New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy

Article

Abstract

Progression of diabetic nephropathy (DN) is manifested by gradual scarring of both the renal glomerulus and tubulointerstitial region. Over the past several years, the general understanding of the pathogenic factors that lead to renal fibrosis in DN has expanded considerably. In this review, some of the important factors that appear to be involved in driving this fibrosing process are discussed, with special emphasis on newer findings and insights. It is now clear that multiple cell types in the kidney contribute to progressive fibrosis in DN. New concepts about bradykinin, TGF-β and eNOS signaling as well as JAK/STAT activation and the central role of inflammation in both glomerular and tubulointerstitial fibrosis are discussed.

Keywords

Diabetes Kidney Signaling Matrix proteins Glomerulus 

References

  1. 1.
    Alsaad KO, Herzenberg AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 2007;60:18–26. doi:10.1136/jcp.2005.035592.PubMedCrossRefGoogle Scholar
  2. 2.
    Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003;14:1358–73. doi:10.1097/01.ASN.0000065640.77499.D7.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2003;23:532–43. doi:10.1053/S0270–9295(03)00132–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984;74:1143–55. doi:10.1172/JCI111523.PubMedCrossRefGoogle Scholar
  5. 5.
    Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 1980;167:204–16.PubMedGoogle Scholar
  6. 6.
    Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007;27:195–207. doi:10.1016/j.semnephrol.2007.01.012.PubMedCrossRefGoogle Scholar
  7. 7.
    Katz A, Caramori ML, Sisson-Ross S, Groppoli T, Basgen JM, Mauer M. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 2002;61:2058–66. doi:10.1046/j.1523-1755.2002.00370.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 2005;16:2941–52. doi:10.1681/ASN.2005010055.PubMedCrossRefGoogle Scholar
  9. 9.
    Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997;99:342–8. doi:10.1172/JCI119163.PubMedCrossRefGoogle Scholar
  10. 10.
    Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 1999;42:1341–4. doi:10.1007/s001250051447.PubMedCrossRefGoogle Scholar
  11. 11.
    Morcos M, Borcea V, Isermann B, et al. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res Clin Pract 2001;52:175–83. doi:10.1016/S0168-8227(01)00223-6.PubMedCrossRefGoogle Scholar
  12. 12.
    Isermann B, Vinnikov IA, Madhusudhan T, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 2007;13:1349–58. doi:10.1038/nm1667.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao HJ, Wang S, Cheng H, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 2006;17:2664–9. doi:10.1681/ASN.2006070798.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakagawa T, Sato W, Glushakova O, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol 2007;18:539–50. doi:10.1681/ASN.2006050459.PubMedCrossRefGoogle Scholar
  15. 15.
    Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 2007;56:2155–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001;108:1853–63.PubMedGoogle Scholar
  17. 17.
    Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol 2006;17:2484–94. doi:10.1681/ASN.2006050525.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 2005;12:177–86. doi:10.1053/j.ackd.2005.01.008.PubMedCrossRefGoogle Scholar
  19. 19.
    Pedagogos E, Hewitson T, Fraser I, Nicholls K, Becker G. Myofibroblasts and arteriolar sclerosis in human diabetic nephropathy. Am J Kidney Dis 1997;29:912–8. doi:10.1016/S0272-6386(97)90466-2.PubMedCrossRefGoogle Scholar
  20. 20.
    Zoja C, Donadelli R, Colleoni S, et al. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int 1998;53:1608–15. doi:10.1046/j.1523-1755.1998.00905.x.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang S, Leung JC, Abe K, et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 2003;111:515–27.PubMedGoogle Scholar
  22. 22.
    Eddy AA, Kim H, Lopez-Guisa J, Oda T, Soloway PD. Interstitial fibrosis in mice with overload proteinuria: deficiency of TIMP-1 is not protective. Kidney Int 2000;58:618–28. doi:10.1046/j.1523-1755.2000.00208.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Eddy AA, Giachelli CM. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995;47:1546–57. doi:10.1038/ki.1995.218.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 1997;8:1537–45.PubMedGoogle Scholar
  25. 25.
    Zheng F, Cornacchia F, Schulman I, et al. Development of albuminuria and glomerular lesions in normoglycemic B6 recipients of db/db mice bone marrow: the role of mesangial cell progenitors. Diabetes 2004;53:2420–7. doi:10.2337/diabetes.53.9.2420.PubMedCrossRefGoogle Scholar
  26. 26.
    Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 2004;65:116–28. doi:10.1111/j.1523-1755.2004.00367.x.PubMedCrossRefGoogle Scholar
  27. 27.
    Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 2003;52:2586–93. doi:10.2337/diabetes.52.10.2586.PubMedCrossRefGoogle Scholar
  28. 28.
    Levine DZ. Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties. Clin Sci (Lond) 2008;114:109–18. doi:10.1042/CS20070088.Google Scholar
  29. 29.
    Gurley SB, Coffman TM. The renin-angiotensin system and diabetic nephropathy. Semin Nephrol 2007;27:144–52. doi:10.1016/j.semnephrol.2007.01.009.PubMedCrossRefGoogle Scholar
  30. 30.
    Gnudi L, Thomas SM, Viberti G. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J Am Soc Nephrol 2007;18:2226–32. doi:10.1681/ASN.2006121362.PubMedCrossRefGoogle Scholar
  31. 31.
    Heilig CW, Liu Y, England RL, et al. D-glucose stimulates mesangial cell GLUT1 expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cells: implications for diabetic nephropathy. Diabetes 1997;46:1030–9. doi:10.2337/diabetes.46.6.1030.PubMedCrossRefGoogle Scholar
  32. 32.
    D’Agord Schaan B, Lacchini S, Bertoluci MC, Irigoyen MC, Machado UF, Schmid H. Increased renal GLUT1 abundance and urinary TGF-beta 1 in streptozotocin-induced diabetic rats: implications for the development of nephropathy complicating diabetes. Hormone and metabolic research. Horm Metab Res 2001;33:664–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Horie K, Miyata T, Maeda K, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 1997;100:2995–3004. doi:10.1172/JCI119853.PubMedCrossRefGoogle Scholar
  34. 34.
    Skolnik EY, Yang Z, Makita Z, Radoff S, Kirstein M, Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med 1991;174:931–9. doi:10.1084/jem.174.4.931.PubMedCrossRefGoogle Scholar
  35. 35.
    Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 1991;325:836–42.PubMedGoogle Scholar
  36. 36.
    Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 1994;43:1–8. doi:10.2337/diabetes.43.1.1.PubMedCrossRefGoogle Scholar
  37. 37.
    Babazono T, Kapor-Drezgic J, Dlugosz JA, Whiteside C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes 1998;47:668–76. doi:10.2337/diabetes.47.4.668.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A 1993;90:1814–8. doi:10.1073/pnas.90.5.1814.PubMedCrossRefGoogle Scholar
  39. 39.
    Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest 1994;93:536–42. doi:10.1172/JCI117004.PubMedCrossRefGoogle Scholar
  40. 40.
    Marre M, Bernadet P, Gallois Y, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994;43:384–8. doi:10.2337/diabetes.43.3.384.PubMedCrossRefGoogle Scholar
  41. 41.
    Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes 1994;43:690–5. doi:10.2337/diabetes.43.5.690.PubMedCrossRefGoogle Scholar
  42. 42.
    Huang W, Gallois Y, Bouby N, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A 2001;98:13330–4. doi:10.1073/pnas.231476798.PubMedCrossRefGoogle Scholar
  43. 43.
    Takahashi N, Hagaman JR, Kim HS, Smithies O. Minireview: computer simulations of blood pressure regulation by the rennin–angiotensin system. Endocrinology 2003;144:2184–90. doi:10.1210/en.2002-221045.PubMedCrossRefGoogle Scholar
  44. 44.
    Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci USA 2004;101:13302–5. doi:10.1073/pnas.0405449101.PubMedCrossRefGoogle Scholar
  45. 45.
    Kakoki M, Kizer CM, Yi X, et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest 2006;116:1302–9. doi:10.1172/JCI26958.PubMedCrossRefGoogle Scholar
  46. 46.
    Allard J, Buleon M, Cellier E, et al. ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats. Am J Physiol Renal Physiol 2007;293:F1083–92. doi:10.1152/ajprenal.00401.2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Hirano T, Kashiwazaki K, Moritomo Y, Nagano S, Adachi M. Albuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res Clin Pract 1997;36:11–8. doi:10.1016/S0168-8227(97)01384-3.PubMedCrossRefGoogle Scholar
  48. 48.
    Nicholas SB, Aguiniga E, Ren Y, et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int 2005;67:1297–307. doi:10.1111/j.1523-1755.2005.00207.x.PubMedCrossRefGoogle Scholar
  49. 49.
    Huang Y, Border WA, Yu L, Zhang J, Lawrence DA, Noble NAA. PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J Am Soc Nephrol 2008;19:329–38. doi:10.1681/ASN.2007040510.PubMedCrossRefGoogle Scholar
  50. 50.
    Leiter LA. The prevention of diabetic microvascular complications of diabetes: is there a role for lipid lowering. Diabetes Res Clin Pract 2005;68(Suppl 2):S3–S14. doi:10.1016/j.diabres.2005.03.015.PubMedCrossRefGoogle Scholar
  51. 51.
    Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 2006;55:2502–9. doi:10.2337/db05-0603.PubMedCrossRefGoogle Scholar
  52. 52.
    Sun L, Halaihel N, Zhang W, Rogers T, Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 2002;277:18919–27. doi:10.1074/jbc.M110650200.PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang T, Wang XX, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 2007;56:2485–93. doi:10.2337/db06-1642.PubMedCrossRefGoogle Scholar
  54. 54.
    Hao CM, Breyer MD. Roles of lipid mediators in kidney injury. Semin Nephrol 2007;27:338–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Komers R, Lindsley JN, Oyama TT, Anderson S. Cyclo-oxygenase-2 inhibition attenuates the progression of nephropathy in uninephrectomized diabetic rats. Clin Exp Pharmacol Physiol 2007;34:36–41. doi:10.1111/j.1440-1681.2007.04534.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheng HF, Wang CJ, Moeckel GW, Zhang MZ, McKanna JA, Harris RC. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int 2002;62:929–39. doi:10.1046/j.1523-1755.2002.00520.x.PubMedCrossRefGoogle Scholar
  57. 57.
    Sassen S, Miska EA, Caldas C. MicroRNA-implications for cancer. Virchows Arch 2008;452:1–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 2007;104:3432–7. doi:10.1073/pnas.0611192104.PubMedCrossRefGoogle Scholar
  59. 59.
    Fujiwara Y, Tagami S, Kawakami Y. Circulating thrombomodulin and hematological alterations in type 2 diabetic patients with retinopathy. J Atheroscler Thromb 1998;5:21–8.PubMedGoogle Scholar
  60. 60.
    Amiri F, Shaw S, Wang X, et al. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int 2002;61:1605–16. doi:10.1046/j.1523-1755.2002.00311.x.PubMedCrossRefGoogle Scholar
  61. 61.
    Banes AK, Shaw S, Jenkins J, et al. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am J Physiol Renal Physiol 2004;286:F653–9. doi:10.1152/ajprenal.00163.2003.PubMedCrossRefGoogle Scholar
  62. 62.
    Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Renal Physiol 2006;290:F762–F8. doi:10.1152/ajprenal.00181.2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Boucherot AHA, Cohen CD, Schin ML, Burke K, Bayer I, Schmid HRM, et al. Jak/Stat activation in diabetic nephropathy in humans but not mice: transcriptional analysis. J Am Soc Nephrol 2006;17:60A.Google Scholar
  64. 64.
    Logar CM, Brinkkoetter PT, Krofft RD, Pippin JW, Shankland SJ. Darbepoetin alfa protects podocytes from apoptosis in vitro and in vivo. Kidney Int 2007;72:489–98. doi:10.1038/sj.ki.5002362.PubMedCrossRefGoogle Scholar
  65. 65.
    Dalla Vestra M, Mussap M, Gallina P, et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol 2005;16(Suppl 1):S78–82. doi:10.1681/ASN.2004110961.PubMedCrossRefGoogle Scholar
  66. 66.
    Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 2002;51:1157–65. doi:10.2337/diabetes.51.4.1157.PubMedCrossRefGoogle Scholar
  67. 67.
    Wolkow PP, Niewczas MA, Perkins B, et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 2008;19:789–97. doi:10.1681/ASN.2007050556.PubMedCrossRefGoogle Scholar
  68. 68.
    Schmid H, Boucherot A, Yasuda Y, et al. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006;55:2993–3003. doi:10.2337/db06-0477.PubMedCrossRefGoogle Scholar
  69. 69.
    Navarro JF, Milena FJ, Mora C, Leon C, Garcia J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 2006;26:562–70. doi:10.1159/000098004.PubMedCrossRefGoogle Scholar
  70. 70.
    Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transplant 2004;19:2987–96. doi:10.1093/ndt/gfh441.PubMedCrossRefGoogle Scholar
  71. 71.
    Tesch GH. Role of macrophages in complications of type 2 diabetes. Clin Exp Pharmacol Physiol 2007;34:1016–9. doi:10.1111/j.1440-1681.2007.04729.x.PubMedCrossRefGoogle Scholar
  72. 72.
    Usui HK, Shikata K, Sasaki M, et al. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 2007;56:363–72. doi:10.2337/db06-0359.PubMedCrossRefGoogle Scholar
  73. 73.
    Yozai K, Shikata K, Sasaki M, et al. Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J Am Soc Nephrol 2005;16:3326–38. doi:10.1681/ASN.2004111011.PubMedCrossRefGoogle Scholar
  74. 74.
    Furuta T, Saito T, Ootaka T, et al. The role of macrophages in diabetic glomerulosclerosis. Am J Kidney Dis 1993;21:480–5.PubMedGoogle Scholar
  75. 75.
    Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Tesch GH. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J Am Soc Nephrol 2005;16:1711–22. doi:10.1681/ASN.2004070612.PubMedCrossRefGoogle Scholar
  76. 76.
    Wong CK, Ho AW, Tong PC, et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol 2007;149:123–31.PubMedGoogle Scholar
  77. 77.
    Awad AS, Huang L, Ye H, et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol 2006;290:F828–37. doi:10.1152/ajprenal.00310.2005.PubMedCrossRefGoogle Scholar
  78. 78.
    Mizuno M, Sada T, Kato M, Fukushima Y, Terashima H, Koike H. The effect of angiotensin II receptor blockade on an end-stage renal failure model of type 2 diabetes. J Cardiovasc Pharmacol 2006;48:135–42. doi:10.1097/01.fjc.0000245241.79959.d6.PubMedCrossRefGoogle Scholar
  79. 79.
    Agarwal R. Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy. Am J Physiol Renal Physiol 2006;290:F600–5. doi:10.1152/ajprenal.00289.2005.PubMedCrossRefGoogle Scholar
  80. 80.
    Chander PN, Gealekman O, Brodsky SV, et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol 2004;15:2391–403. doi:10.1097/01.ASN.0000135971.88164.2C.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departments of Internal Medicine, and Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations