Reviews in Endocrine and Metabolic Disorders

, Volume 14, Issue 1, pp 13–19

The endothelium in diabetes: Its role in insulin access and diabetic complications

Article

Abstract

The vascular endothelium has been identified as an important component in diabetes-associated complications, which include many cardiovascular disorders such as atherosclerosis, hypertension and peripheral neuropathy. Additionally, insulin’s actions on the endothelium are now seen as a major factor in the metabolic effects of the hormone by increasing access to insulin sensitive tissues. Endothelial function is impaired in diabetes, obesity, and the metabolic syndrome, which could reduce insulin access to the tissue, and thus reduce insulin sensitivity independently of direct effects at the muscle cell. As such, the endothelium is a valid target for treatment of both the impaired glucose metabolism in diabetes, as well as the vascular based complications of diabetes. Here we review the basics of the endothelium in insulin action, with a focus on the skeletal muscle as insulin’s major metabolic organ, and how this is affected by diabetes. We will focus on the most recent developments in the field, including current treatment possibilities.

Keywords

Diabetes Endothelium Insulin Interstitium Muscle Vascular 

References

  1. 1.
    Centers for Disease Control and Prevention. National Diabetes Fact Sheet: national estimates and general information on diabetes and prediabetes in the United States. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.Google Scholar
  2. 2.
    Natali A, Ferrannini E. Hypertension, insulin resistance, and the metabolic syndrome. Endocrinol Metab Clin North Am. 2004;33(2):417–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Utsunomiya K. Treatment strategy for type 2 diabetes from the perspective of systemic vascular protection and insulin resistance. Vasc Health Risk Manag. 2012;8:429–36.PubMedGoogle Scholar
  4. 4.
    Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011;93 Suppl 1:S52–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Tack CJJ, Schefman AEP, Willems JL, Thien T, Lutterman JA, Smits P. Direct vasodilator effects of physiological hyperinsulin-aemia in human skeletal muscle. Eur J Clin Investig. 1996;26(9):772–8.CrossRefGoogle Scholar
  6. 6.
    Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002;56(3):464–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Verma S, Yao L, Stewart DJ, Dumont AS, Anderson TJ, McNeill JH. Endothelin antagonism uncovers insulin-mediated vasorelaxation in vitro and in vivo. Hypertension. 2001;37(2):328–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Rattigan S, Zhang L, Mahajan H, Kolka CM, Richards SM, Clark MG. Factors influencing the hemodynamic and metabolic effects of insulin in muscle. Curr Diabetes Rev. 2006;2(1):61–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellmerer M, Kim SP, Hamilton-Wessler M, Hucking K, Kirkman E, Bergman RN. Physiological hyperinsulinemia in dogs augments access of macromolecules to insulin-sensitive tissues. Diabetes. 2004;53(11):2741–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011;301(2):E252–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Serne EH, Ijzerman RG, Gans RO, Nijveldt R, de Vries G, Evertz R, Donker AJ, Stehouwer CD. Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes. 2002;51(5):1515–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Chiu JD, Richey JM, Harrison LN, Zuniga E, Kolka CM, Kirkman EL, Ellmerer M, Bergman RN. Direct administration of insulin into skeletal muscle reveals that the transport of insulin across the capillary endothelium limits the time course of insulin to activate glucose disposal. Diabetes. 2008;57(4):828–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Barrett EJ, Rattigan S. Muscle perfusion: its measurement and role in metabolic regulation. Diabetes. 2012;61(11):2661–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Steil GM, Ader M, Moore DM, Rebrin K, Bergman RN. Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process. J Clin Investig. 1996;97(6):1497–503.PubMedCrossRefGoogle Scholar
  16. 16.
    Brunner F, Wascher TC. Contribution of the endothelium to transcapillary insulin transport in rat isolated perfused hearts. Diabetes. 1998;47(7):1127–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Majumdar S, Genders AJ, Inyard AC, Frison V, Barrett EJ. Insulin entry into muscle involves a saturable process in the vascular endothelium. Diabetologia. 2012;55(2):450–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang H, Liu Z, Li G, Barrett EJ. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab. 2006;291(2):E323–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang H, Wang AX, Barrett EJ. Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011;300(1):E134–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Ader M, Bergman RN. Importance of transcapillary insulin transport to dynamics of insulin action after intravenous glucose. Am J Physiol. 1994;266(1 Pt 1):E17–25.PubMedGoogle Scholar
  21. 21.
    Sjostrand M, Holmang A, Lonnroth P. Measurement of interstitial insulin in human muscle. Am J Physiol. 1999;276(1 Pt 1):E151–4.PubMedGoogle Scholar
  22. 22.
    Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13(3):294–307.PubMedCrossRefGoogle Scholar
  23. 23.
    Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, Bursell S, Yanagisawa M, King GL, Kahn CR. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Investig. 2003;111(9):1373–80.PubMedGoogle Scholar
  24. 24.
    Chiu JD, Kolka CM, Richey JM, Harrison LN, Zuniga E, Kirkman EL, Bergman RN. Experimental hyperlipidemia dramatically reduces access of insulin to canine skeletal muscle. Obesity (SilverSpring).2009;17(8):1486–92.CrossRefGoogle Scholar
  25. 25.
    Kolka CM, Harrison LN, Lottati M, Chiu JD, Kirkman EL, Bergman RN. Diet-induced obesity prevents interstitial dispersion of insulin in skeletal muscle. Diabetes. 2009;59(3):619–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Sandqvist M, Strindberg L, Schmelz M, Lonnroth P, Jansson PA. Impaired delivery of insulin to adipose tissue and skeletal muscle in obese women with postprandial hyperglycemia. J Clin Endocrinol Metab. 2011;96(8):E1320–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, Duess MA, Levit A, Kim B, Hartman ML, Joseph L, Shirihai OS, Vita JA. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011;124(4):444–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharma A, Bernatchez PN, de Haan JB. Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med. 2012. doi:10.1155/2012/750126.
  29. 29.
    Goldfine AB, Beckman JA, Betensky RA, Devlin H, Hurley S, Varo N, Schonbeck U, Patti M E, Creager MA (2006) Family history of diabetes is a major determinant of endothelial function. J.Am.Coll.Cardiol., %20;47(12), 2456–2461.Google Scholar
  30. 30.
    Farb MG, Ganley-Leal L, Mott M, Liang Y, Ercan B, Widlansky ME, Bigornia SJ, Fiscale AJ, Apovian CM, Carmine B, Hess DT, Vita JA, Gokce N. Arteriolar function in visceral adipose tissue is impaired in human obesity. Arterioscler Thromb Vasc Biol. 2011;32(2):467–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011;96(2):438–46.PubMedCrossRefGoogle Scholar
  32. 32.
    El Akoum S, Cloutier I, Tanguay JF. Vascular smooth muscle cell alterations triggered by mice adipocytes: role of high-fat diet. J Atheroscler Thromb. 2012;19(12):1128–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Iwata NG, Pham M, Rizzo NO, Cheng AM, Maloney E, Kim F. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One. 2011;6(12):e29600.PubMedCrossRefGoogle Scholar
  35. 35.
    Rask-Madsen C, Li Q, Freund B, Feather D, Abramov R, Wu IH, Chen K, Yamamoto-Hiraoka J, Goldenbogen J, Sotiropoulos KB, Clermont A, Geraldes P, Dall'Osso C, Wagers AJ, Huang PL, Rekhter M, Scalia R, Kahn CR, King GL. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11(5):379–89.PubMedCrossRefGoogle Scholar
  36. 36.
    Satchell SC. The glomerular endothelium emerges as a key player in diabetic nephropathy. Kidney Int. 2012;82(9):949–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Tremolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F, Zerbini G. The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res. 2012. doi:10.1155/2012/728325.
  38. 38.
    Exalto LG, Whitmer RA, Kappele LJ, Biessels GJ. An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol. 2012;47(11):858–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Kolka CM, Bergman RN. The barrier within: endothelial transport of hormones. Physiology (Bethesda). 2012;27(4):237–47.CrossRefGoogle Scholar
  40. 40.
    Florey. The endothelial cell. Br Med J. 1966;2(5512):487–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Villela NR, Kramer-Aguiar LG, Bottino DA, Wiernsperger N, Bouskela E. Metabolic disturbances linked to obesity: the role of impaired tissue perfusion. Arq Bras Endocrinol Metabol. 2009;53(2):238–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Jonk AM, Houben AJ, Schaper NC, de Leeuw PW, Serne EH, Smulders YM, Stehouwer CD. Acute angiotensin II receptor blockade improves insulin-induced microvascular function in hypertensive individuals. Microvasc Res. 2011;82(1):77–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Pershadsingh HA. Treating the metabolic syndrome using angiotensin receptor antagonists that selectively modulate peroxisome proliferator-activated receptor-gamma. Int J Biochem Cell Biol. 2006;38(5–6):766–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2012. doi:10.1016/j.mce.2012.05.017.
  45. 45.
    Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Angiotensin II type 2 receptor-dependent increase in nitric oxide synthase activity in the endothelium of db/db mice is mediated via a MEK pathway. Pharmacol Res. 2012;66(1):41–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Chai W, Wang W, Dong Z, Cao W, Liu Z. Angiotensin II receptors modulate muscle microvascular and metabolic responses to insulin in vivo. Diabetes. 2011;60(11):2939–46.PubMedCrossRefGoogle Scholar
  47. 47.
    Tocci G, Paneni F, Palano F, Sciarretta S, Ferrucci A, Kurtz T, Mancia G, Volpe M. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and diabetes: a meta-analysis of placebo-controlled clinical trials. Am J Hypertens. 2011;24(5):582–90.PubMedCrossRefGoogle Scholar
  48. 48.
    van der Zijl NJ, Moors CC, Goossens GH, Hermans MM, Blaak EE, Diamant M. Valsartan improves {beta}-cell function and insulin sensitivity in subjects with impaired glucose metabolism: a randomized controlled trial. Diabetes Care. 2011;34(4):845–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Murrow JR, Sher S, Ali S, Uphoff I, Patel R, Porkert M, Le NA, Jones D, Quyyumi AA. The differential effect of statins on oxidative stress and endothelial function: atorvastatin versus pravastatin. J Clin Lipidol. 2012;6(1):42–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Tian XY, Wong WT, Xu A, Chen ZY, Lu Y, Liu LM, Lee VW, Lau CW, Yao X, Huang Y. Rosuvastatin improves endothelial function in db/db mice: role of angiotensin II type 1 receptors and oxidative stress. Br J Pharmacol. 2011;164(2b):598–606.PubMedGoogle Scholar
  51. 51.
    Sgarra L, Addabbo F, Potenza MA, Montagnani M. Determinants of evolving metabolic and cardiovascular benefit/risk profiles of rosiglitazone therapy during the natural history of diabetes: molecular mechanisms in the context of integrated pathophysiology. Am J Physiol Endocrinol Metab. 2012;302(10):E1171–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Gealekman O, Guseva N, Gurav K, Gusev A, Hartigan C, Thompson M, Malkani S, Corvera S. Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia. 2012;55(10):2794–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Omae T, Nagaoka T, Tanano I, Yoshida A. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, induces dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci. 2011;52(9):6749–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Erdogdu O, Nathanson D, Sjoholm A, Nystrom T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol. 2010;325(1–2):26–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Chai W, Dong Z, Wang W, Tao L, Cao W, Liu Z. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012;61(4):888–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, Kajitani N, Nishishita S, Sarai K, Hirota D, Sato C, Ogawa D, Makino H. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–78.PubMedCrossRefGoogle Scholar
  57. 57.
    Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa SI, Rask-Madsen C, King GL. Protective Effects of GLP-1 on Glomerular Endothelium and Its Inhibition by PKCbeta Activation in Diabetes. Diabetes. 2012;61(11):2967–79.PubMedCrossRefGoogle Scholar
  58. 58.
    Forst T, Weber MM, Pfutzner A. Cardiovascular benefits of GLP-1-based herapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp Diabetes Res. 2012. doi:10.1155/2012/635472.
  59. 59.
    Yoon JS, Lee HW. Understanding the cardiovascular effects of incretin. Diabetes Metab J. 2011;35(5):437–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Georgescu A. Vascular dysfunction in diabetes: The endothelial progenitor cells as new therapeutic strategy. World J Diabetes. 2011;2(6):92–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim JY, Song SH, Kim KL, Ko JJ, Im JE, Yie SW, Ahn YK, Kim DK, Suh W. Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplant. 2010;19(12):1635–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H, Young WL, Yang GY. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, Ito A, Misener S, Tanaka T, Klyachko E, Kobayashi K, Tongers J, Roncalli J, Tsurumi Y, Hagiwara N, Losordo DW. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci U S A. 2010;107(24):11008–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Diabetes and Obesity Research Institute, Department of Biomedical ScienceCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations