 50.
    Barnes C, Speroni L, Quinn KP, Montevil M, Saetzler K, Bode-Animashaun G, et al. From single cells to tissues: Interactions between the matrix and human breast cells in real time. PLoS One. 2014;9(4):e93325.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Spoerl E, Zubaty V, Raiskup-Wolf F, Pillunat LE. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. Br J Ophthalmol. 2007;91(11):1547–50.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hillebrand U, Hausberg M, Lang D, Stock C, Riethmuller C, Callies C, et al. How steroid hormones act on the endothelium--insights by atomic force microscopy. Pflugers Arch. 2008;456(1):51–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, et al. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biol. 2004;23(5):323–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Speroni L, Whitt GS, Xylas J, Quinn KP, Jondeau-Cabaton A, Barnes C, et al. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model. Tissue Eng C Methods. 2014;20(1):42–51.CrossRefGoogle Scholar
  55. 55.
    Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem. 2013;288(18):12722–32.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Martin LJ, Boyd NF. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: Hypotheses based on epidemiological evidence. Breast Cancer Res. 2008;10(1):201.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sarang-Sieminski AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys Biol. 2011;8(2):026013.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant’agnese PA, Joseph JV, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008;4(4–5):213–25.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang X, Wang J, Liu Y, Zong H, Che X, Zheng W, et al. Alterations in mechanical properties are associated with prostate cancer progression. Med Oncol. 2014;31(3):876.PubMedCrossRefGoogle Scholar
  61. 61.
    Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36 Suppl 1:S232–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Gilbert SF. Ecological developmental biology: Developmental biology meets the real world. Dev Biol. 2001;233(1):1–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Weinberg RA. One renegade cell: How cancer begins. New York, NY: Basic Books; 1998.Google Scholar
  64. 64.
    Soto AM, Sonnenschein C. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat Rev Endocrinol. 2010;6(7):363–70.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Soto AM, Sonnenschein C. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays. 2011;33(5):332–40.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Herbst AL, Anderson D. Clear cell adenocarcinoma of the vagina and cervix secondary to intrauterine exposure to diethylstilbestrol. Semin Surg Oncol. 1990;6(6):343–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Palmer JR, Boggs DA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter WC, et al. Prenatal DES exposure in relation to breast size. Cancer Causes Control. 2013;24(9):1757–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Sonnenschein C, Davis B, Soto AM. A novel pathogenic classification of cancers. Cancer Cell Int. 2014;14(1):113.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Soto AM, Sonnenschein C. Regulation of cell proliferation: The negative control perspective. Ann N Y Acad Sci. 1991;628:412–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Soto AM, Murai JT, Siiteri PK, Sonnenschein C. Control of cell proliferation: Evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 1986;46(5):2271–5.PubMedGoogle Scholar
  71. 71.
    Sonnenschein C, Olea N, Pasanen ME, Soto AM. Negative controls of cell proliferation: Human prostate cancer cells and androgens. Cancer Res. 1989;49(13):3474–81.PubMedGoogle Scholar
  72. 72.
    Geck P, Maffini MV, Szelei J, Sonnenschein C, Soto AM. Androgen-induced proliferative quiescence in prostate cancer cells: The role of AS3 as its mediator. Proc Natl Acad Sci U S A. 2000;97(18):10185–90.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bruchovsky N, Lesser B, Van Doorn E, Craven S. Hormonal effects on cell proliferation in rat prostate. Vitam Horm. 1975;33:61–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Sonnenschein C, Soto AM. Pituitary uterotrophic effect in the estrogen-dependent growth of the rat uterus. J Steroid Biochem. 1978;9(6):533–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Vandenberg LN, Wadia PR, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. The mammary gland response to estradiol: Monotonic at the cellular level, non-monotonic at the tissue-level of organization? J Steroid Biochem Mol Biol. 2006;101(4–5):263–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Schweizer MT, Antonarakis ES, Wang H, Ajiboye AS, Spitz A, Cao H, et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: Results from a pilot clinical study. Sci Transl Med. 2015;7(269):269ra2.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Denmeade SR, Isaacs JT. Bipolar androgen therapy: The rationale for rapid cycling of supraphysiologic androgen/ablation in men with castration resistant prostate cancer. Prostate. 2010;70(14):1600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gleave M, Goldenberg SL, Bruchovsky N, Rennie P. Intermittent androgen suppression for prostate cancer: Rationale and clinical experience. Prostate Cancer Prostatic Dis. 1998;1(6):289–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Vom Saal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC, et al. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997;94(5):2056–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Alworth LC, Howdeshell KL, Ruhlen RL, Day JK, Lubahn DB, Huang TH, et al. Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: Effects of low versus high doses. Toxicol Appl Pharmacol. 2002;183(1):10–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Welshons WV, Nagel SC, Thayer KA, Judy BM, Vom Saal FS. Low-dose bioactivity of xenoestrogens in animals: Fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health. 1999;15(1–2):12–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Vandenberg LN. Low-dose effects of hormones and endocrine disruptors. Vitam Horm. 2014;94:129–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, et al. Non-monotonic dose–response relationships and endocrine disruptors: A qualitative method of assessment. Environ Health. 2015;14:13.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vandenberg LN. Non-monotonic dose responses in studies of endocrine disrupting chemicals: Bisphenol a as a case study. Dose Response. 2014;12(2):259–76.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bay K, Asklund C, Skakkebaek NE, Andersson A-M. Testicular dysgenesis syndrome: Possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab. 2006;20(1):77–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Prins GS. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression. Endocrinology. 1992;130(6):3703–14.PubMedGoogle Scholar
  87. 87.
    Saffarini CM, McDonnell-Clark EV, Amin A, Huse SM, Boekelheide K. Developmental exposure to estrogen alters differentiation and epigenetic programming in a human fetal prostate xenograft model. PLoS One. 2015;10(3):e0122290.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wu CP, Gu FL. The prostate in eunuchs. Prog Clin Biol Res. 1991;370:249–55.PubMedGoogle Scholar
  89. 89.
    Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, et al. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987;8(3):338–62.PubMedCrossRefGoogle Scholar
  90. 90.
    He WW, Kumar MV, Tindall DJ. A frame-shift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular-feminized mouse. Nucleic Acids Res. 1991;19(9):2373–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brown TR, Lubahn DB, Wilson EM, Joseph DR, French FS, Migeon CJ. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome. Proc Natl Acad Sci U S A. 1988;85(21):8151–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Takeda H, Lasnitzki I, Mizuno T. Analysis of prostatic bud induction by brief androgen treatment in the fetal rat urogenital sinus. J Endocrinol. 1986;110(3):467–70.PubMedCrossRefGoogle Scholar
  93. 93.
    George FW, Wilson JD. Sex determination and differentiation. In: Neill EKAJD, editor. The physiology of reproduction. New York: Raven; 1994. p. 3–29.Google Scholar
  94. 94.
    Swyer GIM. Post-natal growth changes in the human prostate. J Anat. 1944;78(Pt 4):130–45.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Cowin PA, Foster PMD, Risbridger GP. Endocrine disruption in the male. In: Gore AC, editor. Endrocrine-disrupting chemicals: From basic research to clinical practice. Totowa, NJ: Humana Press Inc; 2007. p. 33–62.CrossRefGoogle Scholar
  96. 96.
    Jarred RA, Cancilla B, Prins GS, Thayer KA, Cunha GR, Risbridger GP. Evidence that estrogens directly alter androgen-regulated prostate development. Endocrinology. 2000;141(9):3471–7.PubMedGoogle Scholar
  97. 97.
    Price D. Normal development of the prostate and seminal vesicles of the rat with a study of experimental postnatal modifications. Am J Anat. 1936;60(1):79–127.CrossRefGoogle Scholar
  98. 98.
    Weihua Z, Makela S, Andersson LC, Salmi S, Saji S, Webster JI, et al. A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci U S A. 2001;98(11):6330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Santti R, Newbold RR, Makela S, Pylkkanen L, McLachlan JA. Developmental estrogenization and prostatic neoplasia. Prostate. 1994;24(2):67–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Rohrmann S, Nelson WG, Rifai N, Brown TR, Dobs A, Kanarek N, et al. Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab. 2007;92(7):2519–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Henderson BE, Bernstein L, Ross RK, Depue RH, Judd HL. The early in utero oestrogen and testosterone environment of blacks and whites: Potential effects on male offspring. Br J Cancer. 1988;57(2):216–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: A review of current evidence. JAMA. 2014;311(11):1143–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Dalgaard JB, Giertsen JC. Primary carcinoma of the seminal vesicle. Acta Pathol Microbiol. 1956;39(4):255–67.CrossRefGoogle Scholar
  104. 104.
    Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Lett. 2015;367(1):12–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Ahmed A, Ali S, Sarkar FH. Advances in androgen receptor targeted therapy for prostate cancer. J Cell Physiol. 2014;229(3):271–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Finkelstein JS, Lee H, Burnett-Bowie S-AM, Pallais CJ, Yu EW, Borges LF, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(11):1011–22.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Driscoll SG, Taylor SH. Effects of prenatal maternal estrogen on the male urogenital system. Obstet Gynecol. 1980;56(5):537–42.PubMedGoogle Scholar
  108. 108.
    Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol a correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One. 2014;9(3):e90332.Google Scholar
  109. 109.
    Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, et al. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res. 2008;68(6):2024–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, et al. Bisphenol a promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology. 2014;155(3):805–17.Google Scholar
  111. 111.
    Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104 Suppl 4:741–803.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zeegers MP, Friesema IH, Goldbohm RA, van den Brandt PA. A prospective study of occupation and prostate cancer risk. J Occup Environ Med. 2004;46(3):271–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Prince MM, Ruder AM, Hein MJ, Waters MA, Whelan EA, Nilsen N, et al. Mortality and exposure response among 14,458 electrical capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs). Environ Health Perspect. 2006;114(10):1508–14.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Grandjean P, Gronlund C, Kjaer IM, Jensen TK, Sorensen N, Andersson AM, et al. Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls. Reprod Toxicol. 2012;34(4):498–503.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr Rev. 2009;30(4):293–342.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, Barry KH, et al. Risk of total and aggressive prostate cancer and pesticide use in the agricultural health study. Am J Epidemiol. 2013;177(1):59–74.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Leav I, Ho SM, Ofner P, Merk FB, Kwan PW, Damassa D. Biochemical alterations in sex hormone-induced hyperplasia and dysplasia of the dorsolateral prostates of noble rats. J Natl Cancer Inst. 1988;80(13):1045–53.PubMedCrossRefGoogle Scholar
  118. 118.
    Ho SM, Tang WY, De Frausto Belmonte J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66(11):5624–32.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Brandt JZ, Silveira LT, Grassi TF, Anselmo-Franci JA, Favaro WJ, Felisbino SL, et al. Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol a exposure on the prostate gland of male F1 rats. Reprod Toxicol. 2014;43:56–66.PubMedCrossRefGoogle Scholar
  120. 120.
    Boberg J, Johansson HK, Hadrup N, Dreisig K, Berthelsen L, Almstrup K, et al. Perinatal exposure to mixtures of anti-androgenic chemicals causes proliferative lesions in rat prostate. Prostate. 2015;75(2):126–40.PubMedCrossRefGoogle Scholar
  121. 121.
    Gray Jr LE, Ostby J, Monosson E, Kelce WR. Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health. 1999;15(1–2):48–64.PubMedCrossRefGoogle Scholar
  122. 122.
    Ito N, Nagasaki H, Arai M, Makiura S, Sugihara S, Hirao K. Histopathologic studies on liver tumorigenesis induced in mice by technical polychlorinated biphenyls and its promoting effect on liver tumors induced by benzene hexachloride. J Natl Cancer Inst. 1973;51(5):1637–46.PubMedGoogle Scholar
  123. 123.
    Ahlborg, U.G., Hanberg, A. and Kenne, K. Risk assessment of polychlorinated biphenyls (PCBs). In Nord. Institute Environmental Medicine Karolinska Institutet, 1992.Google Scholar
  124. 124.
    Brevini TA, Lonergan P, Cillo F, Francisci C, Favetta LA, Fair T, et al. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol Reprod Dev. 2002;63(4):510–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Cillo F, de Eguileor M, Gandolfi F, Brevini TA. Aroclor-1254 affects mRNA polyadenylation, translational activation, cell morphology, and DNA integrity of rat primary prostate cells. Endocr Relat Cancer. 2007;14(2):257–66.PubMedCrossRefGoogle Scholar
  126. 126.
