Advertisement

The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives

  • Honghui Guo
  • Wenhua Ling
Article

Abstract

With the dramatically increasing prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide, there is an urgent need for new strategies to combat the growing epidemic of these metabolic diseases. Diet is an essential factor affecting the development of and risk for obesity and T2DM and it can either help or hurt. In searching for preventative and therapeutic strategies, it is therefore advantageous to consider the potential of certain foods and their bioactive compounds to reverse or prevent the pathogenic processes associated with metabolic disease. Anthocyanins are naturally occurring polyphenolic compounds abundant in dark-colored fruits, vegetables and grains. Epidemiological studies suggest that increased consumption of anthocyanins lowers the risk of T2DM. Many in vitro and in vivo studies also reveal an array of mechanisms through which anthocyanins could prevent or reverse obesity- and T2DM-related pathologies including promotion of antioxidant and anti-inflammatory activities, improvement of insulin resistance, and hypolipidemic and hypoglycemic actions. Here, we summarize the data on anthocyanin-mediated protection against obesity and T2DM and the underlying mechanisms. Further population-based and long-term human intervention studies are necessary to ultimately evaluate the use of anthocyanins for protection/prevention against the development of obesity and T2DM.

Keywords

Anthocyanin Inflammation Obesity Oxidative stress Type 2 diabetes mellitus 

Abbreviations

CAN

Anthocyanin

ACD

Anthocyanidin

AMPK

AMP-activated protein kinase

BMI

Body mass index

C3G

Cyanidin-3-O-β-glucoside

CETP

Cholesteryl ester transfer protein

CVD

Cardiovascular disease

GLUT4

Glucose transporter 4

GSH

Glutathione

HDL

High-density lipoproteins

HFD

High fat diet

hs-CRP

High-sensitivity C-reactive protein

IL-8

Interleukin-8

LDL

Low-density lipoproteins

LPS

Lipopolysaccharide

MAPK

Mitogen-activated protein kinase

MCP-1

Monocyte chemotactic protein 1

MMD

Monocyte to macrophage differentiation associator

NF-Κb

Nuclear factor κB

PPARγ

Peroxisome proliferator-activated receptor γ

ROS

Reactive oxygen species

SOD

Superoxide dismutase

T2DM

Type 2 diabetes mellitus

TNFα

Tumor necrosis factor α

Notes

Acknowledgments

This work was supported by grants from the National Basic Research Program (973 Program, 2012CB517506) and the National Natural Science Foundation (81172655, 81372994).

Conflict of interest

Authors declare no conflict of interest or financial relationship with the organization that sponsored some of the research described in this review article.

References

  1. 1.
    Ma RC, Chan JC. Type 2 diabetes in east Asians: Similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281:64–91. doi: 10.1111/nyas.12098.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–20. doi: 10.1056/NEJMoa0801891.CrossRefPubMedGoogle Scholar
  3. 3.
    Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–105. doi: 10.1056/NEJM199910073411501.CrossRefPubMedGoogle Scholar
  4. 4.
    Andersen CJ, Fernandez ML. Dietary strategies to reduce metabolic syndrome. Rev Endocr Metab Disord. 2013;14(3):241–54. doi: 10.1007/s11154-013-9251-y.CrossRefPubMedGoogle Scholar
  5. 5.
    He K, Hu FB, Colditz GA, Manson JE, Willett WC, Liu S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int J Obes Relat Metab Disord. 2004;28(12):1569–74. doi: 10.1038/sj.ijo.0802795.CrossRefPubMedGoogle Scholar
  6. 6.
    Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3(4):506–16. doi: 10.3945/an.112.002154.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Munir KM, Chandrasekaran S, Gao F, Quon MJ. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: Therapeutic implications for diabetes and its cardiovascular complications. Am J Physiol Endocrinol Metab. 2013;305(6):E679–86. doi: 10.1152/ajpendo.00377.2013.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Timmers S, Hesselink MK, Schrauwen P. Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann N Y Acad Sci. 2013;1290:83–9. doi: 10.1111/nyas.12185.CrossRefPubMedGoogle Scholar
  9. 9.
    He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol. 2010;1:163–87. doi: 10.1146/annurev.food.080708.100754.CrossRefPubMedGoogle Scholar
  10. 10.
    Williams CA, Grayer RJ. Anthocyanins and other flavonoids. Nat Prod Rep. 2004;21(4):539–73. doi: 10.1039/B311404J.CrossRefPubMedGoogle Scholar
  11. 11.
    Sd P-T, Sanchez-Ballesta MT. Anthocyanins: From plant to health. Phytochem Rev. 2008;7(2):281–99. doi: 10.1007/s11101-007-9074-0.CrossRefGoogle Scholar
  12. 12.
    Prior RL, Wu X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res. 2006;40(10):1014–28. doi: 10.1080/10715760600758522.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem. 2006;54(11):4069–75. doi: 10.1021/jf060300l.CrossRefPubMedGoogle Scholar
  14. 14.
    Koponen JM, Happonen AM, Mattila PH, Torronen AR. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 2007;55(4):1612–9. doi: 10.1021/jf062897a.CrossRefPubMedGoogle Scholar
  15. 15.
    Bindon K, Varela C, Kennedy J, Holt H, Herderich M. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem. 2013;138(2–3):1696–705. doi: 10.1016/j.foodchem.2012.09.146.CrossRefPubMedGoogle Scholar
  16. 16.
    Perez-Jimenez J, Neveu V, Vos F, Scalbert A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J Agric Food Chem. 2010;58(8):4959–69. doi: 10.1021/jf100128b.CrossRefPubMedGoogle Scholar
  17. 17.
    Bhagwat S, Haytowitz DB, Wasswa-Kintu SI, Holden JM. USDA develops a database for flavonoids to assess dietary intakes. Procedia Food Science. 2013;2:81–6. doi: 10.1016/j.profoo.2013.04.013.CrossRefGoogle Scholar
  18. 18.
    Kuhnau J. The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Rev Nutr Diet. 1976;24:117–91.PubMedGoogle Scholar
  19. 19.
    Zamora-Ros R, Knaze V, Lujan-Barroso L, Slimani N, Romieu I, Touillaud M, et al. Estimation of the intake of anthocyanidins and their food sources in the European prospective investigation into cancer and nutrition (EPIC) study. Br J Nutr. 2011;106(7):1090–9. doi: 10.1017/S0007114511001437.CrossRefPubMedGoogle Scholar
  20. 20.
    Li G, Zhu Y, Zhang Y, Lang J, Chen Y, Ling W. Estimated daily flavonoid and stilbene intake from fruits, vegetables, and nuts and associations with lipid profiles in Chinese adults. J Acad Nutr Diet. 2013;113(6):786–94. doi: 10.1016/j.jand.2013.01.018.CrossRefPubMedGoogle Scholar
  21. 21.
    Lako J, Wattanapenpaiboon N, Wahlqvist M, Trenerry C. Phytochemical intakes of the Fijian population. Asia Pac J Clin Nutr. 2006;15(2):275–85.PubMedGoogle Scholar
