Endothelial dysfunction in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes

  • Etto C. EringaEmail author
  • Erik H. Serne
  • Rick I. Meijer
  • Casper G. Schalkwijk
  • Alfons J. H. M. Houben
  • Coen D. A. Stehouwer
  • Yvo M. Smulders
  • Victor W. M. van Hinsbergh


Endothelial dysfunction associated with diabetes and cardiovascular disease is characterized by changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. These endothelial alterations contribute to excess cardiovascular disease in diabetes, but may also play a role in the pathogenesis of diabetes, especially type 2. The mechanisms underlying endothelial dysfunction in diabetes differ between type 1 (T1D) and type 2 diabetes (T2D): hyperglycemia contributes to endothelial dysfunction in all individuals with diabetes, whereas the causative mechanisms in T2D also include impaired insulin signaling in endothelial cells, dyslipidemia and altered secretion of bioactive substances (adipokines) by adipose tissue. The close association of so-called perivascular adipose tissue with arteries and arterioles facilitates the exposure of vascular endothelium to adipokines, particularly if inflammation activates the adipose tissue. Glucose and adipokines activate specific intracellular signaling pathways in endothelium, which in concert result in endothelial dysfunction in diabetes. Here, we review the characteristics of endothelial dysfunction in diabetes, the causative mechanisms involved and the role of endothelial dysfunction(s) in the pathogenesis of T2D. Finally, we will discuss the therapeutic potential of endothelial dysfunction in T2D.


Diabetes Obesity Insulin Endothelium Intracellular signaling 



ECE is sponsored by the Netherlands Organization for Scientific Research (Grant 916.76.179) and EHS is supported by the Netherlands Heart Foundation (Grant 2009B098).


  1. 1.
    Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.PubMedCrossRefGoogle Scholar
  2. 2.
    DeFronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.PubMedCrossRefGoogle Scholar
  4. 4.
    de Jongh RT, Serne EH, IJzerman RG, De Vries G, Stehouwer CD. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.PubMedCrossRefGoogle Scholar
  5. 5.
    de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CDA. Free fatty acid levels modulate microvascular function: Relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004;53:2873–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101:1780–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Yudkin JS, Stehouwer CDA, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Okon EB, Chung AWY, Rauniyar P, et al. Compromised arterial function in human type 2 diabetic patients. Diabetes. 2005;54:2415–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Cardillo C, Campia U, Bryant MB, Panza JA. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation. 2002;106:1783–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Cardillo C, Nambi SS, Kilcoyne CM, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100:820–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Van den Heuvel M, Sorop O, Koopmans SJ, et al. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol. 2012;302:H85–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Roos MH, Eringa EC, van Rodijnen WF, van Lambalgen TA, ter Wee PM, Tangelder GJ. Preglomerular and postglomerular basal diameter changes and reactivity to angiotensin II in obese rats. Diabetes Obes Metab. 2008;10:898–905.PubMedCrossRefGoogle Scholar
  15. 15.
    Eringa EC, Stehouwer CDA, Roos MH, Westerhof N, Sipkema P. Selective resistance to vasoactive effects of insulin in muscle resistance arteries of obese Zucker (fa/fa) rats. Am J Physiol Endocrinol Metab. 2007;293:E1134–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Meijer RI, de Boer MP, Groen MR et al. (2012) Insulin-induced microvascular recruitment in skin and muscle are related and both are associated with whole body glucose uptake. MicrocirculationGoogle Scholar
  17. 17.
    Kostromina E, Gustavsson N, Wang X, et al. Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription-3 knockout mice are associated with microvascular alterations in the pancreas. Endocrinology. 2010;151:2050–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Rensing KL, von der Thusen JH, Weijers EM, et al. Endothelial insulin receptor expression in human atherosclerotic plaques: linking micro- and macrovascular disease in diabetes? Atherosclerosis. 2012;222:208–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Natali A, Toschi E, Baldeweg S, et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes. 2006;55:1133–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res. 2007;101:948–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Prakash R, Somanath PR, El-Remessy AB, et al. Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes. 2012;61:1533–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85:1844–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98:894–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002;56:464–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995;96:786–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation. Nature. 1999;399:601–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Eringa EC, Stehouwer CDA, Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol. 2004;287:H2043–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Potenza MA, Marasciulo FL, Chieppa DM, et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol. 2005;289:H813–22.PubMedCrossRefGoogle Scholar
  29. 29.
    de Jongh RT, Clark AD, IJzerman RG, Serne EH, De Vries G, Stehouwer CD (2004) Physiological hyperinsulinaemia increases intramuscular microvascular reactive hyperaemia and vasomotion in healthy volunteers. DiabetologiaGoogle Scholar
  30. 30.
    Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol. 2002;16:1931–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubota T, Kubota N, Kumagai H, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metabolism. 2011;13:294–307.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang Y, Cheng KK, Lam KS, et al. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60:3044–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Clerk LH, Vincent MA, Lindner JR, Clark MG, Rattigan S, Barrett EJ. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metab Res Rev. 2004;20:3–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim F, Pham M, Maloney E, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.PubMedCrossRefGoogle Scholar
  37. 37.
    Gudbjornsdottir S, Elam M, Sellgren J, Anderson EA. Insulin increases forearm vascular resistance in obese, insulin-resistant hypertensives. J Hypertens. 1996;14:91–7.PubMedGoogle Scholar
  38. 38.
    Ferri C, Carlomagno A, Coassin S, et al. Circulating endothelin-1 levels increase during euglycemic hyperinsulinemic clamp in lean NIDDM men. Diabetes Care. 1995;18:226–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Kubota T, Kubota N, Moroi M, et al. Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury. Circulation. 2003;107:3073.PubMedCrossRefGoogle Scholar
  40. 40.
    Abe H, Yamada N, Kamata K, et al. Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest. 1998;101:1784–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Abbas A, Imrie H, Viswambharan H, et al. The insulin-like growth factor-1 receptor is a negative regulator of nitric oxide bioavailability and insulin sensitivity in the endothelium. Diabetes. 2011;60:2169–78.PubMedCrossRefGoogle Scholar
  42. 42.
    Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology. 2005;146:4690–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Eringa EC, Stehouwer CDA, Walburg K, et al. Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-alpha: Dependence on c-Jun N-terminal kinase. Arterioscler Thromb Vasc Biol. 2006;26:274–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Bakker W, Sipkema P, Stehouwer CDA, et al. Protein kinase C theta activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes. 2008;57:706–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang C, Liu M, Riojas RA, et al. Protein kinase C theta (PKC{theta})-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J Biol Chem. 2009;284:2038–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Li Y, Soos TJ, Li X, et al. Protein kinase C theta inhibits insulin signaling by phosphorylating IRS1 at Ser1101. J Biol Chem. 2004;279:45304–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Li G, Barrett EJ, Barrett MO, Cao W, Liu Z. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology. 2007;148:3356–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim F, Tysseling KA, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKK{beta}. Arterioscler Thromb Vasc Biol. 2005;25:989–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Tabit CE, Shenouda SM, Holbrook M et al (2012) Protein kinase-C beta contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. CirculationGoogle Scholar
  52. 52.
    Meijer R, Serne E, Smulders Y, van Hinsbergh V, Yudkin J, Eringa E (2011) Perivascular adipose tissue and its role in type 2 diabetes and cardiovascular disease. Current Diabetes Reports 1-7Google Scholar
  53. 53.
    Rytka JM, Wueest S, Schoenle EJ, Konrad D. The portal theory supported by Venous DrainageΓÇôSelective fat transplantation. Diabetes. 2011;60:56–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Hagita S, Osaka M, Shimokado K, Yoshida M. Adipose inflammation initiates recruitment of leukocytes to mouse femoral artery: role of adipo-vascular axis in chronic inflammation. PLoS One. 2011;6:e19871.PubMedCrossRefGoogle Scholar
  55. 55.
    Meijer RI, Bakker W, Alta CAF, et al. Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice. Diabetes. 2013;62:590–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Rask-Madsen C, Dominguez H, Ihlemann N, Hermann T, Kober L, Torp-Pedersen C. Tumor necrosis factor-{alpha} inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation. 2003;108:1815–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Houben AJ, Eringa EC, Jonk AM, Serne EH, Smulders YM, Stehouwer CD. Perivascular fat and the microcirculation: relevance to insulin resistance, diabetes, and cardiovascular disease. Curr Cardiovasc Risk Rep. 2012;6:80–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.PubMedCrossRefGoogle Scholar
  59. 59.
    Wong WT, Tian XY, Xu A, et al. Adiponectin is required for PPARgamma-mediated improvement of endothelial function in diabetic mice. Cell Metab. 2011;14:104–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Ingelsson E, Arnlov J, Zethelius B, et al. Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity. J Clin Endocrinol Metab. 2009;94:953–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Greenstein AS, Khavandi K, Withers SB, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119:1661–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Vecchione C, Aretini A, Maffei A, et al. Cooperation between insulin and leptin in the modulation of vascular tone. Hypertension. 2003;42:166–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Xu X, Yavar Z, Verdin M, et al. Effect of early particulate air pollution exposure on obesity in mice: Role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30:2518–27.PubMedCrossRefGoogle Scholar
  64. 64.
    Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II − induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: Role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105:1656–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54:1384–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Chatterjee TK, Stoll LL, Denning GM, et al. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding. Circ Res. 2009;104:541–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Henrichot E, Juge-Aubry CE, Pernin A, et al. Production of chemokines by perivascular adipose tissue: A role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005;25:2594–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Withers SB, gabiti-Rosei C, Livingstone DM, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31:908–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Meijer RI, Bakker W, Alta CAF et al. (2012) Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db Mice. Diabetes (In press)Google Scholar
  71. 71.
    Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004;113:1258–65.PubMedGoogle Scholar
  72. 72.
    Thureson-Klein A, Stijarne L. Ultrastructural features of mast cells in human omental veins. Blood Vessels. 1979;16:311–9.PubMedGoogle Scholar
  73. 73.
    Takaoka M, Suzuki H, Shioda S, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2010;30:1576–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Iacobellis G, Ribaudo MC, Assael F, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Rittig K, Staib K, Machann J et al. (2008) Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia. %20Google Scholar
  76. 76.
    De Coppi P, Milan G, Scarda A, et al. Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia. 2006;49:1962–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Moon YS, Smas CM, Lee K, et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002;22:5585–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Police SB, Thatcher SE, Charnigo R, Daugherty A, Cassis LA. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2009;29:1458–64.PubMedCrossRefGoogle Scholar
  79. 79.
    Feldon SE, O’Loughlin CW, Ray DM, Landskroner-Eiger S, Seweryniak KE, Phipps RP. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol. 2006;169:1183–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Tsuruda T, Kato J, Hatakeyama K, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res. 2008;102:1368–77.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu J, Divoux A, Sun J, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15:940–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Ito S, Narumiya S, Hayaishi O. Prostaglandin D2: a biochemical perspective. Prostaglandins Leukot. Essent. Fatty Acids. 1989;37:219–34.CrossRefGoogle Scholar
  83. 83.
    Hasegawa Y, Saito T, Ogihara T, et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life span. Circulation. 2012;125:1122–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Hosogai N, Fukuhara A, Oshima K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009;296:E333–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LKM, Frayn KN. Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes. 2002;51:2467–73.PubMedCrossRefGoogle Scholar
  87. 87.
    Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134:405–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55:496–505.PubMedCrossRefGoogle Scholar
  89. 89.
    Young A, Wu W, Sun W, et al. Flow activation of AMP-activated protein kinase in vascular endothelium leads to kruppel-like factor 2 expression. Arterioscler Thromb Vasc Biol. 2009;29:1902–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Eringa EC, Bradley EA, Stehouwer CDA, et al. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol. 2010;30:1137–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP. Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem. 2003;278:31629–39.PubMedCrossRefGoogle Scholar
  92. 92.
    Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279:1304–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Dong Y, Zhang M, Liang B, et al. Reduction of AMP-activated protein kinase {alpha}2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation. 2010;121:792–803.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen Z, Peng IC, Sun W, et al. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res. 2009;104:496–505.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen Z, Mitchelhill KI, Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999;443:285–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Bosselaar M, Boon H, van Loon LJC, van den Broek PHH, Smits P, Tack CJ. Intra-arterial AICA-riboside administration induces NO-dependent vasodilation in vivo in human skeletal muscle. Am J Physiol Endocrinol Metab. 2009;297:E759–66.PubMedCrossRefGoogle Scholar
  97. 97.
    Cuthbertson DJ, Babraj JA, Mustard KJW, et al. 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes. 2007;56:2078–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Brouwers O, Niessen PM, Haenen G, et al. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia. 2010;53:989–1000.PubMedCrossRefGoogle Scholar
  100. 100.
    Ceradini DJ, Yao D, Grogan RH, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem. 2008;283:10930–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9:294–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Shinohara M, Thornalley PJ, Giardino I, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101:1142–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Brouwers O, Niessen PM, Ferreira I, et al. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem. 2011;286:1374–80.PubMedCrossRefGoogle Scholar
  104. 104.
    Berner AK, Brouwers O, Pringle R, et al. Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia. 2012;55:845–54.PubMedCrossRefGoogle Scholar
  105. 105.
    Wang H, Wang AX, Liu Z, Barrett EJ. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes. 2008;57:540–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Barrett EJ, Eggleston EM, Inyard AC, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–64.PubMedCrossRefGoogle Scholar
  107. 107.
    Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55:1436–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Kolka CM, Harrison LN, Lottati M, Chiu JD, Kirkman EL, Bergman RN. Diet-induced obesity prevents interstitial dispersion of insulin in skeletal muscle. Diabetes. 2010;59:619–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Chiu JD, Richey JM, Harrison LN, et al. Direct administration of insulin into skeletal muscle reveals that the transport of insulin across the capillary endothelium limits the time course of insulin to activate glucose disposal. Diabetes. 2008;57:828–35.PubMedCrossRefGoogle Scholar
  110. 110.
    Vicent D, Ilany J, Kondo T, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111:1373–80.PubMedGoogle Scholar
  111. 111.
    Duncan ER, Crossey PA, Walker S, et al. Effect of endothelium-specific insulin resistance on endothelial function in vivo. Diabetes. 2008;57:3307–14.PubMedCrossRefGoogle Scholar
  112. 112.
    Araki E, Lipes MA, Patti ME, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.PubMedCrossRefGoogle Scholar
  113. 113.
    Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring H. Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia. 1997;40:1358–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Shankar RR, Wu Y, Shen H-Q, Zhu J-S, Baron AD (2000) Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49Google Scholar
  115. 115.
    Shemyakin A, Salehzadeh F, Esteves Duque-Guimaraes D, et al. Endothelin-1 reduces glucose uptake in human skeletal muscle in vivo and in vitro. Diabetes. 2011;60:2061–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Ahlborg G, Shemyakin A, Bohm F, Gonon A, Pernow J. Dual endothelin receptor blockade acutely improves insulin sensitivity in obese patients with insulin resistance and coronary artery disease. Diabetes Care. 2007;30:591–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Lteif A, Vaishnava P, Baron AD, Mather KJ. Endothelin limits insulin action in obese/insulin-resistant humans. Diabetes. 2007;56:728–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-[beta] and NF-[kappa]B. Nat Med. 2005;11:183–90.PubMedCrossRefGoogle Scholar
  119. 119.
    Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature. 2010;464:917–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Hagberg CE, Mehlem A, Falkevall A, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012;490:426–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Giroix MH, Irminger JC, Lacraz G, et al. Hypercholesterolaemia, signs of islet microangiopathy and altered angiogenesis precede onset of type 2 diabetes in the Goto-Kakizaki (GK) rat. Diabetologia. 2011;54:2451–62.PubMedCrossRefGoogle Scholar
  122. 122.
    Olerud J, Mokhtari D, Johansson M, et al. Thrombospondin-1: an islet endothelial cell signal of importance for beta-cell function. Diabetes. 2011;60:1946–54.PubMedCrossRefGoogle Scholar
  123. 123.
    Kilpelainen TO, Zillikens MC, Stancakova A et al. (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat. GenetGoogle Scholar
  124. 124.
    Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41:1110–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.PubMedCrossRefGoogle Scholar
  126. 126.
    de Boer I, Sun W, Cleary PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365:2366–76Google Scholar
  127. 127.
    Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRefGoogle Scholar
  128. 128.
    Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.PubMedCrossRefGoogle Scholar
  129. 129.
    Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–15.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care. 2006;29:2427–32.PubMedCrossRefGoogle Scholar
  131. 131.
    Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes. 2007;56:1025–33.PubMedCrossRefGoogle Scholar
  132. 132.
    Carlstrom M, Larsen FJ, Nystrom T, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. PNAS. 2010;107:17716–20.PubMedCrossRefGoogle Scholar
  133. 133.
    Sansbury BE, Cummins TD, Tang Y et al. (2012) Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circulation ResearchGoogle Scholar
  134. 134.
    Kang L, Ayala JE, Lee-Young RS, et al. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin α2β1 in mice. Diabetes. 2011;60:416–26.PubMedCrossRefGoogle Scholar
  135. 135.
    Coker RH, Williams RH, Yeo SE, et al. The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. Endocr Rev. 2009;30:745–a.Google Scholar
  136. 136.
    Wray DW, Nishiyama SK, Donato AJ, Sander M, Wagner PD, Richardson RS. Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans. Am J Physiol Heart Circ Physiol. 2007;293:H2550–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Fujita S, Rasmussen BB, Cadenas JG, et al. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/Mammalian target of rapamycin signaling. Diabetes. 2007;56:1615–22.PubMedCrossRefGoogle Scholar
  138. 138.
    Booth G, Stalker TJ, Lefer AM, Scalia R. Mechanisms of amelioration of glucose-induced endothelial dysfunction following inhibition of protein kinase C in vivo. Diabetes. 2002;51:1556–64.PubMedCrossRefGoogle Scholar
  139. 139.
    Murakami T, Frey T, Lin C, Antonetti DA. Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes. 2012;61:1573–83.PubMedCrossRefGoogle Scholar
  140. 140.
    Soeters MR, Soeters PB. The evolutionary benefit of insulin resistance. Clin Nutr. 2012;31:1002–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Etto C. Eringa
    • 1
    • 4
    Email author
  • Erik H. Serne
    • 2
  • Rick I. Meijer
    • 2
  • Casper G. Schalkwijk
    • 3
  • Alfons J. H. M. Houben
    • 3
  • Coen D. A. Stehouwer
    • 3
  • Yvo M. Smulders
    • 2
  • Victor W. M. van Hinsbergh
    • 1
  1. 1.Departments of PhysiologyVU University Medical CenterAmsterdamthe Netherlands
  2. 2.Departments of Internal MedicineVU University Medical CenterAmsterdamthe Netherlands
  3. 3.Department of Internal MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
  4. 4.Laboratory for PhysiologyAmsterdamThe Netherlands

Personalised recommendations