    Dieckmann KP, Pichlmeier U. Clinical epidemiology of testicular germ cell tumors. World J Urol. 2004;22(1):2–14.PubMedCrossRefGoogle Scholar
  127. 127.
    Soto AM, Maffini MV, Sonnenschein C. Neoplasia as development gone awry: The role of endocrine disruptors. Int J Androl. 2008;31(2):288–93.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990;348(6300):450–2.PubMedCrossRefGoogle Scholar
  129. 129.
    Kassim NM, McDonald SW, Reid O, Bennett NK, Gilmore DP, Payne AP. The effects of pre- and postnatal exposure to the Nonsteroidal antiandrogen Flutamide on testis descent and morphology in the albino swiss rat. J Anat. 1997;190(Pt 4):577–88.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol. 2004;270(1):1–18.PubMedCrossRefGoogle Scholar
  131. 131.
    Baskin LS. Hypospadias and urethral development. J Urol. 2000;163(3):951–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Skakkebaek NE, Meyts R-DE, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–78.PubMedCrossRefGoogle Scholar
  133. 133.
    McLachlan JA, Newbold RR, Bullock B. Reproductive tract lesions in male mice exposed prenatally to diethylstilbestrol. Science. 1975;190(4218):991–2.PubMedCrossRefGoogle Scholar
  134. 134.
    Mahawong P, Sinclair A, Li Y, Schlomer B, Rodriguez Jr E, Ferretti MM, et al. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains. Differentiation. 2014;88(2–3):51–69.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Baroni, C., Magrini, U., Martinazzi, M. and Bertoli, G., Testicular Leydig cell tumourigenesis by diethylstilbestrol in the BALB/c mouse: Histologic and histochemical study. Eur J Cancer. 1966.Google Scholar
  136. 136.
    Giannandrea F, Paoli D, Figa-Talamanca I, Lombardo F, Lenzi A, Gandini L. Effect of endogenous and exogenous hormones on testicular cancer: The epidemiological evidence. Int J Dev Biol. 2013;57(2–4):255–63.PubMedCrossRefGoogle Scholar
  137. 137.
    Bray F, Richiardi L, Ekbom A, Pukkala E, Cuninkova M, Moller H. Trends in testicular cancer incidence and mortality in 22 European countries: Continuing increases in incidence and declines in mortality. Int J Cancer. 2006;118(12):3099–111.PubMedCrossRefGoogle Scholar
  138. 138.
    Stevens LC. Spontaneous and experimentally induced testicular teratomas in mice. Cell Differ. 1984;15(2–4):69–74.PubMedCrossRefGoogle Scholar
  139. 139.
    Almstrup K, Sonne SB, Hoei-Hansen CE, Ottesen AM, Nielsen JE, Skakkebaek NE, et al. From embryonic stem cells to testicular germ cell cancer-- should we be concerned? Int J Androl. 2006;29(1):211–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Peng X, Zeng X, Peng S, Deng D, Zhang J. The association risk of male subfertility and testicular cancer: A systematic review. PLoS One. 2009;4(5):e5591.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Martin OV, Shialis T, Lester JN, Scrimshaw MD, Boobis AR, Voulvoulis N. Testicular dysgenesis syndrome and the estrogen hypothesis: A quantitative meta-analysis. Environ Health Perspect. 2008;116(2):149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Strohsnitter WC, Noller KL, Hoover RN, Robboy SJ, Palmer JR, Titus-Ernstoff L, et al. Cancer risk in men exposed in utero to diethylstilbestrol. J Natl Cancer Inst. 2001;93(7):545–51.PubMedCrossRefGoogle Scholar
  143. 143.
    Choi H, Kim J, Im Y, Lee S, Kim Y. The association between some endocrine disruptors and hypospadias in biological samples. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(13):2173–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Chevalier N, Brucker-Davis F, Lahlou N, Coquillard P, Pugeat M, Pacini P, et al. A negative correlation between insulin-like peptide 3 and bisphenol a in human cord blood suggests an effect of endocrine disruptors on testicular descent during fetal development. Hum Reprod. 2015;30(2):447–53.PubMedCrossRefGoogle Scholar
  145. 145.
    Hardell L, Van Bavel B, Lindstrom G, Carlberg M, Eriksson M, Dreifaldt AC, et al. Concentrations of polychlorinated biphenyls in blood and the risk for testicular cancer. Int J Androl. 2004;27(5):282–90.PubMedCrossRefGoogle Scholar
  146. 146.
    McGlynn KA, Quraishi SM, Graubard BI, Weber JP, Rubertone MV, Erickson RL. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst. 2008;100(9):663–71.PubMedCrossRefGoogle Scholar
  147. 147.
    Le Cornet C, Fervers B, Oksbjerg Dalton S, Feychting M, Pukkala E, Tynes T, et al. Testicular germ cell tumours and parental occupational exposure to pesticides: A register-based case–control study in the Nordic countries (NORD-TEST study). Occup Environ Med. 2015;72(11):805–11.PubMedCrossRefGoogle Scholar
  148. 148.
    Paoli D, Giannandrea F, Gallo M, Turci R, Cattaruzza MS, Lombardo F, et al. Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk. J Endocrinol Investig. 2015;38(7):745–52.CrossRefGoogle Scholar
  149. 149.
    Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Miao M, Yuan W, He Y, Zhou Z, Wang J, Gao E, et al. In utero exposure to bisphenol-a and anogenital distance of male offspring. Birth Defects Res A Clin Mol Teratol. 2011;91(10):867–72.PubMedCrossRefGoogle Scholar
  151. 151.
    Dean A, Sharpe RM. Clinical review: Anogenital distance or digit length ratio as measures of fetal androgen exposure: Relationship to male reproductive development and its disorders. J Clin Endocrinol Metab. 2013;98(6):2230–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Ge RS, Chen GR, Tanrikut C, Hardy MP. Phthalate ester toxicity in Leydig cells: Developmental timing and dosage considerations. Reprod Toxicol. 2007;23(3):366–73.PubMedCrossRefGoogle Scholar
  153. 153.
    Mylchreest E, Wallace DG, Cattley RC, Foster PM. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 2000;55(1):143–51.PubMedCrossRefGoogle Scholar
  154. 154.
    Perez-Martinez C, Garcia-Iglesias MJ, Ferreras-Estrada MC, Bravo-Moral AM, Espinosa-Alvarez J, Escudero-Diez A. Effects of in-utero exposure to zeranol or diethylstilboestrol on morphological development of the fetal testis in mice. J Comp Pathol. 1996;114(4):407–18.PubMedCrossRefGoogle Scholar
  155. 155.
    Brouwer A, Ahlborg UG, van Leeuwen FX, Feeley MM. Report of the WHO working group on the assessment of health risks for human infants from exposure to PCDDs, PCDFs and PCBs. Chemosphere. 1998;37(9–12):1627–43.PubMedCrossRefGoogle Scholar
  156. 156.
    National Toxicology Program. Carcinogenesis bioassay of bisphenol a (CAS No. 80-05-7) in F344 rats and B6C3F1 mice (feed study). Natl Toxicol Program Tech Rep Ser. 1982;215:1–116.Google Scholar
  157. 157.
    Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA. A review of the carcinogenic potential of bisphenol A. Reprod Toxicol. 2015;S0890-6238(15):30024–1.Google Scholar
  158. 158.
    Nanjappa MK, Simon L, Akingbemi BT. The industrial chemical bisphenol a (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol Reprod. 2012;86(5):135. 1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    LaRocca J, Boyajian A, Brown C, Smith SD, Hixon M. Effects of in utero exposure to bisphenol a or diethylstilbestrol on the adult male reproductive system. Birth Defects Res B Dev Reprod Toxicol. 2011;92(6):526–33.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Vrooman LA, Oatley JM, Griswold JE, Hassold TJ, Hunt PA. Estrogenic exposure alters the spermatogonial stem cells in the developing testis, permanently reducing crossover levels in the adult. PLoS Genet. 2015;11(1):e1004949.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Tanaka M, Nakaya S, Katayama M, Leffers H, Nozawa S, Nakazawa R, et al. Effect of prenatal exposure to bisphenol a on the serum testosterone concentration of rats at birth. Hum Exp Toxicol. 2006;25(7):369–73.PubMedCrossRefGoogle Scholar
  162. 162.
    Kobayashi K, Miyagawa M, Wang RS, Sekiguchi S, Suda M, Honma T. Effects of in utero and lactational exposure to bisphenol a on somatic growth and anogenital distance in F1 rat offspring. Ind Health. 2002;40(4):375–81.PubMedCrossRefGoogle Scholar
  163. 163.
    Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol a exposure. Reprod Toxicol. 2007;23(3):383–90.Google Scholar
  164. 164.
    Iuanow E, Kettler M, Slanetz PJ. Spectrum of disease in the male breast. AJR Am J Roentgenol. 2011;196(3):W247–59.PubMedCrossRefGoogle Scholar
  165. 165.
    Vandenberg LN, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. The male mammary gland: A target for the xenoestrogen bisphenol a. Reprod Toxicol. 2013;37:15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Cardy RH. Sexual dimorphism of the normal rat mammary gland. Vet Pathol. 1991;28(2):139–45.PubMedCrossRefGoogle Scholar
  167. 167.
    Khan MH, Allerton R, Pettit L. Hormone therapy for breast cancer in men. Clin Breast Cancer. 2015;15(4):245–50.PubMedCrossRefGoogle Scholar
  168. 168.
    What are the key statistics about breast cancer in men? 2015 02/26/2015 [cited 2015; Available from:
  169. 169.
    Fentiman I. Male breast cancer: A review. Ecancermedicalscience. 2009;3:140.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Maidment SL. Question 2. Which medications effectively reduce pubertal gynaecomastia? Arch Dis Child. 2010;95(3):237–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Brinton LA, Cook MB, McCormack V, Johnson KC, Olsson H, Casagrande JT, et al. Anthropometric and hormonal risk factors for male breast cancer: Male breast cancer pooling project results. J Natl Cancer Inst. 2014;106(3):djt465.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Soto AM, Sonnenschein C. Endocrine disruptors: DDT, endocrine disruption and breast cancer. Nat Rev Endocrinol. 2015;11(9):507–8.PubMedPubMedCentralGoogle Scholar
  173. 173.
    McClure J, Higgins CC. Bilateral carcinoma of male breast after estrogen therapy. J Am Med Assoc. 1951;146(1):7–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Ruckart PZ, Bove FJ, Shanley 3rd E, Maslia M. Evaluation of contaminated drinking water and male breast cancer at marine corps base camp Lejeune north Carolina: A case control study. Environ Health. 2015;14:74.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Braunstein GD. Environmental gynecomastia. Endocr Pract. 2008;14(4):409–11.PubMedCrossRefGoogle Scholar
  176. 176.
    Harrington JM, Stein GF, Rivera RO, de Morales AV. The occupational hazards of formulating oral contraceptives--a survey of plant employees. Arch Environ Health. 1978;33(1):12–5.PubMedCrossRefGoogle Scholar
  177. 177.
    Brody SA, Loriaux DL. Epidemic of gynecomastia among Haitian refugees: Exposure to an environmental antiandrogen. Endocr Pract. 2003;9(5):370–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Clemons J, Glode LM, Gao D, Flaig TW. Low-dose diethylstilbestrol for the treatment of advanced prostate cancer. Urol Oncol. 2013;31(2):198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nebesio TD, Eugster EA. Current concepts in normal and abnormal puberty. Curr Probl Pediatr Adolesc Health Care. 2007;37(2):50–72.PubMedCrossRefGoogle Scholar
  180. 180.
    Durmaz E, Ozmert EN, Erkekoglu P, Giray B, Derman O, Hincal F, et al. Plasma phthalate levels in pubertal gynecomastia. Pediatrics. 2010;125(1):e122–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Delclos KB, Bucci TJ, Lomax LG, Latendresse JR, Warbritton A, Weis CC, et al. Effects of dietary genistein exposure during development on male and female CD (Sprague–Dawley) rats. Reprod Toxicol. 2001;15(6):647–63.PubMedCrossRefGoogle Scholar
  182. 182.
    Latendresse JR, Bucci TJ, Olson G, Mellick P, Weis CC, Thorn B, et al. Genistein and Ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague–Dawley rats. Reprod Toxicol. 2009;28(3):342–53.PubMedCrossRefGoogle Scholar
  183. 183.
    Tate-Ostroff BA, Bridges RS. Nipple development and pup-induced prolactin release in male rats treated prenatally with the antiandrogen Flutamide. Psychoneuroendocrinology. 1988;13(4):309–16.PubMedCrossRefGoogle Scholar
  184. 184.
    You L, Sar M, Bartolucci EJ, McIntyre BS, Sriperumbudur R. Modulation of mammary gland development in prepubertal male rats exposed to genistein and methoxychlor. Toxicol Sci. 2002;66(2):216–25.PubMedCrossRefGoogle Scholar
  185. 185.
    Wang XJ, Bartolucci-Page E, Fenton SE, You L. Altered mammary gland development in male rats exposed to genistein and methoxychlor. Toxicol Sci. 2006;91(1):93–103.PubMedCrossRefGoogle Scholar
  186. 186.
    Diamanti-Kandarakis E, B. J., H. R. Giudice L. C., Prins G. S., Soto A. M., and a. G. A. C. Zoeller R. T. Endocrine disrupting chemicals: an endocrine society scientific statement. Endocrine reviews 2015; Available from:
  187. 187.
    Soto AM, Sonnenschein C. In: Naz RK, editor. Estrogens, xenoestrogens, and the development of neoplasms in endocrine disruptors: Effects in male and female reproductive systems. Boca Raton: CRC Press; 1999. p. 125–63.Google Scholar
  188. 188.
    Waddell WJ. Dose–response curves in chemical carcinogenesis. Nonlinearity Biol Toxicol Med. 2004;2(1):11–20.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Soto, A. M., Michaelson, C. L., Prechtl, N. L., and Sonnenschein, C., In vitro endocrine disruptor screening. Environmental toxicology and risk assessment. Vol. 8, West Conshohocken, PA: American Society for Testing and Materials; 1999.Google Scholar
  190. 190.
    Villalobos M, Olea N, Brotons JA, Olea-Serrano MF, De Almodovar Ruiz JM, Pedraza V. The E-screen assay: a comparison of different MCF7 cell stocks. Environ Health Perspect. 1995;103(9):844–50.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs Jr DR, Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Zoeller RT, Bergman A, Becher G, Bjerregaard P, Bornman R, Brandt I, et al. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health. 2015;14:118.CrossRefGoogle Scholar
  193. 193.
    Vom Saal FS, Akingbemi BT, Belcher SM, Crain DA, Crews D, Guidice LC, et al. Flawed experimental design reveals the need for guidelines requiring appropriate positive controls in endocrine disruption research. Toxicol Sci. 2010;115(2):612–3. author reply 614–20.PubMedCrossRefGoogle Scholar
  194. 194.
    Myers JP, Vom Saal FS, Akingbemi BT, Arizono K, Belcher S, Colborn T, et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ Health Perspect. 2009;117(3):309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    N’Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud’homme SM, et al. Differential effects of bisphenol a and diethylstilbestrol on human, rat and mouse fetal Leydig cell function. PLoS One. 2012;7(12):e51579.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, et al. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod. 2012;27(5):1451–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, et al. Toxicity evaluation of bisphenol a administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci. 2014;139(1):174–97.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Vom Saal FS, Welshons WV. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure. Mol Cell Endocrinol. 2014;398(1–2):101–13.PubMedCrossRefGoogle Scholar
  199. 199.
    Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013;121(9):1040–6.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. F. Sweeney
    • 1
  • N. Hasan
    • 2
  • A. M. Soto
    • 1
    • 2
    • 3
  • C. Sonnenschein
    • 1
    • 2
    • 3
    Email author
  1. 1.Program in Genetics, Sackler School of Graduate Biomedical SciencesTufts UniversityBostonUSA
  2. 2.Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical SciencesTufts UniversityBostonUSA
  3. 3.Department of Integrative Physiology & PathobiologyTufts UniversityBostonUSA

Personalised recommendations