  22. 22.
    Drossard C, Bolzenius K, Kunz C, Kersting M. Anthocyanins in the diet of children and adolescents: intake, sources and trends. Eur J Nutr. 2013;52(2):667–76. doi: 10.1007/s00394-012-0371-z.CrossRefPubMedGoogle Scholar
  23. 23.
    Drossard C, Alexy U, Bolzenius K, Kunz C, Kersting M. Anthocyanins in the diet of infants and toddlers: Intake, sources and trends. Eur J Nutr. 2011;50(8):705–11. doi: 10.1007/s00394-011-0184-5.CrossRefPubMedGoogle Scholar
  24. 24.
    Johannot L, Somerset SM. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006;9(8):1045–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr. 2011;93(6):1220–8. doi: 10.3945/ajcn.110.007096.CrossRefPubMedGoogle Scholar
  26. 26.
    Ovaskainen ML, Torronen R, Koponen JM, Sinkko H, Hellstrom J, Reinivuo H, et al. Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr. 2008;138(3):562–6.PubMedGoogle Scholar
  27. 27.
    Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76(3):560–8.PubMedGoogle Scholar
  28. 28.
    Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr. 2014;99(2):328–33. doi: 10.3945/ajcn.113.069641.CrossRefPubMedGoogle Scholar
  29. 29.
    Muraki I, Imamura F, Manson JE, Hu FB, Willett WC, van Dam RM, et al. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001. doi: 10.1136/bmj.f5001.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M, Forman JP, et al. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 2011;93(2):338–47. doi: 10.3945/ajcn.110.006783.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95(4):925–33.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr. 2013;143(9):1474–80. doi: 10.3945/jn.113.177212.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96(4):781–8. doi: 10.3945/ajcn.112.042036.CrossRefPubMedGoogle Scholar
  34. 34.
    Jennings A, Welch AA, Spector T, Macgregor A, Cassidy A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr. 2014;144(2):202–8. doi: 10.3945/jn.113.184358.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang C, Yatsuya H, Tamakoshi K, Uemura M, Li Y, Wada K, et al. Positive association between high-sensitivity C-reactive protein and incidence of type 2 diabetes mellitus in Japanese workers: 6-year follow-up. Diabetes Metab Res Rev. 2013;29(5):398–405. doi: 10.1002/dmrr.2406.CrossRefPubMedGoogle Scholar
  36. 36.
    Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764–8. doi: 10.3945/jn.110.125336.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90(3):485–92.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57(11):1524–33. doi: 10.1373/clinchem.2011.167361.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, et al. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab. 2014;99(2):561–9. doi: 10.1210/jc.2013-2845.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23(9):843–9. doi: 10.1016/j.numecd.2012.06.005.CrossRefPubMedGoogle Scholar
  41. 41.
    Karlsen A, Retterstol L, Laake P, Paur I, Bohn SK, Sandvik L, et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr. 2007;137(8):1951–4.PubMedGoogle Scholar
  42. 42.
    Liu Y, Li D, Zhang Y, Sun R, Xia M. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. AJP: Endocrinol Metab. 2014;306(8):E975–E88. doi: 10.1152/ajpendo.00699.2013.Google Scholar
  43. 43.
    Bonina FP, Leotta C, Scalia G, Puglia C, Trombetta D, Tringali G, et al. Evaluation of oxidative stress in diabetic patients after supplementation with a standardised red orange extract. Diabetes Nutr Metab. 2002;15(1):14–9.PubMedGoogle Scholar
  44. 44.
    Ataie-Jafari A, Hosseini S, Karimi F, Pajouhi M. Effects of sour cherry juice on blood glucose and some cardiovascular risk factors improvements in diabetic women: A pilot study. Nutrition & Food Science. 2008;38(4):355–60.CrossRefGoogle Scholar
  45. 45.
    Basu A, Wilkinson M, Penugonda K, Simmons B, Betts NM, Lyons TJ. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: Baseline and post intervention effects. Nutr J. 2009;8:43. doi: 10.1186/1475-2891-8-43.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010;140(9):1582–7. doi: 10.3945/jn.110.124701.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Wright OR, Netzel GA, Sakzewski AR. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: The QUENCH trial. Can J Physiol Pharmacol. 2013;91(6):480–8. doi: 10.1139/cjpp-2012-0349.CrossRefPubMedGoogle Scholar
  48. 48.
    Kolehmainen M, Mykkanen O, Kirjavainen PV, Leppanen T, Moilanen E, Adriaens M, et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res. 2012;56(10):1501–10. doi: 10.1002/mnfr.201200195.CrossRefPubMedGoogle Scholar
  49. 49.
    Riso P, Klimis-Zacas D, Del Bo C, Martini D, Campolo J, Vendrame S, et al. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur J Nutr. 2012. doi: 10.1007/s00394-012-0402-9.PubMedGoogle Scholar
  50. 50.
    Guo H, Zhong R, Liu Y, Jiang X, Tang X, Li Z, et al. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition. 2014;30(2):198–203. doi: 10.1016/j.nut.2013.07.023.CrossRefPubMedGoogle Scholar
  51. 51.
    Kianbakht S, Abasi B, Hashem DF. Improved lipid profile in hyperlipidemic patients taking Vaccinium arctostaphylos fruit hydroalcoholic extract: A randomized double-blind placebo-controlled clinical trial. Phytother Res. 2013. doi: 10.1002/ptr.5011.Google Scholar
  52. 52.
    Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr. 2003;133(7):2125–30.PubMedGoogle Scholar
  53. 53.
    Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, et al. Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond). 2010;34(3):578–88. doi: 10.1038/ijo.2009.266.CrossRefGoogle Scholar
  54. 54.
    Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR. Whole berries versus berry anthocyanins: Interactions with dietary fat levels in the C57BL/6 J mouse model of obesity. J Agric Food Chem. 2008;56(3):647–53. doi: 10.1021/jf071993o.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu T, Qi X, Liu Y, Guo J, Zhu R, Chen W, et al. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem. 2013;141(1):482–7. doi: 10.1016/j.foodchem.2013.03.046.CrossRefPubMedGoogle Scholar
  56. 56.
    Prior RL, Welkes SE, Rogers TR, Khanal RC, Wu X, Howard LR. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem. 2010;58(7):3970–6. doi: 10.1021/jf902852d.CrossRefPubMedGoogle Scholar
  57. 57.
    Wu T, Yu Z, Tang Q, Song H, Gao Z, Chen W, et al. Honeysuckle anthocyanin supplementation prevents diet-induced obesity in C57BL/6 mice. Food Funct. 2013;4(11):1654–61. doi: 10.1039/c3fo60251f.CrossRefPubMedGoogle Scholar
  58. 58.
    Kaume L, Gilbert WC, Brownmiller C, Howard LR, Devareddy L. Cyanidin 3-O-β-d-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats. J Funct Foods. 2012;4(2):480–8. doi: 10.1016/j.jff.2012.02.008.CrossRefGoogle Scholar
  59. 59.
    Badshah H, Ullah I, Kim SE, Kim TH, Lee HY, Kim MO. Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides. 2013;47(5):347–53. doi: 10.1016/j.npep.2013.06.001.CrossRefPubMedGoogle Scholar
  60. 60.
    Matsuda M, Shimomura I. Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord. 2013. doi: 10.1007/s11154-013-9271-7.Google Scholar
  61. 61.
    Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005;7(7–8):1040–52. doi: 10.1089/ars.2005.7.1040.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang H, Cao GH, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997;45(2):304–9. doi: 10.1021/jf960421t.CrossRefGoogle Scholar
  63. 63.
    Jing P, Zhao S, Ruan S, Sui Z, Chen L, Jiang L, et al. Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem. 2014;145:365–71. doi: 10.1016/j.foodchem.2013.08.082.CrossRefPubMedGoogle Scholar
  64. 64.
    Chiang AN, Wu HL, Yeh HI, Chu CS, Lin HC, Lee WC. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids. 2006;41(8):797–803. doi: 10.1007/s11745-006-5033-6.CrossRefPubMedGoogle Scholar
  65. 65.
    Roy M, Sen S, Chakraborti AS. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci. 2008;82(21–22):1102–10. doi: 10.1016/j.lfs.2008.03.011.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu W, Jia Q, Wang Y, Zhang Y, Xia M. The anthocyanin cyanidin-3-O-beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway. Free Radic Biol Med. 2012;52(2):314–27. doi: 10.1016/j.freeradbiomed.2011.10.483.CrossRefPubMedGoogle Scholar
  67. 67.
    Jeong JW, Lee WS, Shin SC, Kim GY, Choi BT, Choi YH. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways. Int J Mol Sci. 2013;14(1):1502–15. doi: 10.3390/ijms14011502.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Zhang Y, Lian F, Zhu Y, Xia M, Wang Q, Ling W, et al. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkappaBalpha phosphorylation in THP-1 cells. Inflamm Res. 2010;59(9):723–30. doi: 10.1007/s00011-010-0183-7.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang Q, Xia M, Liu C, Guo H, Ye Q, Hu Y, et al. Cyanidin-3-O-beta-glucoside inhibits iNOS and COX-2 expression by inducing liver X receptor alpha activation in THP-1 macrophages. Life Sci. 2008;83(5–6):176–84. doi: 10.1016/j.lfs.2008.05.017.CrossRefPubMedGoogle Scholar
  70. 70.
    Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F. Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: Involvement of nuclear factor-kappaB signaling. J Agric Food Chem. 2010;58(22):12048–54. doi: 10.1021/jf1029515.CrossRefPubMedGoogle Scholar
  71. 71.
    DeFuria J, Bennett G, Strissel KJ, Perfield 2nd JW, Milbury PE, Greenberg AS, et al. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr. 2009;139(8):1510–6. doi: 10.3945/jn.109.105155.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Qin B, Anderson RA. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Br J Nutr. 2012;108(4):581–7. doi: 10.1017/S000711451100599X.CrossRefPubMedGoogle Scholar
  73. 73.
    Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem. 2012;23(4):349–60. doi: 10.1016/j.jnutbio.2010.12.013.CrossRefPubMedGoogle Scholar
  74. 74.
    Hassimotto NM, Moreira V, Do Nascimento NG, Souto PC, Teixeira C, Lajolo FM. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside. Biomed Res Int. 2013;2013:146716. doi: 10.1155/2013/146716.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Graf D, Seifert S, Bub A, Frohling B, Dold S, Unger F, et al. Anthocyanin-rich juice does not affect gut-associated immunity in Fischer rats. Mol Nutr Food Res. 2013;57(10):1753–61. doi: 10.1002/mnfr.201300022.PubMedGoogle Scholar
  76. 76.
    Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54(1):243–8. doi: 10.1021/jf0520342.CrossRefPubMedGoogle Scholar
  77. 77.
    Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M, et al. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum Nutr. 2007;62(1):1–6. doi: 10.1007/s11130-006-0031-7.CrossRefPubMedGoogle Scholar
  78. 78.
    Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol. 2007;74(11):1619–27. doi: 10.1016/j.bcp.2007.08.008.CrossRefPubMedGoogle Scholar
  79. 79.
    Nizamutdinova IT, Jin YC, Chung JI, Shin SC, Lee SJ, Seo HG, et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol Nutr Food Res. 2009;53(11):1419–29. doi: 10.1002/mnfr.200800526.CrossRefPubMedGoogle Scholar
  80. 80.
    Kurimoto Y, Shibayama Y, Inoue S, Soga M, Takikawa M, Ito C, et al. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J Agric Food Chem. 2013;61(23):5558–64. doi: 10.1021/jf401190y.CrossRefPubMedGoogle Scholar
  81. 81.
    Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M. Cyanidin 3-glucoside protects 3 T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008;75(6):1393–401. doi: 10.1016/j.bcp.2007.11.016.CrossRefPubMedGoogle Scholar
  82. 82.
    Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, et al. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun. 2004;316(1):149–57.CrossRefPubMedGoogle Scholar
  83. 83.
    Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T. Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol. 2006;71(8):1184–97. doi: 10.1016/j.bcp.2005.12.042.CrossRefPubMedGoogle Scholar
  84. 84.
    Floyd ZE, Stephens JM. Controlling a master switch of adipocyte development and insulin sensitivity: Covalent modifications of PPARgamma. Biochim Biophys Acta. 2012;1822(7):1090–5. doi: 10.1016/j.bbadis.2012.03.014.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Scazzocchio B, Vari R, Filesi C, D’Archivio M, Santangelo C, Giovannini C, et al. Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARgamma activity in human omental adipocytes. Diabetes. 2011;60(9):2234–44. doi: 10.2337/db10-1461.CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Jia Y, Kim JY, Jun HJ, Kim SJ, Lee JH, Hoang MH, et al. Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing hepatic lipid. Biochim Biophys Acta. 2013;1831(4):698–708. doi: 10.1016/j.bbalip.2012.11.012.CrossRefPubMedGoogle Scholar
  87. 87.
    Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123(7):2764–72. doi: 10.1172/JCI67227.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Wei X, Wang D, Yang Y, Xia M, Li D, Li G, et al. Cyanidin-3-O-beta-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric. 2011;91(6):1006–13. doi: 10.1002/jsfa.4275.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang Y, Wang X, Wang Y, Liu Y, Xia M. Supplementation of cyanidin-3-O-beta-glucoside promotes endothelial repair and prevents enhanced atherogenesis in diabetic apolipoprotein E-deficient mice. J Nutr. 2013;143(8):1248–53. doi: 10.3945/jn.113.177451.CrossRefPubMedGoogle Scholar
  90. 90.
    Guo H, Guo J, Jiang X, Li Z, Ling W. Cyanidin-3-O-beta-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3 T3-L1 adipocytes during hyperglycemia: Involvement of FoxO1-mediated transcription of adipose triglyceride lipase. Food Chem Toxicol. 2012;50(9):3040–7. doi: 10.1016/j.fct.2012.06.015.CrossRefPubMedGoogle Scholar
  91. 91.
    Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, et al. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr Res. 2011;31(12):896–906. doi: 10.1016/j.nutres.2011.09.026.CrossRefPubMedGoogle Scholar
  92. 92.
    Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M. Cyanidin-3-O-beta-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis. 2012;11:10. doi: 10.1186/1476-511X-11-10.CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Kang MK, Li J, Kim JL, Gong JH, Kwak SN, Park JH, et al. Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration. Am J Physiol Renal Physiol. 2012;303(7):F1060–9. doi: 10.1152/ajprenal.00106.2012.CrossRefPubMedGoogle Scholar
  94. 94.
    Li J, Lim SS, Lee JY, Kim JK, Kang SW, Kim JL, et al. Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: Possible renoprotective role in diabetic nephropathy. J Nutr Biochem. 2012;23(4):320–31. doi: 10.1016/j.jnutbio.2010.12.008.CrossRefPubMedGoogle Scholar
  95. 95.
    Nabae K, Hayashi SM, Kawabe M, Ichihara T, Hagiwara A, Tamano S, et al. A 90-day oral toxicity study of purple corn color, a natural food colorant, in F344 rats. Food Chem Toxicol. 2008;46(2):774–80. doi: 10.1016/j.fct.2007.10.004.CrossRefPubMedGoogle Scholar
  96. 96.
    Hassellund SS, Flaa A, Sandvik L, Kjeldsen SE, Rostrup M. Effects of anthocyanins on blood pressure and stress reactivity: A double-blind randomized placebo-controlled crossover study. J Hum Hypertens. 2012;26(6):396–404. doi: 10.1038/jhh.2011.41.CrossRefPubMedGoogle Scholar
  97. 97.
    Ohguro H, Ohguro I, Katai M, Tanaka S. Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica. 2012;228(1):26–35. doi: 10.1159/000335961.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nutrition, Henry Fok School of Food Science and EngineeringShaoguan UniversityShaoguanChina
  2. 2.Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Nutrition, School of Public HealthSun Yat-Sen University (Northern Campus)GuangzhouChina

Personalised recommendations