Reviews in Endocrine and Metabolic Disorders

, Volume 9, Issue 4, pp 267–274

Defining human diabetic nephropathy on the molecular level: Integration of transcriptomic profiles with biological knowledge

  • Sebastian Martini
  • Felix Eichinger
  • Viji Nair
  • Matthias Kretzler


Diabetic nephropathy (DN) is the most common cause for end stage renal disease (ESRD). Next to environmental factors, genetic predispositions determine the susceptibility for DN and its rate of progression to ESRD. With the availability of genome wide expression profiling we have the opportunity to define relevant pathways activated in the individual diabetic patient, integrating both environmental exposure and genetic background. In this review we summarize current understanding of how to link comprehensive gene expression data sets with biomedical knowledge and present strategies to build a transcriptional network of DN. Information about the individual disease processes of DN might allow the implementation of a personalized molecular medicine approach with mechanism-based patient management. Web based search engines like Nephromine are essential tools to facilitate access to molecular data of genomics, proteomics and metabolomics of DN.


Diabetic nephropathy Personalized molecular medicine Patient tailored medicine Gene expression Transcription regulatory networks 


  1. 1.
    USRDS. 2007 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethseda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2007.Google Scholar
  2. 2.
    Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341:1127–33. doi:10.1056/NEJM199910073411506.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel A, MacMahon S, Chalmers J, Neal B, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72. doi:10.1056/NEJMicm066227.PubMedCrossRefGoogle Scholar
  4. 4.
    American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008;31:596–615. doi:10.2337/dc08-9017.CrossRefGoogle Scholar
  5. 5.
    Iyengar SK, Schelling JR, Sedor JR. Approaches to understanding susceptibility to nephropathy: from genetics to genomics. Kidney Int. 2002;61:S61–67. doi:10.1046/j.1523-1755.2002.0610s1061.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Ng DP, Krolewski AS. Molecular genetic approaches for studying the etiology of diabetic nephropathy. Curr Mol Med. 2005;5:509–25. doi:10.2174/1566524054553504.PubMedCrossRefGoogle Scholar
  7. 7.
    Rogus JJ, Poznik GD, Pezzolesi MG, Smiles AM, et al. High-density SNP genome wide linkage scan for susceptibility genes for diabetic nephropathy in type 1 diabetes: discordant sib-pair approach. Diabetes 2008. doi:10.2337/db07-1086.
  8. 8.
    Bleyer AJ, Sedor JR, Freedman BI, O’Brien A, et al. Risk factors for development and progression of diabetic kidney disease and treatment patterns among diabetic siblings of patients with diabetic kidney disease. Am J Kidney Dis. 2008;51:29–37. doi:10.1053/j.ajkd.2007.10.029.PubMedCrossRefGoogle Scholar
  9. 9.
    Schelling JR, Abboud HE, Nicholas SB, Pahl MV, et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes. 2008;57:235–43. doi:10.2337/db07-0313.PubMedCrossRefGoogle Scholar
  10. 10.
    Tanaka N, Babazono T. Assessing genetic susceptibility to diabetic nephropathy. Nephrology (Carlton) 2005;10(Suppl):S17–21. doi:10.1111/j.1440-1797.2005.00451.x.CrossRefGoogle Scholar
  11. 11.
    Iyengar SK, Adler SG. The application of the HapMap to diabetic nephropathy and other causes of chronic renal failure. Semin Nephrol. 2007;27:223–36. doi:10.1016/j.semnephrol.2007.01.003.PubMedCrossRefGoogle Scholar
  12. 12.
    Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, et al. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N Engl J Med. 1985;312:1412–7.PubMedGoogle Scholar
  13. 13.
    Sarafidis PA, Stafylas PC, Kanaki AI, Lasaridis AN. Effects of renin–angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens. 2008;21(8):922–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Parving HH, Persson F, Lewis JB, Lewis EJ, et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358:2433–46. doi:10.1056/NEJMoa0708379.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosario RF, Prabhakar S. Lipids and diabetic nephropathy. Curr Diab Rep. 2006;6:455–62. doi:10.1007/s11892-006-0079-7.PubMedCrossRefGoogle Scholar
  16. 16.
    Forbes JM, Fukami K, Cooper ME. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes. 2007;115:69–84. doi:10.1055/s-2007-949721.PubMedCrossRefGoogle Scholar
  17. 17.
    Maric C. Vasoactive hormones and the diabetic kidney. ScientificWorldJournal. 2008;8:470–85. doi:10.1100/tsw.2008.57.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolf G, Ziyadeh FN. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007;106:26–31. doi:10.1159/000101797.CrossRefGoogle Scholar
  19. 19.
    Niehof M, Borlak J. HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes. 2008;57:1069–77. doi:10.2337/db07-1065.PubMedCrossRefGoogle Scholar
  20. 20.
    Sieberts SK, Schadt EE. Moving toward a system genetics view of disease. Mamm Genome. 2007;18:389–401. doi:10.1007/s00335-007-9040-6.PubMedCrossRefGoogle Scholar
  21. 21.
    Morrison N, Cochrane G, Faruque N, Tatusova T, et al. Concept of sample in OMICS technology. OMICS. 2006;10:127–37. doi:10.1089/omi.2006.10.127.PubMedCrossRefGoogle Scholar
  22. 22.
    Malinowski DP. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management. Expert Rev Mol Diagn. 2007;7:269–80. doi:10.1586/14737159.7.3.269.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinelli G, Iacobucci I, Soverini S, Cilloni D, et al. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol. 2006;24:196–204. doi:10.1002/hon.792.PubMedCrossRefGoogle Scholar
  24. 24.
    Sanga S, Frieboes HB, Zheng X, Gatenby R, et al. Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth. Neuroimage. 2007;37(Suppl 1):S120–134. doi:10.1016/j.neuroimage.2007.05.043.PubMedCrossRefGoogle Scholar
  25. 25.
    Wulfkuhle JD, Speer R, Pierobon M, Laird J, et al. Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res. 2008;7:1508–17. doi:10.1021/pr7008127.PubMedCrossRefGoogle Scholar
  26. 26.
    Kretzler M, Cohen CD, Doran P, Henger A, et al. Repuncturing the renal biopsy: strategies for molecular diagnosis in nephrology. J Am Soc Nephrol. 2002;13:1961–72. doi:10.1097/01.ASN.0000020390.29418.70.PubMedCrossRefGoogle Scholar
  27. 27.
    Chabardes-Garonne D, Mejean A, Aude JC, Cheval L, et al. A panoramic view of gene expression in the human kidney. Proc Natl Acad Sci U S A. 2003;100:13710–5. doi:10.1073/pnas.2234604100.PubMedCrossRefGoogle Scholar
  28. 28.
    Chan YH. Biostatistics. 302 Principal component and factor analysis. Singapore Med J. 2004;45:558–65.PubMedGoogle Scholar
  29. 29.
    Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol. 2002;3(11):1–22.CrossRefGoogle Scholar
  30. 30.
    Qin ZS. Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics. 2006;22:1988–97. doi:10.1093/bioinformatics/btl284.PubMedCrossRefGoogle Scholar
  31. 31.
    Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion 101–103, 119–128, 244–152.PubMedCrossRefGoogle Scholar
  32. 32.
    Werner T. Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol. 2008;19:50–4. doi:10.1016/j.copbio.2007.11.005.PubMedCrossRefGoogle Scholar
  33. 33.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70. doi:10.1126/science.270.5235.467.PubMedCrossRefGoogle Scholar
  34. 34.
    Baelde HJ, Eikmans M, Doran PP, Lappin DW, et al. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis. 2004;43:636–50. doi:10.1053/j.ajkd.2003.12.028.PubMedCrossRefGoogle Scholar
  35. 35.
    Qi W, Chen X, Gilbert RE, Zhang Y, et al. High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. Am J Pathol. 2007;171:744–54. doi:10.2353/ajpath.2007.060813.PubMedCrossRefGoogle Scholar
  36. 36.
    Panchapakesan U, Sumual S, Pollock CA, Chen X. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am J Physiol Renal Physiol. 2005;289:F1153–1158. doi:10.1152/ajprenal.00097.2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Srinivasan S, Bolick DT, Hatley ME, Natarajan R, et al. Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J Biol Chem. 2004;279:31930–6. doi:10.1074/jbc.M400753200.PubMedCrossRefGoogle Scholar
  38. 38.
    Mora C, Navarro JF. Inflammation and diabetic nephropathy. Curr Diab Rep. 2006;6:463–8. doi:10.1007/s11892-006-0080-1.PubMedCrossRefGoogle Scholar
  39. 39.
    Moczulski DK, Fojcik H, Wielgorecki A, Trautsolt W, et al. Expression pattern of genes in peripheral blood mononuclear cells in diabetic nephropathy. Diabet Med. 2007;24:266–71. doi:10.1111/j.1464-5491.2006.02067.x.PubMedCrossRefGoogle Scholar
  40. 40.
    Tone A, Shikata K, Ogawa D, Sasaki S, et al. Changes of gene expression profiles in macrophages stimulated by angiotensin II–angiotensin II induces MCP-2 through AT1-receptor. J Renin Angiotensin Aldosterone Syst. 2007;8:45–50. doi:10.3317/jraas.2007.007.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang C, Kim Y, Caramori ML, Moore JH, et al. Diabetic nephropathy is associated with gene expression levels of oxidative phosphorylation and related pathways. Diabetes. 2006;55:1826–31. doi:10.2337/db05-1438.PubMedCrossRefGoogle Scholar
  42. 42.
    de Borst MH, Benigni A, Remuzzi G. Primer: strategies for identifying genes involved in renal disease. Nat Clin Pract Nephrol. 2008;4:265–76. doi:10.1038/ncpneph0785.PubMedCrossRefGoogle Scholar
  43. 43.
    Werner T, Fessele S, Maier H, Nelson PJ. Computer modeling of promoter organization as a tool to study transcriptional coregulation. FASEB J. 2003;17:1228–37. doi:10.1096/fj.02-0955rev.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmid H, Boucherot A, Yasuda Y, Henger A, et al. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes. 2006;55:2993–3003. doi:10.2337/db06-0477.PubMedCrossRefGoogle Scholar
  45. 45.
    Mezzano S, Aros C, Droguett A, Burgos ME, et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19:2505–12. doi:10.1093/ndt/gfh207.PubMedCrossRefGoogle Scholar
  46. 46.
    Sakai N, Wada T, Furuichi K, Iwata Y, et al. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis. 2005;45:54–65. doi:10.1053/j.ajkd.2004.08.039.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang B, Hodgkinson A, Oates PJ, Millward BA, et al. High glucose induction of DNA-binding activity of the transcription factor NFkappaB in patients with diabetic nephropathy. Biochim Biophys Acta. 2008;1782:295–302.PubMedGoogle Scholar
  48. 48.
    Nagai N, Izumi-Nagai K, Oike Y, Koto T, et al. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. Invest Ophthalmol Vis Sci. 2007;48:4342–50. doi:10.1167/iovs.06-1473.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshida A, Yoshida S, Ishibashi T, Kuwano M, et al. Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci. 1999;40:1624–9.PubMedGoogle Scholar
  50. 50.
    Chen L, Zhang J, Zhang Y, Wang Y, et al. Improvement of inflammatory responses associated with NF-kappaB pathway in kidneys from diabetic rats. Inflamm Res 2008;57(5):199–204.PubMedCrossRefGoogle Scholar
  51. 51.
    Saisho Y, Hirose H, Horimai C, Miyashita K, et al. Effects of DHMEQ, a novel nuclear factor-kappab inhibitor, on beta cell dysfunction in INS-1 cells. Endocr J. 2008;55:433–8. doi:10.1507/endocrj.K07E-036.PubMedCrossRefGoogle Scholar
  52. 52.
    Lorz C, Benito-Martin A, Boucherot A, Ucero AC, et al. The death ligand TRAIL in diabetic nephropathy. J Am Soc Nephrol. 2008;19:904–14. doi:10.1681/ASN.2007050581.PubMedCrossRefGoogle Scholar
  53. 53.
    Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80. doi:10.1593/neo.07112.PubMedCrossRefGoogle Scholar
  54. 54.
    Peng F, Wu D, Gao B, Ingram AJ, et al. RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes. 2008;57:1683–92. doi:10.2337/db07-1149.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sebastian Martini
    • 1
  • Felix Eichinger
    • 1
  • Viji Nair
    • 1
  • Matthias Kretzler
    • 1
  1. 1.Division of Nephrology, Department of Internal MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations